Skip to main content

The Role of Serotonin, Vasopressin, and Serotonin/Vasopressin Interactions in Aggressive Behavior

  • Chapter
  • First Online:
Neuroscience of Aggression

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 17))

Abstract

Aggression control has been investigated across species and is centrally mediated within various brain regions by several neural systems that interact at different levels. The debate over the degree to which any one system or region affects aggressive responding, or any behavior for that matter, in some senses is arbitrary considering the plastic and adaptive properties of the central nervous system. Nevertheless, from the reductionist point of view, the compartmentalization of evolutionarily maladaptive behaviors to specific regions and systems of the brain is necessary for the advancement of clinical treatments (e.g., pharmaceutical) and novel therapeutic methods (e.g., deep brain stimulation). The general purpose of this chapter is to examine the confluence of two such systems, and how their functional interaction affects aggressive behavior. Specifically, the influence of the serotonin (5HT) and arginine vasopressin (AVP) neural systems on the control of aggressive behavior will be examined individually and together to provide a context by which the understanding of aggression modulation can be expanded from seemingly parallel neuromodulatory mechanisms, to a single and highly interactive system of aggression control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamec RE (1990) Role of the amygdala and medial hypothalamus in spontaneous feline aggression and defense. Aggressive Behav 16(3–4):207–222

    Google Scholar 

  • Adams CF, Liley NR, Gorzalka BB (1996) PCPA increases aggression in male firemouth cichlids. Pharmacology 53(5):328–330

    CAS  PubMed  Google Scholar 

  • Adams DB ((1976)) The relation of scent-marking, olfactory investigation, and specific postures in the isolation-induced fighting of rats. Behaviour 56(3–4–3):286–297

    Google Scholar 

  • Aghajanian GK, Wang RY (1978) Physiology and pharmacology of central serotonergic neurons. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 171–183

    Google Scholar 

  • Albers HE, Bamshad M (1998) Role of vasopressin and oxytocin in the control of social behavior in Syrian hamsters (Mesocricetus auratus). In: Urban IJA, Burbach JPH, De Wied D (eds) Progress in brain research: advances in brain vasopressin, vol 119. Elsevier, New York, pp 395–408

    Google Scholar 

  • Albers HE, Dean A, Karom MC, Smith D, Huhman KL (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Res 1073(16):425–430

    PubMed  Google Scholar 

  • Altemus M, Cizza G, Gold PW (1992) Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vitro. Brain Res 593(2):311–313

    CAS  PubMed  Google Scholar 

  • Ansorge MS, Morelli E, Gingrich JA (2008) Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28(1):199–207

    CAS  PubMed  Google Scholar 

  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306(5697):879–881

    CAS  PubMed  Google Scholar 

  • Antoni FA (1993) Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 14(2):76–122

    CAS  PubMed  Google Scholar 

  • Arnt J, Hyttel J (1989) Facilitation of 8-OHDPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol 161(1):45–51

    CAS  PubMed  Google Scholar 

  • Auerbach SB, Minzenberg MJ, Wilkinson LO (1989) Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Res 499(2):281–290

    CAS  PubMed  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667

    CAS  PubMed  Google Scholar 

  • Azmitia EC, Whitaker-Azmitia PM (1995) Anatomy, cell biology, and plasticity of the serotonergic system. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress: an official publication of the American College of Neuropsychopharmacology, 1st edn. Raven Press, New York, pp 443–449

    Google Scholar 

  • Banjaw MY, Miczek K, Schmidt WJ (2006) Repeated Catha edulis oral administration enhances the baseline aggressive behavior in isolated rats. J Neural Transm 113(5):543–556

    CAS  PubMed  Google Scholar 

  • Barberis C, Mouillac B, Durroux T (1998) Structural bases of vasopressin/oxytocin receptor function. J Endocrinol 156(2):223–229

    CAS  PubMed  Google Scholar 

  • Barreto-Medeiros JM, Feitoza EG, Magalhaes K, Cabral-Filho JE, Manhaes-De-Castro FM, De-Castro CM, Manhaes-De-Castro R (2004) Malnutrition during brain growth spurt alters the effect of fluoxetine on aggressive behavior in adult rats. Nutr Neurosci 7(1):49–52

    CAS  PubMed  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB et al (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive “bath salts” products. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 38(4):552–562

    Google Scholar 

  • Bell R, Donaldson C, Gracey D (1995) Differential effects of CGS 12066B and CP-94,253 on murine social and agonistic behaviour. Pharmacol Biochem Behav 52(1):7–16

    CAS  PubMed  Google Scholar 

  • Berlinger RW, Levinsky NG, Davidson DG, Eden M (1958) Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24(5):730–744

