Skip to main content

Neuroimaging Studies of Sleep and Memory in Humans

  • Chapter
  • First Online:
Sleep, Neuronal Plasticity and Brain Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

Human brain dynamics are nowadays routinely explored at the macroscopic level using a wide variety of non-invasive neuroimaging techniques, including single photon emission computed tomography (SPECT) and positron emission tomography (PET), near infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fMRI). In the past decades, the application of brain imaging methods to the study of sleep raised a renewed interest for the field, especially in the domain of neuroscience. Indeed, these studies enabled researchers to characterize the functional neuroanatomy of sleep stages and identify the neural correlates of phasic and tonic sleep mechanisms. Furthermore, they provided the scientific community with tools to address the crucial question of brain plasticity processes during human sleep, the role of sleep-related plasticity for memory consolidation, and how sleep and the lack of post-training sleep impacts brain functioning in the neural networks underlying memory-related cognitive processes. This chapter reviews the contributions of neuroimaging to our understanding of the functional neuroanatomy of sleep and sleep stages, and discusses how sleep contributes to the long-term consolidation of recently acquired memories in light of contemporary neural models for memory consolidation during sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albouy G, King B, Maquet P, Doyon J (2013a) Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus. doi:10.1002/hipo.22183

    PubMed  Google Scholar 

  • Albouy G, Sterpenich V, Balteau E, Vandewalle G, Desseilles M, Dang-Vu T, Darsaud A, Ruby P, Luppi PH, Degueldre C, Peigneux P, Luxen A, Maquet P (2008) Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron 58:261–272

    CAS  PubMed  Google Scholar 

  • Albouy G, Sterpenich V, Vandewalle G, Darsaud A, Gais S, Rauchs G, Desseilles M, Boly M, Dang-Vu T, Balteau E, Degueldre C, Phillips C, Luxen A, Maquet P (2013b) Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PLoS ONE 8:e59490. doi:10.1371/journal.pone.0059490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Albouy G, Vandewalle G, Sterpenich V, Rauchs G, Desseilles M, Balteau E, Degueldre C, Phillips C, Luxen A, Maquet P (2012) Sleep stabilizes visuomotor adaptation memory: a functional magnetic resonance imaging study. J Sleep Res. doi:10.1111/j.1365-2869.2012.01059.x

    PubMed  Google Scholar 

  • Andersson JLR, Onoe H, Hetta J, Lidstrom K, Valind S, Lilja A, Sundin A, Fasth KJ, Westerberg G, Broman JE, Watanabe Y, Langstrom B (1998) Brain networks affected by synchronized sleep visualized by positron emission tomography. J Cereb Blood Flow Metab 18:701–715

    CAS  PubMed  Google Scholar 

  • Antony J, Gobel E, O’Hare J, Reber P, Paller K (2012) Cued memory reactivation during sleep influences skill learning. Nat Neurosci 15:1114–1116. doi:10.1038/nn.3152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bassetti C, Vella S, Donati F, Wielepp P, Weder B (2000) SPECT during sleepwalking. Lancet 356:484–485

    CAS  PubMed  Google Scholar 

  • Bergmann T, Molle M, Diedrichs J, Born J, Siebner H (2012) Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage 59:2733–2742. doi:10.1016/j.neuroimage.2011.10.036

    PubMed  Google Scholar 

  • Bolsterli B, Schmitt B, Bast T, Critelli H, Heinzle J, Jenni O, Huber R (2011) Impaired slow wave sleep downscaling in encephalopathy with status epilepticus during sleep (ESES). Clin Neurophysiol 122:1779–1787. doi:10.1016/j.clinph.2011.01.053

    PubMed  Google Scholar 

  • Bolsterli Heinzle BK, Fattinger S, Kurth S, Lebourgeois MK, Ringli M, Bast T, Critelli H, Schmitt B, Huber R (2014) Spike wave location and density disturb sleep slow waves in patients with CSWS (continuous spike waves during sleep). Epilepsia. doi:10.1111/epi.12576

