Advertisement

Nonlinear Measures and Dynamics in Psychophysiology of Consciousness

  • Petr BobEmail author
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 21)

Abstract

According to recent findings nonlinear dynamic processes related to neural chaos and complexity likely play a crucial role in neural synchronization of distributed neural activities that enable information integration and conscious experience. Disturbances in these interactions produce patterns of temporal and spatial disorganization with decreased or increased functional connectivity and complexity that underlie specific changes of perceptual and cognitive states. These perceptual and cognitive changes may be characterized by neural chaos with significantly increased brain sensitivity that may underlie sensitization and kindling, and cognitive hypersensitivity in some mental disorders. Together these findings suggest that processes related to more irregular neural states with higher complexity that may lead to neural chaos, negatively affect information integration and processing in the brain, and may influence disintegrated conscious experience.

Keywords

Brain Chaos Complexity Consciousness Nonlinear dynamics Self-organization 

References

  1. Aftanas LI, Golocheikine SA (2002) Non-linear dynamic complexity of the human EEG during meditation. Neurosci Lett 330:143–146PubMedCrossRefGoogle Scholar
  2. Atmanspacher H, Fach W (2005) Acategoriality as mental instability. J Mind Behav 26:181–205Google Scholar
  3. Balduzzi D, Tononi G (2009) Qualia: the geometry of integrated information. PLoS Comput Biol 5:e1000462. doi: 10.1371/journal.pcbi.1000462 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barton S (1994) Chaos, self-organization, and psychology. Am Psychol 49:5–14PubMedCrossRefGoogle Scholar
  5. Birbaumer N, Lutzenberger W, Elbert T (1993) Imagery and brain processes. In: Birbaumer N, Ohman A (eds) The structure of emotion. Hogrefe and Huber, Toronto, pp 122–138Google Scholar
  6. Birbaumer N, Flor H, Lutzenberger W, Elbert T (1995) Chaos and order in the human brain. Electroencephalogr Clin Neurophysiol Suppl 44:450–459PubMedGoogle Scholar
  7. Bizas E, Simos PG, Stam CJ, Arvanitis S, Terzakis D, Micheloyannis S (1999) EEG correlates of cerebral engagement in reading tasks. Brain Topogr 12:99–105PubMedCrossRefGoogle Scholar
  8. Bob P (2003) Dissociation and neuroscience: history and new perspectives. Int J Neurosci 113:903–914PubMedCrossRefGoogle Scholar
  9. Bob P (2007) Hypnotic abreaction releases chaotic patterns of electrodermal activity during dissociation. Int J Clin Exp Hypn 55:435–456PubMedCrossRefGoogle Scholar
  10. Bob P (2008) Pain, dissociation and subliminal self-representations. Conscious Cogn 17:355–369PubMedCrossRefGoogle Scholar
  11. Bob P (2011) Brain, mind and consciousness: advances in neuroscience research. Springer, New YorkCrossRefGoogle Scholar
  12. Bob P, Susta M, Gregusova A, Jasova D (2009a) Dissociation, cognitive conflict and nonlinear patterns of heart rate dynamics in patients with unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry 33:141–145PubMedCrossRefGoogle Scholar
  13. Bob P, Susta M, Chladek J, Glaslova K, Palus M (2009b) Chaos in schizophrenia associations, reality or metaphor? Int J Psychophysiol 73:179–185PubMedCrossRefGoogle Scholar
  14. Bob P, Susta M, Glaslova K, Boutros NN (2010a) Dissociative symptoms and interregional EEG crosscorrelations in paranoid schizophrenia. Psychiatry Res 177:37–40PubMedCrossRefGoogle Scholar
  15. Bob P, Susta M, Gregusova A, Jasova D, Mishara A, Raboch J (2010b) Traumatic stress, dissociation, and limbic irritability in patients with unipolar depression being treated with SSRIs. Psychol Rep 107:685–696PubMedCrossRefGoogle Scholar
  16. Breakspear M (2006) The nonlinear theory of schizophrenia. Aust NZ J Psychiatry 40:20–35CrossRefGoogle Scholar
  17. Bressler SL (1995) Large-scale cortical networks and cognition. Brain Res Rev 20:288–304PubMedCrossRefGoogle Scholar
  18. Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno MA, Laureys S, Tononi G, Massimini M (2013) A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 5:198ra105. doi:  10.1126/scitranslmed.3006294