    Google Scholar 

  • Berman ME, McCloskey MS, Fanning JR, Schumacher JA, Coccaro EF (2009) Serotonin augmentation reduces response to attack in aggressive individuals. Psychol Sci 20(6):714–720

    PubMed Central  PubMed  Google Scholar 

  • Bester-Meredith JK, Young LJ, Marler CA (1999) Species differences in paternal behavior and aggression in peromyscus and their associations with vasopressin immunoreactivity and receptors. Horm Behav 36(1):25–38

    CAS  PubMed  Google Scholar 

  • Bexis S, Docherty JR (2006) Effects of MDMA, MDA and MDEA on blood pressure, heart rate, locomotor activity and body temperature in the rat involve alpha-adrenoceptors. Br J Pharmacol 147(8):926–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bielsky IF, Hu S-B, Szegda KL, Westphal H, Young LJ (2004) Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29(3):483–493

    CAS  PubMed  Google Scholar 

  • Birnbaumer M (2000) Vasopressin receptors. Trends Endocrinol Metab 11(10):406–410

    CAS  PubMed  Google Scholar 

  • Bjork JM, Dougherty DM, Moeller FG, Swann AC (2000) Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 22(4):357–369

    CAS  PubMed  Google Scholar 

  • Blader JC (2006) Pharmacotherapy and postdischarge outcomes of child inpatients admitted for aggressive behavior. J Clin Psychopharmacol 26(4):419–425

    PubMed Central  PubMed  Google Scholar 

  • Blanchard DC, Blanchard RJ (1999) Cocaine potentiates defensive behaviors related to fear and anxiety. Neurosci Biobehav Rev 23(7):981–991

    CAS  PubMed  Google Scholar 

  • Blanchard RJ, Griebel G, Farrokhi C, Markham C, Yang M, Blanchard DC (2005) AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacol Biochem Behav 80(1):189–194

    CAS  PubMed  Google Scholar 

  • Blier P, De Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15(7):220–226

    CAS  PubMed  Google Scholar 

  • Bluthé RM, Gheusi G, Dantzer R (1993) Gonadal steroids influence the involvement of arginine vasopressin in social recognition in mice. Psychoneuroendocrinology 18(4):323–335

    PubMed  Google Scholar 

  • Bond AJ (2005) Antidepressant treatments and human aggression. Eur J Pharmacol 526(1–3):218–225

    CAS  PubMed  Google Scholar 

  • Bouwknecht JA, Hijzen TH, Van Der Gugten J, Maes RA, Hen R, Olivier B (2001) Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. Biol Psychiatry 49(7):557–568

    CAS  PubMed  Google Scholar 

  • Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1(2):131–139

    CAS  PubMed  Google Scholar 

  • Budisavljevic MN, Stewart L, Sahn SA, Ploth DW (2003) Hyponatremia associated with 3,4-methylenedioxymethylamphetamine (“ecstasy”) abuse. Am J Med Sci 326(2):89–93

    PubMed  Google Scholar 

  • Caffé AR, Van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261(2):237–252

    PubMed  Google Scholar 

  • Caldwell HK, Albers HE (2004) Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Horm Behav 46(4):444–449

    CAS  PubMed  Google Scholar 

  • Caldwell HK, Young WS (2009) Persistence of reduced aggression in vasopressin 1b receptor knockout mice on a more “wild” background. Physiol Behav 97(1):131–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell M, Adams PB, Small AM, Kafantaris V, Silva RR, Shell J, Perry R et al (1995) Lithium in hospitalized aggressive children with conduct disorder: a double-blind and placebo-controlled study. J Am Acad Child Adolesc Psychiatry 34(4):445–453

    CAS  PubMed  Google Scholar 

  • Campbell M, Small AM, Green WH, Jennings SJ, Perry R, Bennett WG, Anderson L (1984) Behavioral efficacy of haloperidol and lithium carbonate. a comparison in hospitalized aggressive children with conduct disorder. Arch Gen Psychiatry 41(7):650–656

    CAS  PubMed  Google Scholar 

  • Campbell P, Ophir AG, Phelps SM (2009) Central vasopressin and oxytocin receptor distributions in two species of singing mice. J Comp Neurol 516(4):321–333

    PubMed  Google Scholar 

  • Carrillo M, Ricci LA, Schwartzer JJ, Melloni RH (2010) Immunohistochemical characterization of 5-HT(3A) receptors in the Syrian hamster forebrain. Brain Res 1329:67–81

    CAS  PubMed  Google Scholar 

  • Carter DA, Murphy D (1989) Independent regulation of neuropeptide mRNA level and poly(A) tail length. J Biol Chem 264(12):6601–6603