    PubMed  Google Scholar 

  • Bonjean M, Baker T, Bazhenov M, Cash S, Halgren E, Sejnowski T (2012) Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization. J Neurosci 32:5250–5263. doi:10.1523/JNEUROSCI.6141-11.2012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Born J, Wilhelm I (2011) System consolidation of memory during sleep. Psychol Res 76(2):192–203

    PubMed Central  PubMed  Google Scholar 

  • Braun AR, Balkin TJ, Wesensten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle—an (H2O)-O-15 PET study. Brain 120:1173–1197

    PubMed  Google Scholar 

  • Buchsbaum MS, Gillin JC, Wu J, Hazlett E, Sicotte N, Dupont RM, Bunney WE (1989) Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci 45:1349–1356

    CAS  PubMed  Google Scholar 

  • Buchsbaum MS, Hazlett EA, Wu J, Bunney J, William E (2001) Positron emission tomography with deoxyglucose-F18 imaging of sleep. Neuropsychopharmacology 25:S50–S56

    CAS  PubMed  Google Scholar 

  • Buzsaki G (1996) The hippocampo-neocortical dialogue. Cereb Cortex 6:81–92

    CAS  PubMed  Google Scholar 

  • Caporro M, Haneef Z, Yeh H, Lenartowicz A, Buttinelli C, Parvizi J, Stern J (2012) Functional MRI of sleep spindles and K-complexes. Clin Neurophysiol 123:303–309. doi:10.1016/j.clinph.2011.06.018

    PubMed Central  PubMed  Google Scholar 

  • Chow H, Horovitz S, Carr W, Picchioni D, Coddington N, Fukunaga M, Xu Y, Balkin T, Duyn J, Braun A (2013) Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Nat Acad Sci U.S.A 110:10300–10305. doi:10.1073/pnas.1217691110

    CAS  Google Scholar 

  • Cleeremans A, McClelland JL (1991) Learning the structure of event sequences. J Exp Psychol Gen 120:235–253

    CAS  PubMed  Google Scholar 

  • Corsi-Cabrera M, Guevara M, del Rio-Portilla Y (2008) Brain activity and temporal coupling related to eye movements during REM sleep: EEG and MEG results. Brain Res 1235:82–91. doi:10.1016/j.brainres.2008.06.052

    CAS  PubMed  Google Scholar 

  • Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmacher T, Auer DP (2004) Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci 20:566–574

    PubMed  Google Scholar 

  • Czisch M, Wetter TC, Kaufmann C, Pollmacher T, Holsboer F, Auer DP (2002) Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. Neuroimage 16:251–258

    PubMed  Google Scholar 

  • Dang-Vu T, Bonjean M, Schabus M, Boly M, Darsaud A, Desseilles M, Degueldre C, Balteau E, Phillips C, Luxen A, Sejnowski T, Maquet P (2011) Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc Nat Acad Sci U.S.A 108:15438–15443. doi:10.1073/pnas.1112503108

    CAS  Google Scholar 

  • Dang-Vu TT, Desseilles M, Laureys S, Degueldre C, Perrin F, Phillips C, Maquet P, Peigneux P (2005) Cerebral correlates of delta waves during non-REM sleep revisited. Neuroimage 28:14–21

    PubMed  Google Scholar 

  • Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, Gais S, Rauchs G, Sterpenich V, Vandewalle G, Carrier J, Moonen G, Balteau E, Degueldre C, Luxen A, Phillips C, Maquet P (2008) Spontaneous neural activity during human slow wave sleep. Proc Nat Acad Sci U.S.A 105:15160–15165

    Google Scholar 

  • Datta S (1999) PGO wave generation: mechanism and functional significance. In: Mallick BN, Inoue S (eds) Rapid eye movement sleep. Narosa, New Delhi, pp 91–106