  19. Cojan Y, Waber L, Schwartz S, Rossier L, Forster A, Vuilleumier P (2009) The brain under self-control: modulation of inhibitory and monitoring cortical networks during hypnotic paralysis. Neuron 62:862–875PubMedCrossRefGoogle Scholar
  20. Crick F, Koch C (1992) The problem of consciousness. Sci Am 267(3):153–159CrossRefGoogle Scholar
  21. Crick F, Koch C (2003) A framework for consciousness. Nat Neurosci 6:119–126PubMedCrossRefGoogle Scholar
  22. Dennett D (1991) Consciousness explained. Little, Brown, BostonGoogle Scholar
  23. Dokoumetzidis A, Iliadin A, Macheras P (2001) Nonlinear dynamics and chaos theory: Concepts and applications relevant to pharmacodynamics. Pharmacol Res 18:415–426CrossRefGoogle Scholar
  24. Duch W (2005) Brain-inspired conscious computing architecture. J Mind Behav 26:1–21Google Scholar
  25. Edelman G (1989) The remembered present. Basic Books, New YorkGoogle Scholar
  26. Edelman GM (2003) Naturalizing consciousness: a theoretical framework. Proc Natl Acad Sci USA 100:5520–5524Google Scholar
  27. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 74:1–47PubMedGoogle Scholar
  28. Faure P, Korn H (2001) Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. CR Acad Sci III 324:773–793Google Scholar
  29. Faymonville ME, Boly M, Laureys SJ (2006) Functional neuroanatomy of the hypnotic state. J Physiol Paris 99:463–469PubMedCrossRefGoogle Scholar
  30. Frackowiak RSJ (1997) Human brain function. Academic Press, San DiegoGoogle Scholar
  31. Freeman WJ (1983) The physiological basis of mental images. Biol Psychiatry 18:1007–1025Google Scholar
  32. Freeman WJ (1991) The physiology of perception. Sci Am 264:78–85PubMedCrossRefGoogle Scholar
  33. Freeman WJ (1999) Consciousness, intentionality, and causality. J Conscious Stud 6:143–172Google Scholar
  34. Freeman WJ (2000) Mesoscopics neurodynamics: from neuron to brain. J Physiol Paris 94:303–322PubMedCrossRefGoogle Scholar
  35. Freeman WJ (2001) Biocomplexity: adaptive behavior in complex stochastic dynamical systems. Biosystems 59:109–123PubMedCrossRefGoogle Scholar
  36. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480Google Scholar
  37. Friston KJ, Tononi G, Sporns O, Edelman GM (1995) Characterising the complexity of neuronal interactions. Hum Brain Mapp 3:302–314CrossRefGoogle Scholar
  38. Gao J, Hu J, Tung WW (2011) Complexity measures of brain wave dynamics. Cogn Neurodyn 5:171–182. doi: 10.1007/s11571-011-9151-3 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Globus GC, Arpaia JP (1994) Psychiatry and the new dynamics. Biol Psychiatry 32:352–364CrossRefGoogle Scholar
  40. Gottschalk AM, Bauer MS, Whybrow PC (1995) Evidence of chaotic mood variation in bipolar disorder. Arch Gen Psychiatry 52:947–959PubMedCrossRefGoogle Scholar
  41. Guralnik O, Schmeidler J, Simeon D (2000) Feeling unreal: cognitive processes in depersonalization. Am J Psychiatry 157:103–109PubMedGoogle Scholar
  42. Huber MT, Braun HA, Krieg JC (1999) Consequences of deterministic and random dynamics for the course of affective disorders. Biol Psychiatry 46:256–262PubMedCrossRefGoogle Scholar
  43. James W (1890) The principles of psychology. Holt, New YorkCrossRefGoogle Scholar
  44. John ER (2002) The neurophysics of consciousness. Brain Res Rev 39:1–28PubMedCrossRefGoogle Scholar
  45. Jung CG (1907) On psychophysical relations of the associative experiment. J Abnorm Psychol 1:247–255CrossRefGoogle Scholar
  46. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, CambridgeGoogle Scholar
  47. Korn H, Faure P (2003) Is there chaos in the brain? II. Experimental evidence and related models. CR Biol 326:787–840CrossRefGoogle Scholar
  48. Kraus JE (2000) Sensitization phenomena in psychiatric illness: lessons from the kindling model. J Neuropsychiatry Clin Neurosci 12:328–343PubMedCrossRefGoogle Scholar
  49. Li D, Spiegel D (1992) A neural network model of dissociative disorders. Psychiatr Ann 22:144–147CrossRefGoogle Scholar