    CAS  PubMed  Google Scholar 

  • Castro de Souza E, Rocha E Silva M (1977) The release of vasopressin by nicotine: further studies on its site of action. J physiol 265(2):297–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Centenaro LA, Vieira K, Zimmermann N, Miczek KA, Lucion AB, de Almeida RMM (2008) Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology 201(2):237–248

    CAS  PubMed  Google Scholar 

  • Chamberlain B, Ervin FR, Pihl RO, Young SN (1987) The effect of raising or lowering tryptophan levels on aggression in vervet monkeys. Pharmacol Biochem Behav 28(4):503–510

    CAS  PubMed  Google Scholar 

  • Cherek DR (1981) Effects of smoking different doses of nicotine on human aggressive behavior. Psychopharmacology 75(4):339–345

    CAS  PubMed  Google Scholar 

  • Cherek DR, Steinberg JL, Kelly TH, Robinson D (1987) Effects of d-amphetamine on aggressive responding of normal male subjects. NIDA Res Monogr 21(3):257–265

    CAS  Google Scholar 

  • Clarke PB (1987) Nicotine and smoking: a perspective from animal studies. Psychopharmacology 92(2):135–143

    CAS  PubMed  Google Scholar 

  • Cleare AJ, Bond AJ (1995) The effect of tryptophan depletion and enhancement on subjective and behavioural aggression in normal male subjects. Psychopharmacology 118(1):72–81

    CAS  PubMed  Google Scholar 

  • Clotfelter ED, O’Hare EP, McNitt MM, Carpenter RE, Summers CH (2007) Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol Biochem Behav 87(2):222–231

    CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ (1997) Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry 54(12):1081–1088

    CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Hauger RL, Cooper TB, Ferris CF (1998) Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry 55(8):708–714

    CAS  PubMed  Google Scholar 

  • Coccaro EF, Lee R, Liu T, Mathé AA (2012) Cerebrospinal fluid neuropeptide Y-like immunoreactivity correlates with impulsive aggression in human subjects. Biol Psychiatry 72(12):997–1003. doi:10.1016/j.biopsych.2012.07.029

    CAS  PubMed  Google Scholar 

  • Coccaro EF, Siever LJ, Klar HM, Maurer G, Cochrane K, Cooper TB, Mohs RC et al (1989) Serotonergic studies in patients with affective and personality disorders. Correlates with suicidal and impulsive aggressive behavior. Arch Gen Psychiatry 46(7):587–599

    CAS  PubMed  Google Scholar 

  • Cologer-Clifford A, Simon NG, Lu SF, Smoluk SA (1997) Serotonin agonist-induced decreases in intermale aggression are dependent on brain region and receptor subtype. Pharmacol Biochem Behav 58(2):425–430

    CAS  PubMed  Google Scholar 

  • Cooper MA, Karom M, Huhman KL, Albers HE (2005) Repeated agonistic encounters in hamsters modulate AVP V1a receptor binding. Horm Behav 48(5):545–551

    CAS  PubMed  Google Scholar 

  • Crabbe JC, Phillips TJ, Feller DJ, Hen R, Wenger CD, Lessov CN, Schafer GL (1996) Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 14(1):98–101

    CAS  PubMed  Google Scholar 

  • Cunningham MG, Connor CM, Zhang K, Benes FM (2005) Diminished serotonergic innervation of adult medial prefrontal cortex after 6-OHDA lesions in the newborn rat. Brain Res Dev Brain Res 157(2):124–131

    CAS  PubMed  Google Scholar 

  • Darmani NA, Hadfield MG, Carter WH, Martin BR (1990) Acute and chronic effects of cocaine on isolation-induced aggression in mice. Psychopharmacology 42(2):317–321

    Google Scholar 

  • Datla KP, Bhattacharya SK (1990) Effect of selective monoamine oxidase A and B inhibitors on footshock induced aggression in paired rats. Indian J Exp Biol 28(8):742–745

    CAS  PubMed  Google Scholar 

  • Datla KP, Mitra SK, Bhattacharya SK (1991) Serotonergic modulation of footshock induced aggression in paired rats. Indian J Exp Biol 29(7):631–635

    CAS  PubMed  Google Scholar 

  • de Almeida RMM, Rosa MM, Santos DM, Saft DM, Benini Q, Miczek KA (2006) 5-HT(1B) receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology 185(4):441–450

    CAS  PubMed  Google Scholar 

  • de Almeida RM, Lucion AB (1997) 8-OH-DPAT in the median raphe, dorsal periaqueductal gray and corticomedial amygdala nucleus decreases, but in the medial septal area it can increase maternal aggressive behavior in rats. Psychopharmacology 134(4):392–400

    PubMed  Google Scholar 

  • de Almeida RM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (2001) Zolmitriptan—a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology 157(2):131–141