    Google Scholar 

  • Dauvilliers Y, Boudousq V, Lopez R, Gabelle A, De Cock VC, Bayard S, Peigneux P (2011) Increased perfusion in supplementary motor area during a REM sleep behaviour episode. Sleep Med 12:531–532. doi:10.1016/j.sleep.2011.02.003

    PubMed  Google Scholar 

  • Dave A, Yu A, Margoliash D (1998) Behavioral state modulation of auditory activity in a vocal motor system. Science 282:2250–2254

    CAS  PubMed  Google Scholar 

  • Dave AS, Margoliash D (2000) Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290:812–816

    CAS  PubMed  Google Scholar 

  • Dehghani N, Cash S, Chen C, Hagler DJ, Huang M, Dale A, Halgren E (2010a) Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling. PLoS ONE 5:e11454. doi:10.1371/journal.pone.0011454

    PubMed Central  PubMed  Google Scholar 

  • Dehghani N, Cash S, Halgren E (2011) Emergence of synchronous EEG spindles from asynchronous MEG spindles. Hum Brain Mapp. doi:10.1002/hbm.21183

    Google Scholar 

  • Dehghani N, Cash S, Rossetti A, Chen C, Halgren E (2010b) Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles. J Neurophysiol 104:179–188. doi:10.1152/jn.00198.2010

    PubMed Central  PubMed  Google Scholar 

  • Desseilles M, Vu T, Maquet P (2011) Functional neuroimaging in sleep, sleep deprivation, and sleep disorders. Handb Clin Neurol 98:71–94. doi:10.1016/B978-0-444-52006-7.00006-X

    PubMed  Google Scholar 

  • Destexhe A, Sejnowski T (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401–1453. doi:10.1152/physrev.00012.2003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eschenko O, Magri C, Panzeri S, Sara S (2012) Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb Cortex 22:426–435. doi:10.1093/cercor/bhr121

    PubMed  Google Scholar 

  • Ficca G, Lombardo P, Rossi L, Salzarulo P (2000) Morning recall of verbal material depends on prior sleep organization. Behav Brain Res 112:159–163

    CAS  PubMed  Google Scholar 

  • Fischer S, Nitschke M, Melchert U, Erdmann C, Born J (2005) Motor memory consolidation in sleep shapes more effective neuronal representations. J Neurosci 25:11248–11255. doi:10.1523/JNEUROSCI.1743-05.2005

    CAS  PubMed  Google Scholar 

  • Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, Rauchs G, Schabus M, Sterpenich V, Vandewalle G, Maquet P, Peigneux P (2007) Sleep transforms the cerebral trace of declarative memories. Proc Nat Acad Sci U.S.A 104:18778–18783

    CAS  Google Scholar 

  • Giuditta A (1984) A sequential hypothesis for the function of sleep. In: Koella WP, Rüther E, Schulz H (eds) Sleep 84’. Hustav Fischer, New York, pp 222–224

    Google Scholar 

  • Guerrien A, Dujardin K, Mandai O, Sockeel P, Leconte P (1989) Enhancement of memory by auditory stimulation during postlearning REM sleep in humans. Physiol Behav 45:947–950

    CAS  PubMed  Google Scholar 

  • Gumenyuk V, Roth T, Moran J, Jefferson C, Bowyer S, Tepley N, Drake C (2009) Cortical locations of maximal spindle activity: magnetoencephalography (MEG) study. J Sleep Res 18:245–253. doi:10.1111/j.1365-2869.2008.00717.x

    PubMed  Google Scholar 

  • Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends in Cognitive Sciences 3:351–359

    PubMed  Google Scholar 

  • Hofle N, Paus T, Reutens D, Fiset P, Gotman J, Evans AC, Jones BE (1997) Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci 17:4800–4808

    CAS  PubMed  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    CAS  PubMed  Google Scholar 