  50. Libet B (1998) Do the models offer testable proposals of brain functions for conscious experience. In: Jasper HH, Descarries L, Costelucci VC, Rossignol S (eds) Advances in neurology: consciousness at the frontiers of neuroscience. Lippincott-Raven, Philadelphia, pp 213–217Google Scholar
  51. Lumer ED, Edelman GM, Tononi G (1997) Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cereb Cortex 7:207–227PubMedCrossRefGoogle Scholar
  52. Lutzenberger W, Birbaumer N, Flor H, Rockstroh B, Elbert T (1992) Dimensional analysis of the human EEG and inteligence. Neurosci Lett 143:10–14PubMedCrossRefGoogle Scholar
  53. Lutzenberger W, Preissl H, Pulvermuller F (1995) Fractal dimension of electroencephalographic time series and underlying brain processes. Biol Cybern 73:477–482PubMedCrossRefGoogle Scholar
  54. Marcel AJ (1983) Conscious and unconscious perception: an approach to the relations between phenomenal experience and perceptual processes. Cogn Psychol 15:238–300PubMedCrossRefGoogle Scholar
  55. Matousek M, Wackermann J, Palus M, Berankova A, Albrecht V, Dvorak I (1995) Global dimensional complexity of the EEG in healthy volunteers. Neuropsychobiology 31:47–52PubMedCrossRefGoogle Scholar
  56. Melancon G, Joanette Y (2000) Chaos, brain and cognition: toward a nonlinear order? Brain Cogn 42:33–36PubMedCrossRefGoogle Scholar
  57. Merikle PM, Smilek D, Eastwood JD (2001) Perception without awareness: perspectives from cognitive psychology. Cognition 79:115–134PubMedCrossRefGoogle Scholar
  58. Meyer-Lindenberg A (1996) The evolution of complexity in human brain development: an EEG study. Electroencephalogr Clin Neurophysiol 99:405–411PubMedCrossRefGoogle Scholar
  59. Meyer-Lindenberg A, Zeman U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953PubMedCentralPubMedCrossRefGoogle Scholar
  60. Micheloyannis S, Flitzanis N, Papanikolau E, Bourkas M, Terzakis D, Arvanitis S et al (1998) Usefulness of non-linear EEG analysis. Acta Neurol Scand 97:13–19PubMedCrossRefGoogle Scholar
  61. Micheloyannis S, Papanikolaou E, Bizas E, Stam CJ, Simos PG (2002) Ongoing electroencephalographic signal study of simple arithmetic using linear and non-linear measures. Int J Psychophysiol 44:231–238PubMedCrossRefGoogle Scholar
  62. Molle M, Marshall L, Pietrowsky R (1995) Dimensional complexity of the EEG indicates a right frontocortical locus of attentional control. J Psychophysiol 9:45–55Google Scholar
  63. Molle M, Marshall L, Pietrowsky R (1996) Enhanced dynamic complexity in the human EEG during creative thinking. Neurosci Lett 208:1–4CrossRefGoogle Scholar
  64. Molle M, Albrecht C, Mashall L (1997) Adrenocorticotropin widens the focus of attention in humans. A nonlinear electroencephalographic analysis. Psychosom Med 59:497–502PubMedCrossRefGoogle Scholar
  65. Newman J (1995) Thalamic contributions to attention and consciousness. Conscious Cogn 4:172–193PubMedCrossRefGoogle Scholar
  66. Papoulis A (1991) Probability, random variables, and stochastic processes. McGraw-Hill, New YorkGoogle Scholar
  67. Paulus MP, Braff DL (2003) Chaos and Schizophrenia: does the method fit the madness? Biol Psychiatry 53:3–11PubMedCrossRefGoogle Scholar
  68. Pediaditakis N (1992) Deterministic non-linear chaos in brain function and borderline psychopathological phenomena. Med Hypotheses 39:67–72PubMedCrossRefGoogle Scholar
  69. Peterson I (1993) Newton’s clock: Chaos in the solar system. W.H. Freeman, New YorkGoogle Scholar
  70. Picton TW, Stuss DT (1994) Neurobiology of conscious experience. Curr Biol 4:256–265Google Scholar
  71. Poincaré H (1908/1998) Science and method. Thomas Nelson and Sons, LondonGoogle Scholar
  72. Post RM, Weis SR, Smith MA (1995) Sensitization and kindling. In: Friedman MJ, Charney DS, Deutch AY (eds) Neurobiological and clinical consequences of stress: from normal adaptation to posttraumatic stress disorder. Lipincott-Raven, PhiladelphiaGoogle Scholar
  73. Post RM, Weiss RB (1998) Sensitization and kindling phenomena in mood, anxiety, and obsessive compulsive disorders: the role of serotonergic mechanisms in illness progression. Biol Psychiatry 44:193–206Google Scholar