    PubMed  Google Scholar 

  • de Almeida RMM, Miczek KA (2002) Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist. Neuropsychopharmacology 27(2):171–181

    PubMed  Google Scholar 

  • De Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526(1–3):125–139

    PubMed  Google Scholar 

  • De Boer SF, Lesourd M, Mocaer E, Koolhaas JM (1999) Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: a comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. J Pharmacol Exp Ther 288(3):1125–1133

    PubMed  Google Scholar 

  • De Montigny C, Chaput Y, Blier P (1990) Modification of serotonergic neuron properties by long-term treatment with serotonin reuptake blockers. J Clin Psychiatry 5(12 Supplement B):4–8

    Google Scholar 

  • De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res 273(2):307–317

    PubMed  Google Scholar 

  • De Vries GJ, Buijs RM, Sluiter AA (1984) Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res 298(1):141–145

    PubMed  Google Scholar 

  • De Vries GJ, Buijs RM, Swaab DF (1981) Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain—presence of a sex difference in the lateral septum. Brain Res 218(1–2):67–78

    PubMed  Google Scholar 

  • De Vries GJ, Buijs RM, Van Leeuwen FW, Caffé AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233(2):236–254

    Google Scholar 

  • Deckel AW (1996) Behavioral changes in Anolis carolinensis following injection with fluoxetine. Behav Brain Res 78(2):175–182

    CAS  PubMed  Google Scholar 

  • DeLeon KR, Grimes JM, Connor DF, Melloni RH (2002a) Adolescent cocaine exposure and offensive aggression: involvement of serotonin neural signaling and innervation in male Syrian hamsters. Behav Brain Res 133(2):211–220

    CAS  PubMed  Google Scholar 

  • DeLeon KR, Grimes JM, Melloni RH (2002b) Repeated anabolic–androgenic steroid treatment during adolescence increases vasopressin V(1A) receptor binding in Syrian hamsters: correlation with offensive aggression. Horm Behav 42(2):182–191

    CAS  PubMed  Google Scholar 

  • Deller T, Leranth C, Frotscher M (1994) Reciprocal connections of lateral septal neurons and neurons in the lateral hypothalamus in the rat: a combined phaseolus vulgaris-leucoagglutinin and Fluoro-Gold immunocytochemical study. Neurosci Lett 168(1–2):119–122

    CAS  PubMed  Google Scholar 

  • Delville Y, De Vries GJ, Ferris CF (2000) Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol 55(2):53–76

    CAS  PubMed  Google Scholar 

  • Delville Y, Mansour KM, Ferris CF (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiol Behav 60(1):25–29

    CAS  PubMed  Google Scholar 

  • DeNapoli JS, Dodman NH, Shuster L, Rand WM, Gross KL (2000) Effect of dietary protein content and tryptophan supplementation on dominance aggression, territorial aggression, and hyperactivity in dogs. J Am Vet Med Assoc 164(10):1042–1043

    Google Scholar 

  • Dolan M, Anderson IM, Deakin JF (2001) Relationship between 5-HT function and impulsivity and aggression in male offenders with personality disorders. Br J Psychiatry 178(4):352–359

    CAS  PubMed  Google Scholar 

  • Dorrego MF, Canevaro L, Kuzis G, Sabe L, Starkstein SE (2002) A randomized, double-blind, crossover study of methylphenidate and lithium in adults with attention-deficit/hyperactivity disorder: preliminary findings. J Neuropsychiatry Clin Neurosci 14(3):289–295

    CAS  PubMed  Google Scholar 

  • Dorsa DM, Petracca FM, Baskin DG, Cornett LE (1984) Localization and characterization of vasopressin-binding sites in the amygdala of the rat brain. J Neurosci 4(7):1764–1770

    CAS  PubMed  Google Scholar 

  • Dremencov E, Gur E, Lerer B, Newman ME (2002) Effects of chronic antidepressants and electroconvulsive shock on serotonergic neurotransmission in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 26(6):729–739

    Google Scholar 

  • Drincic A, Robertson GL (1999) Treatment of diabetes insipidus. In: Mickle AW (ed) Hormone replacement therapy: contemporary endocrinology, 1st edn. Humana, New Jersey, pp 21–38

    Google Scholar 

  • Duan X, Ju G (1998) The organization of chemically characterized afferents to the perivascular neuronal groups of the hypothalamic magnocellular neurosecretory system in the rat. Brain Res Bull 46(5):409–415

    CAS  PubMed  Google Scholar 

  • Dubois-Dauphin M, Pevet P, Tribollet E, Dreifuss JJ (1990) Vasopressin in the brain of the golden hamster: the distribution of vasopressin binding sites and of immunoreactivity to the vasopressin-related glycopeptide. J Comp Neurol 300(4):535–548