  • Ioannides AA, Corsi-Cabrera M, Fenwick PB, del Rio Portilla Y, Laskaris NA, Khurshudyan A, Theofilou D, Shibata T, Uchida S, Nakabayashi T, Kostopoulos GK (2004) MEG tomography of human cortex and brainstem activity in waking and REM sleep saccades. Cereb Cortex 14:56–72

    PubMed  Google Scholar 

  • Jones EG (1998) Viewpoint. The core and matrix of thalamic organization. Neuroscience 85:331–345

    CAS  PubMed  Google Scholar 

  • Kajimura N, Uchiyama M, Takayama Y, Uchida S, Uema T, Kato M, Sekimoto M, Watanabe T, Nakajima T, Horikoshi S, Ogawa K, Nishikawa M, Hiroki M, Kudo Y, Matsuda H, Okawa M, Takahashi K (1999) Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J Neurosci 19:10065–10073

    CAS  PubMed  Google Scholar 

  • Kakigi R, Naka D, Okusa T, Wang X, Inui K, Qiu Y, Tran TD, Miki K, Tamura Y, Nguyen TB (2003) Sensory perception during sleep in humans: a magnetoencephalograhic study. Sleep Med 4(6):493–507

    Google Scholar 

  • Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmacher T, Czisch M (2006) Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain 129:655–667. doi:10.1093/brain/awh686

    CAS  PubMed  Google Scholar 

  • Kudrimoti HS, Barnes CA, Mcnaughton BL (1999) Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19:4090–4101

    CAS  PubMed  Google Scholar 

  • Landsness E, Crupi D, Hulse B, Peterson M, Huber R, Ansari H, Coen M, Cirelli C, Benca R, Ghilardi M, Tononi G (2009) Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 32:1273–1284

    PubMed Central  PubMed  Google Scholar 

  • Laureys S, Peigneux P, Phillips C, Fuchs S, Degueldre C, Aerts J, Del Fiore G, Petiau C, Luxen A, van der Linden M, Cleeremans A, Smith C, Maquet P (2001) Experience-dependent changes in cerebral functional connectivity during human rapid eye movement sleep. Neuroscience 105:521–525

    CAS  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194

    CAS  PubMed  Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156

    CAS  PubMed  Google Scholar 

  • Lydic R, Baghdoyan HA, Hibbard L, Bonyak EV, DeJoseph MR, Hawkins RA (1991) Regional brain glucose metabolism is altered during rapid-eye movement sleep in the cat: a preliminary study. J Comp Neurol 304:517–529

    CAS  PubMed  Google Scholar 

  • Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, OKeefe J (1998) Knowing where and getting there: a human navigation network. Science 280:921–924

    CAS  PubMed  Google Scholar 

  • Maquet P (2000) Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 9:207–231

    CAS  PubMed  Google Scholar 

  • Maquet P (2005) Current status of brain imaging in sleep medicine. Sleep Med Rev 9:155–156

    PubMed  Google Scholar 

  • Maquet P, Degueldre C, Delfiore G, Aerts J, Péters J-M, Luxen A, Franck G (1997) Functional neuroanatomy of human slow wave sleep. J Neurosci 17:2807–2812

    CAS  PubMed  Google Scholar 

  • Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R, Franck G (1992) Cerebral glucose utilization during stage 2 sleep in man. Brain Res 571:149–153

    CAS  PubMed  Google Scholar 

  • Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R, von Frenckell R, Franck G (1990) Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res 513:136–143

    CAS  PubMed  Google Scholar 

  • Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, Aerts J, del Fiore G, Degueldre C, Meulemans T, Luxen A, Franck G, van der Linden M, Smith C, Cleeremans A (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3:831–836

    CAS  PubMed  Google Scholar 

  • Maquet P, Péters J-M, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383:163–166

    CAS  PubMed  Google Scholar 

  • Maquet P, Phillips C (1998) Functional brain imaging of human sleep. J Sleep Res 7:42–47