  74. Pritchard WS, Duke D (1995) Measuring, “chaos” in the brain: a tutorial review of EEG dimension estimation. Brain Cogn 27:353–397PubMedCrossRefGoogle Scholar
  75. Roland PE (1993) Brain activation. Wiley-Liss, New YorkGoogle Scholar
  76. Schmid GB (1991) Chaos theory and schizophrenia: elementary aspects. Psychopathology 24:185–198PubMedCrossRefGoogle Scholar
  77. Schupp HT, Lutzenberger W, Birbaumer N (1994) Neurophysiological differences between perception and imagery. Cogn Brain Res 2:77–86CrossRefGoogle Scholar
  78. Seth AK, Izhikevich E, Reeke GN, Edelman GM (2006) Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci USA 103:10799–10804Google Scholar
  79. Skarda CHA, Freeman WJ (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–195CrossRefGoogle Scholar
  80. Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171. doi: 10.1016/j.conb.2012.11.015 PubMedCrossRefGoogle Scholar
  81. Sporns O (2014) Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci. doi: 10.1038/nn.3690 PubMedGoogle Scholar
  82. Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922PubMedCrossRefGoogle Scholar
  83. Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74PubMedCrossRefGoogle Scholar
  84. Squires EJ (1998) Why are quantum theorists interested in consciousness. In: Hameroff SR, Kaszriak A, Scott AC (eds) Toward a science of consciousness II: the second Tucson discussions and debates. MIT Press, Cambridge, pp 609–618Google Scholar
  85. Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301PubMedCrossRefGoogle Scholar
  86. Stam CJ, van Woerkom TC, Pritchard WS (1996) Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroencephalogr Clin Neurophysiol 99:214–224PubMedCrossRefGoogle Scholar
  87. Stern EJ, Riegel KF (1970) Comparisons of the restricted association of chronic schizophrenic and normal control subjects. J Abnorm Psychol 75:164–171PubMedCrossRefGoogle Scholar
  88. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 27:33–44PubMedCrossRefGoogle Scholar
  89. Teicher MH, Tomoda A, Andersen SE (2006) Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Ann NY Acad Sci 1071:313–323PubMedCrossRefGoogle Scholar
  90. Tomberg C (1999) Focal enhancement of chaotic strange attractor dimension in the left semantic (Wernicke) human cortex during reading without concomitant change in vigilance level. Neurosci Lett 263:177–180PubMedCrossRefGoogle Scholar
  91. Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851PubMedCrossRefGoogle Scholar
  92. Tononi G, Edelman GM (2000) Schizophrenia and the mechanisms of conscious integration. Brain Res Rev 31:391–400PubMedCrossRefGoogle Scholar
  93. Tononi G, Sporns O, Edelman GM (1992) Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex 2:310–335PubMedCrossRefGoogle Scholar
  94. Tononi G, Edelman GM, Sporns O (1998a) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484PubMedCrossRefGoogle Scholar
  95. Tononi G, McIntosh AR, Russell DP, Edelman GM (1998b) Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7:133–149PubMedCrossRefGoogle Scholar
  96. Van Putten MJAM, Stam CJ (2001) Is the EEG really “chaotic” in hypsarrhythmia. IEEE Eng Med Biol Mag 20:72–79PubMedCrossRefGoogle Scholar
  97. Varela FJ, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and largescale integration. Nat Rev Neurosci 2:229–239Google Scholar
  98. Velazquez JLP, Cortez MA, Snead OC III, Wennberg R (2003) Dynamical regimes underlying epileptiform events: role of instabilities and bifurcations in brain activity. Physica D 186:205–220CrossRefGoogle Scholar
  99. Vermetten E, Bremner JD (2004) Functional brain imaging and the induction of traumatic recall: a crosscorrelational review between neuroimaging and hypnosis. Int J Clin Exp Hypn 52:218–312CrossRefGoogle Scholar
  100. Weingartner H, Miller H, Murphy D (1977) Mood-state-dependent retrieval of verbal associations. J Abnorm Psychol 86:276–284PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.1st Faculty of Medicine, Department of Psychiatry and UHSL, Center for Neuropsychiatric Research of Traumatic StressCharles University, PraguePragueCzech Republic
  2. 2.CEITEC Masaryk UniversityBrnoCzech Republic

Personalised recommendations