    CAS  PubMed  Google Scholar 

  • Dubois-Dauphin M, Tribollet E, Dreifuss JJ (1989) Distribution of neurohypophysial peptides in the guinea pig brain. I. An immunocytochemical study of the vasopressin-related glycopeptide. Brain Res 496(1–2):45–65

    CAS  PubMed  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29(7):1321–1330

    CAS  PubMed  Google Scholar 

  • El Mansari M, Sánchez C, Chouvet G, Renaud B, Haddjeri N (2005) Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 30(7):1269–1277

    PubMed  Google Scholar 

  • Engelmann M, Landgraf R (1994) Microdialysis administration of vasopressin into the septum improves social recognition in Brattleboro rats. Physiol Behav 55(1):145–149

    CAS  PubMed  Google Scholar 

  • Engelmann M, Wotjak CT, Neumann I, Ludwig M, Landgraf R (1996) Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci Biobehav Rev 20(3):341–358

    CAS  PubMed  Google Scholar 

  • Faccidomo S, Bannai M, Miczek KA (2008) Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT(1B) receptors. Neuropsychopharmacology 33(12):2888–2899

    CAS  PubMed  Google Scholar 

  • Fairbanks LA, Melega WP, Jorgensen MJ, Kaplan JR, McGuire MT (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24(4):370–378

    CAS  PubMed  Google Scholar 

  • Fass JA, Fass AD, Garcia AS (2012) Synthetic cathinones (bath salts): legal status and patterns of abuse. Ann Pharmacother 46(3):436–441. doi:10.1345/aph.1Q628

    PubMed  Google Scholar 

  • Fenton RA, Brønd L, Nielsen S, Praetorius J (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Ren Physiol 293(3):748–760

    Google Scholar 

  • Ferris CF (1996) Serotonin diminishes aggression by suppressing the activity of the vasopressin system. Ann N Y Acad Sci 794:98–103

    CAS  PubMed  Google Scholar 

  • Ferris CF, Axelson JF, Martin AM, Roberge LF (1989) Vasopressin immunoreactivity in the anterior hypothalamus is altered during the establishment of dominant/subordinate relationships between hamsters. Neuroscience 29(3):675–683

    CAS  PubMed  Google Scholar 

  • Ferris CF, Axelson JF, Shinto LH, Albers HE (1987) Scent marking and the maintenance of dominant/subordinate status in male golden hamsters. Physiol Behav 40(5):661–664

    CAS  PubMed  Google Scholar 

  • Ferris CF, Irvin RW, Potegal M, Axelson JF (1990) Kainic acid lesion of vasopressinergic neurons in the hypothalamus disrupts flank marking behavior in golden hamsters. J Neuroendocrinol 2(2):123–129

    CAS  PubMed  Google Scholar 

  • Ferris CF, Lu S-F, Messenger T, Guillon CD, Heindel N, Miller M, Koppel G et al (2006) Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol Biochem Behav 83(2):169–174

    CAS  PubMed  Google Scholar 

  • Ferris CF, Pollock J, Albers HE, Leeman SE (1985) Inhibition of flank-marking behavior in golden hamsters by microinjection of a vasopressin antagonist into the hypothalamus. Neurosci Lett 55(2):239–243

    CAS  PubMed  Google Scholar 

  • Ferris CF, Stolberg T, Delville Y (1999) Serotonin regulation of aggressive behavior in male golden hamsters (Mesocricetus auratus). Behav Neurosci 113(4):804–815

    CAS  PubMed  Google Scholar 

  • Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17(11):4331–4340

    CAS  PubMed  Google Scholar 

  • Ferris CF, Potegal M (1988) Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav 44(2):235–239

    CAS  PubMed  Google Scholar 

  • Festing MF (1972) Hamsters. In: University Federation for Animal Welfare (ed) The UFAW handbook on the care and management of laboratory animals, 4th edn. Williams and Wilkins, Baltimore, pp 242–256

    Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT(1B) receptor agonist CP-94,253. Psychopharmacology 146(4):391–399

    CAS  PubMed  Google Scholar 

  • Fraga IC, Fregoneze JB, Carvalho FLQ, Dantas KB, Azevedo CS, Pinho CB, De Castro E, Silva E (2005) Acute fluoxetine administration differentially affects brain C-Fos expression in fasted and refed rats. Neuroscience 134(1):327–334

    CAS  PubMed  Google Scholar 

  • Franzini A, Messina G, Cordella R, Marras C, Broggi G (2010) Deep brain stimulation of the posteromedial hypothalamus: indications, long-term results, and neurophysiological considerations. Neurosurg Focus 29(2):E13

    PubMed  Google Scholar 

  • Gainer H (1998) Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. Adv Exp Med Biol 449:15–27