    PubMed  Google Scholar 

  • Maquet P, Schwartz S, Passingham R, Frith C (2003) Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J Neurosci 23:1432–1440

    CAS  PubMed  Google Scholar 

  • Margoliash D (2001) Do sleeping birds sing? Population coding and learning in the bird song system. Prog Brain Res 130:319–331

    CAS  PubMed  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc B: Biol Sci 262:23–81

    CAS  Google Scholar 

  • Mascetti L, Muto V, Matarazzo L, Foret A, Ziegler E, Albouy G, Sterpenich V, Schmidt C, Degueldre C, Leclercq Y, Phillips C, Luxen A, Vandewalle G, Vogels R, Maquet P, Balteau E (2013) The impact of visual perceptual learning on sleep and local slow-wave initiation. J Neurosci 33:3323–3331. doi:10.1523/JNEUROSCI.0763-12.2013

    CAS  PubMed  Google Scholar 

  • McClelland JL (1994) The organization of memory. A parallel distributed processing perspective. Rev Neurologique 150:570–579

    CAS  Google Scholar 

  • McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–1358

    CAS  PubMed  Google Scholar 

  • Molle M, Bergmann T, Marshall L, Born J (2011) Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 34:1411–1421. doi:10.5665/SLEEP.1290

    PubMed Central  PubMed  Google Scholar 

  • Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507

    CAS  PubMed  Google Scholar 

  • Nadel L, Samsonovich A, Ryan L, Moscovitch M (2000) Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus 10:352–368. doi:10.1002/1098-1063(2000)10:4<352:AID-HIPO2>3.0.CO;2-D

    CAS  PubMed  Google Scholar 

  • Nofzinger EA (2004) What can neuroimaging findings tell us about sleep disorders? Sleep Med 5(Suppl 1):S16–S22

    PubMed  Google Scholar 

  • Nofzinger EA, Mintun MA, Price J, Meltzer CC, Townsend D, Buysse DJ, Reynolds CF III, Dachille M, Matzzie J, Kupfer DJ, Moore RY (1998) A method for the assessment of the functional neuroanatomy of human sleep using FDG PET. Brain Res Brain Res Protoc 2:191–198

    CAS  PubMed  Google Scholar 

  • Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770:192–201

    CAS  PubMed  Google Scholar 

  • Orban P, Rauchs G, Balteau E, Degueldre C, Luxen A, Maquet P, Peigneux P (2006) Sleep after spatial learning promotes covert reorganization of brain activity. Proc Nat Acad Sci U.S.A 103:7124–7129

    CAS  Google Scholar 

  • Pavlides C, Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9:2907–2918

    CAS  PubMed  Google Scholar 

  • Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, Phillips C, Degueldre C, Del Fiore G, Aerts J, Luxen A, Maquet P (2004) Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44:535–545

    CAS  PubMed  Google Scholar 

  • Peigneux P, Laureys S, Fuchs S, Delbeuck X, Degueldre C, Aerts J, Delfiore G, Luxen A, Maquet P (2001) Generation of rapid eye movements during paradoxical sleep in humans. Neuroimage 14:701–708

    CAS  PubMed  Google Scholar 

  • Peigneux P, Laureys S, Fuchs S, Destrebecqz A, Collette F, Delbeuck X, Phillips C, Aerts J, del Fiore G, Degueldre C, Luxen A, Cleeremans A, Maquet P (2003) Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage 20:125–134

    PubMed  Google Scholar 

  • Peigneux P, Maquet P, Meulemans T, Destrebecqz A, Laureys S, Degueldre C, Delfiore G, Aerts J, Luxen A, Franck G, Van der Linden M, Cleeremans A (2000) Striatum forever, despite sequence learning variability: a random effect analysis of PET data. Hum Brain Mapp 10:179–194

    CAS  PubMed  Google Scholar 

  • Peigneux P, Orban P, Balteau E, Degueldre C, Luxen A, Laureys S, Maquet P (2006) Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biol 4:e100