    CAS  PubMed  Google Scholar 

  • Gerona R, Wu A (2012) Bath salts. Clin Lab Med 32(3):415–427

    PubMed  Google Scholar 

  • Gerstberger R, Fahrenholz F (1989) Autoradiographic localization of V1 vasopressin binding sites in rat brain and kidney. Eur J Pharmacol 167(1):105–116

    CAS  PubMed  Google Scholar 

  • Giammanco S, Ernandes M, Lopez De Onate R, Paderni MA (1990) Short term diet of precooked corn meal almost lacking in tryptophan and interspecific rat-mouse aggressive behaviour. Archives Internationales de Physiologie et de Biochimie 98(1):23–26

    CAS  PubMed  Google Scholar 

  • Giri PR, Dave JR, Tabakoff B, Hoffman PL (1990) Arginine vasopressin induces the expression of c-fos in the mouse septum and hippocampus. Brain Res Mol Brain Res 7(2):131–137

    CAS  PubMed  Google Scholar 

  • Gobrogge KL, Liu Y, Young LJ, Wang Z (2009) Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proc Nat Acad Sci USA 106(45):19144–19149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gough B, Ali SF, Slikker W, Holson RR (1991) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate. Pharmacol Biochem Behav 39(3):619–623

    CAS  PubMed  Google Scholar 

  • Griebel G, Beeske S, Stahl S (2012) The vasopressin Vlb receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. J Clin Psychiatry 73(11):1403–1411

    CAS  PubMed  Google Scholar 

  • Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand J-P et al (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Nat Acad Sci USA 99(9):6370–6375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griebel G, Simiand J, Stemmelin J, Serradeil-Le GC, Steinberg R (2003) The vasopressin V1b receptor as a therapeutic target in stress-related disorders. Curr Drug Targets CNS Neurol Disord 2(3):191–200

    Google Scholar 

  • Grimes JM, Melloni RH (2002) Serotonin modulates offensive attack in adolescent anabolic steroid-treated hamsters. Pharmacol Biochem Behav 73(3):713–721

    CAS  PubMed  Google Scholar 

  • Grimes JM, Melloni RH (2005) Serotonin-1B receptor activity and expression modulate the aggression-stimulating effects of adolescent anabolic steroid exposure in hamsters. Behav Neurosci 119(5):1184–1194

    CAS  PubMed  Google Scholar 

  • Grimes JM, Melloni RH (2006) Prolonged alterations in the serotonin neural system following the cessation of adolescent anabolic-androgenic steroid exposure in hamsters (Mesocricetus auratus). Behav Neurosci 120(6):1242–1251

    CAS  PubMed  Google Scholar 

  • Grimes JM, Ricci LA, Melloni RH (2006) Plasticity in anterior hypothalamic vasopressin correlates with aggression during anabolic-androgenic steroid withdrawal in hamsters. Behav Neurosci 120(1):115–124

    CAS  PubMed  Google Scholar 

  • Grimes JM, Ricci LA, Melloni RH (2007) Alterations in anterior hypothalamic vasopressin, but not serotonin, correlate with the temporal onset of aggressive behavior during adolescent anabolic-androgenic steroid exposure in hamsters (Mesocricetus auratus). Behav Neurosci 121(5):941–948

    CAS  PubMed  Google Scholar 

  • Guo JD, Rainnie DG (2010) Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience 165(4):1390–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison RJ, Connor DF, Nowak C, Nash K, Melloni RH (2000) Chronic anabolic-androgenic steroid treatment during adolescence increases anterior hypothalamic vasopressin and aggression in intact hamsters. Psychoneuroendocrinology 25(4):317–338

    CAS  PubMed  Google Scholar 

  • Henry JA, Fallon JK, Kicman AT, Hutt AJ, Cowan DA, Forsling M (1998) Low-dose MDMA (“ecstasy”) induces vasopressin secretion. Lancet 351(9118):1784

    CAS  PubMed  Google Scholar 

  • Hermans EJ, Ramsey NF, Van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiatry 63(3):263–270

    CAS  PubMed  Google Scholar 

  • Hernando F, Schoots O, Lolait SJ, Burbach JP (2001) Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology 142(4):1659–1668

    CAS  PubMed  Google Scholar 

  • Ho HP, Olsson M, Westberg L, Melke J, Eriksson E (2001) The serotonin reuptake inhibitor fluoxetine reduces sex steroid-related aggression in female rats: an animal model of premenstrual irritability? Neuropsychopharmacology 24(5):502–510

    CAS  PubMed  Google Scholar 

  • Holden R, Jackson MA (1996) Near-fatal hyponatraemic coma due to vasopressin over-secretion after “ecstasy” (3,4-MDMA). Lancet 347(9007):1052

    CAS  PubMed  Google Scholar 

  • Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA (2001) The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med 27(8):1416–1421

    CAS  PubMed  Google Scholar 

  • Homberg JR, Schiepers OJG, Schoffelmeer ANM, Cuppen E, Vanderschuren LJMJ (2007) Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats. Psychopharmacology 195(2):175–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoorneman EM, Buijs RM (1982) Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res 243(2):235–241

    CAS  PubMed  Google Scholar 

  • Horn AS (1990) Dopamine uptake: a review of progress in the last decade. Prog Neurobiol 34(5):387–400

    CAS  PubMed  Google Scholar 

  • Huang YY, Grailhe R, Arango V, Hen R, Mann JJ (1999) Relationship of psychopathology to the human serotonin1B genotype and receptor binding kinetics in postmortem brain tissue. Neuropsychopharmacology 21(2):238–246

    CAS  PubMed  Google Scholar 

  • Ibi D, Takuma K, Koike H, Mizoguchi H, Tsuritani K, Kuwahara Y, Kamei H et al (2008) Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 105(3):921–932

    CAS  PubMed  Google Scholar 

  • Invernizzi R, Belli S, Samanin R (1992) Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res 584(1–2):322–324

    CAS  PubMed  Google Scholar 

  • Invernizzi R, Bramante M, Samanin R (1994) Chronic treatment with citalopram facilitates the effect of a challenge dose on cortical serotonin output: role of presynaptic 5-HT1A receptors. Eur J Pharmacol 260(2–3):243–246

    CAS  PubMed  Google Scholar 

  • Invernizzi R, Bramante M, Samanin R (1996) Role of 5-HT1A receptors in the effects of acute and chronic fluoxetine on extracellular serotonin in the frontal cortex. Pharmacol Biochem Behav 54(1):143–147

    CAS  PubMed  Google Scholar 

  • Iovino M, Steardo L (1985) Effect of substances influencing brain serotonergic transmission on plasma vasopressin levels in the rat. Eur J Pharmacol 113(1):99–103

    CAS  PubMed  Google Scholar 

  • Irvin RW, Szot P, Dorsa DM, Potegal M, Ferris CF (1990) Vasopressin in the septal area of the golden hamster controls scent marking and grooming. Physiol Behav 48(5):693–699

    CAS  PubMed  Google Scholar 

  • Jackson D, Burns R, Trksak G, Simeone B, DeLeon KR, Connor DF, Harrison RJ et al (2005) Anterior hypothalamic vasopressin modulates the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters. Neuroscience 133(3):635–646

    CAS  PubMed  Google Scholar 

  • Jarrell H, Hoffman JB, Kaplan JR, Berga S, Kinkead B, Wilson ME (2008) Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 93(4–5):807–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Conarty PF, Nichols DE (1991) [3H]monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur J Pharmacol 200(1):9–16

    CAS  PubMed  Google Scholar 

  • Joppa MA, Rowe RK, Meisel RL (1997) Effects of serotonin 1A or 1B receptor agonists on social aggression in male and female Syrian hamsters. Pharmacol Biochem Behav 58(2):349–353

    CAS  PubMed  Google Scholar 

  • Kania BF, Gralak MA, Wielgosz M (2012) Four-week fluoxetine (SSRI) exposure diminishes aggressive behaviour of male Siamese fighting fish (Betta splendens). J Behav Brain Sci 2(2):185–190

    CAS  Google Scholar 

  • Keele NB (2001) Phenytoin inhibits isolation-induced aggression specifically in rats with low serotonin. NeuroReport 12(6):1107–1112

    CAS  PubMed  Google Scholar 

  • Kessel B (1994) Hyponatraemia after ingestion of ecstasy. BMJ (Clinical research ed.) 308(6925):414

    CAS  Google Scholar 

  • Kirilly E, Benko A, Ferrington L, Ando RD, Kelly PAT, Bagdy G (2006) Acute and long-term effects of a single dose of MDMA on aggression in dark Agouti rats. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP 9(1):63–76

    CAS  Google Scholar 

  • Klein SL, Hairston JE, DeVries AC, Nelson RJ (1997) Social-environment and steroid-hormones affect species and sex-differences in immune function among voles. Horm Behav 32:30–39

    CAS  PubMed  Google Scholar 

  • Knyshevski I, Connor DF, Harrison RJ, Ricci LA, Melloni RH (2005a) Persistent activation of select forebrain regions in aggressive, adolescent cocaine-treated hamsters. Behav Brain Res 159(2):277–286

    CAS  PubMed  Google Scholar 

  • Knyshevski I, Ricci LA, McCann TE, Melloni RH (2005b) Serotonin type-1A receptors modulate adolescent, cocaine-induced offensive aggression in hamsters. Physiol Behav 85(2):167–176