    PubMed Central  PubMed  Google Scholar 

  • Peigneux P, Urbain C, Schmitz R (2011) Sleep and the Brain. In: Espie C, Morin C (eds) Oxford Handbook of Sleep and Sleep Disorders. Oxford University Press, New York, pp 11–37

    Google Scholar 

  • Picchioni D, Horovitz S, Fukunaga M, Carr W, Meltzer J, Balkin T, Duyn J, Braun A (2011) Infraslow EEG oscillations organize large-scale cortical-subcortical interactions during sleep: a combined EEG/fMRI study. Brain Res 1374:63–72. doi:10.1016/j.brainres.2010.12.035

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plihal W, Born J (1997) Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 9:534–547

    CAS  PubMed  Google Scholar 

  • Plihal W, Born J (1999) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36:571–582

    CAS  PubMed  Google Scholar 

  • Poe GR, Nitz DA, Mcnaughton BL, Barnes CA (2000) Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res 855:176–180

    CAS  PubMed  Google Scholar 

  • Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD (2000) Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron 28:991–999

    CAS  PubMed  Google Scholar 

  • Raichle M, MacLeod A, Snyder A, Powers W, Gusnard D, Shulman G (2001) A default mode of brain function. Proc Nat Acad Sci U.S.A 98:676–682. doi:10.1073/pnas.98.2.676

    CAS  Google Scholar 

  • Rasch B, Buchel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315:1426–1429. doi:10.1126/science.1138581

    CAS  PubMed  Google Scholar 

  • Rauchs G, Orban P, Balteau E, Schmidt C, Degueldre C, Luxen A, Maquet P, Peigneux P (2008a) Partially segregated neural networks for spatial and contextual memory in virtual navigation. Hippocampus 18:503–518. doi:10.1002/hipo.20411

    PubMed  Google Scholar 

  • Rauchs G, Orban P, Schmidt C, Albouy G, Balteau E, Degueldre C, Schnackers C, Sterpenich V, Tinguely G, Luxen A, Maquet P, Peigneux P (2008b) Sleep modulates the neural substrates of both spatial and contextual memory consolidation. PLoS ONE 3:e2949

    PubMed Central  PubMed  Google Scholar 

  • Rosanova M, Ulrich D (2005) Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25:9398–9405

    CAS  PubMed  Google Scholar 

  • Rudoy J, Voss J, Westerberg C, Paller K (2009) Strengthening individual memories by reactivating them during sleep. Science 326:1079. doi:10.1126/science.1179013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schabus M, Dang-Vu T, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C, Sterpenich V, Vandewalle G, Luxen A, Maquet P (2007) Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Nat Acad Sci U.S.A 104:13164–13169. doi:10.1073/pnas.0703084104

    CAS  Google Scholar 

  • Schabus M, Dang-Vu T, Heib D, Boly M, Desseilles M, Vandewalle G, Schmidt C, Albouy G, Darsaud A, Gais S, Degueldre C, Balteau E, Phillips C, Luxen A, Maquet P (2012) The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation. Front Neurol 3:40. doi:10.3389/fneur.2012.00040

    PubMed Central  PubMed  Google Scholar 

  • Schwartz S, Maquet P (2002) Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn Sci 6:23–30

    PubMed  Google Scholar 

  • Scrima L (1982) Isolated REM sleep facilitates recall of complex associative information. Psychophysiology 19:252–259

    CAS  PubMed  Google Scholar 

  • Smith C, Weeden K (1990) Post training REMs coincident auditory stimulation enhances memory in humans. Psychiatr J Univ Ottawa 15:85–90

    CAS  Google Scholar 

  • Steriade M (2001) Active neocortical processes during quiescent sleep. Arch Ital Biol 139:37–51

    CAS  PubMed  Google Scholar 

  • Steriade M (2003) The corticothalamic system in sleep. Front Biosci 8:d878–d899

    CAS  PubMed  Google Scholar 

  • Steriade M (2005) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:1087–1106. doi:10.1016/j.neuroscience.2005.10.029

    PubMed  Google Scholar 

  • Steriade M, Amzica F (1998) Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1:1–10

    CAS  PubMed  Google Scholar 

  • Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New York

    Google Scholar 

  • Sterpenich V, Albouy G, Boly M, Vandewalle G, Darsaud A, Balteau E, Dang-Vu TT, Desseilles M, D’Argembeau A, Gais S, Rauchs G, Schabus M, Degueldre C, Luxen A, Collette F, Maquet P (2007) Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLoS Biol 5:e282

    PubMed Central  PubMed  Google Scholar 

  • Sterpenich V, Albouy G, Darsaud A, Schmidt C, Vandewalle G, Dang VuT, Desseilles M, Phillips C, Degueldre C, Balteau E, Collette F, Luxen A, Maquet P (2009) Sleep promotes the neural reorganization of remote emotional memory. J Neurosci 29:5143–5152. doi:10.1523/JNEUROSCI.0561-09.2009

    CAS  PubMed  Google Scholar 

  • Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, McNaughton BL, Fernandez G (2006) Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc Nat Acad Sci U.S.A 103:756–761

    Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  • Urbain C, Di Vincenzo T, Peigneux P, Van Bogaert P (2011) Is sleep-related consolidation impaired in focal idiopathic epilepsies of childhood? A pilot study. Epilepsy Behav 22:380–384. doi:10.1016/j.yebeh.2011.07.023

    PubMed  Google Scholar 

  • Urbain C, Schmitz R, Schmidt C, Cleeremans A, van Bogaert P, Maquet P, Peigneux P (2013) Sleep-dependent neurophysiological processes in implicit sequence learning. J Cogn Neurosci 25:2003–2014. doi:10.1162/jocn_a_00439

    PubMed  Google Scholar 

  • van Dongen E, Takashima A, Barth M, Zapp J, Schad L, Paller K, Fernandez G (2012) Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Nat Acad Sci U.S.A 109:10575–10580. doi:10.1073/pnas.1201072109

    Google Scholar 

  • Walker MP, Stickgold R, Alsop D, Gaab N, Schlaug G (2005a) Sleep-dependent motor memory plasticity in the human brain. Neuroscience 133:911–917

    CAS  PubMed  Google Scholar 

  • Walker MP, Stickgold R, Jolesz FA, Yoo S-S (2005b) The functional anatomy of sleep-dependent visual skill learning. Cereb Cortex 15:1666–1675

    PubMed  Google Scholar 

  • Wang X, Inui K, Qiu Y, Kakigi R (2004) Cortical responses to noxious stimuli during sleep. Neuroscience 128:177–186

    CAS  PubMed  Google Scholar 

  • Wehrle R, Kaufmann C, Wetter T, Holsboer F, Auer D, Pollmacher T, Czisch M (2007) Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci 25:863–871. doi:10.1111/j.1460-9568.2007.05314.x

    PubMed  Google Scholar 

  • Wilson MA, Mcnaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679

    CAS  PubMed  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen M, Liao Y, Thiyagarajan M, O’Donnell J, Christensen D, Nicholson C, Iliff J, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. doi:10.1126/science.1241224

    CAS  PubMed  Google Scholar 

  • Yotsumoto Y, Sasaki Y, Chan P, Vasios C, Bonmassar G, Ito N, Nanez JS, Shimojo S, Watanabe T (2009) Location-specific cortical activation changes during sleep after training for perceptual learning. Curr Biol 19:1278–1282. doi:10.1016/j.cub.2009.06.011

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Peigneux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peigneux, P. (2014). Neuroimaging Studies of Sleep and Memory in Humans. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_326

Download citation

Publish with us

Policies and ethics