    CAS  PubMed  Google Scholar 

  • Koolhaas JM, Everts H, De Ruiter AJ, De Boer SF, Bohus B (1998) Coping with stress in rats and mice: differential peptidergic modulation of the amygdala-lateral septum complex. Prog Brain Res 119:437–448

    CAS  PubMed  Google Scholar 

  • Koolhaas JM, Moor E, Hiemstra Y, Bohus B (1991) The testosterone-dependent vasopressinergic neurons in the medial amygdala and lateral septum: involvement in social behaviour of male rats. In: Jard S (ed) Vasopressin. John Libbey, Paris, pp 213–219

    Google Scholar 

  • Koolhaas JM, Van den Brink THC, Roozendaal B, Boorsma F (1990) Medial amygdala and aggressive behavior: interaction between testosterone and vasopressin. Aggressive Behav 16(3–4):223–229

    CAS  Google Scholar 

  • Kostowski W, Valzelli L, Kozak W, Bernasconi S (1984) Activity of desipramine, fluoxetine and nomifensine on spontaneous and p-CPA-induced muricidal aggression. Pharmacol Res Commun 16(3):265–271

    CAS  PubMed  Google Scholar 

  • Kruesi MJ, Rapoport JL, Hamburger S, Hibbs E, Potter WZ, Lenane M, Brown GL (1990) Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch Gen Psychiatry 47(5):419–426

    CAS  PubMed  Google Scholar 

  • Kulikov AV, Osipova DV, Naumenko VS, Popova NK (2005) Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains. Genes Brain Behav 4(8):482–485

    CAS  PubMed  Google Scholar 

  • Kuroda Y, Watanabe Y, McEwen BS (1994) Tianeptine decreases both serotonin transporter mRNA and binding sites in rat brain. Eur J Pharmacol 268(1):R3–R5

    CAS  PubMed  Google Scholar 

  • Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL, Goldman D (1998) Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 55(11):989

    Google Scholar 

  • Leonardi ET, Azmitia EC (1994) MDMA (ecstasy) inhibition of MAO type A and type B: comparisons with fenfluramine and fluoxetine (Prozac). Neuropsychopharmacology : Off Publ Am Coll Neuropsychopharmacol 10(4):231–238

    CAS  Google Scholar 

  • Lesch KP, Merschdorf U (2000) Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci law 18(5):581–604

    CAS  PubMed  Google Scholar 

  • Lewis DA (1990) The organization of chemically-identified neural systems in monkey prefrontal cortex: afferent systems. Prog Neuropsychopharmacol Biol Psychiatry 14(3):371–377

    CAS  PubMed  Google Scholar 

  • Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33(26):2609–2614

    CAS  PubMed  Google Scholar 

  • Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Young WS, Mezey E et al (1995) Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Nat Acad Sci USA 92(15):6783–6787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynn SE, Egar JM, Walker BG, Sperry TS, Ramenofsky M (2007) Fish on Prozac: a simple, noninvasive physiology laboratory investigating the mechanisms of aggressive behavior in Betta splendens. Adv Physiol Educ 31(4):358–363

    PubMed  Google Scholar 

  • Maciag D, Simpson KL, Coppinger D, Lu Y, Wang Y, Lin RCS, Paul IA (2006) Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology 31(1):47–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahoney PD, Koh ET, Irvin RW, Ferris CF (1990) Computer-aided mapping of vasopressin neurons in the hypothalamus of the male golden Hamster: evidence of magnocellular neurons that do not project to the neurohypophysis. J Neuroendocrinol 2(2):113–122

    CAS  PubMed  Google Scholar 

  • Maj J, Mogilnicka E, Klimek V, Kordecka-Magiera A (1981) Chronic treatment with antidepressants: protentiation of clonidine-induced aggression in mice via noradrenergic mechanism. J Neural Transm (Vienna, Austria: 1996) 52(3):189–197

    Google Scholar 

  • Malay MB, Ashton RC, Landry DW, Townsend RN (1999) Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma 47(4):699–705

    CAS  PubMed  Google Scholar 

  • Malone RP, Delaney MA, Luebbert JF, Cater J, Campbell M (2000) A double-blind placebo-controlled study of lithium in hospitalized aggressive children and adolescents with conduct disorder. Arch Gen Psychiatry 57(7):649–654

    CAS  PubMed  Google Scholar 

  • Mason WT, Ho YW, Hatton GI (1984) Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience 11(1):169–182

    CAS  PubMed  Google Scholar 

  • Matto V, Skrebuhhova T, Allikmets L (1998) The effect of antidepressants on rat aggressive behavior in the electric footshock and apomorphine-induced aggressiveness paradigms. Methods Find Exp Clin Pharmacol 20(4):329–337

    CAS  PubMed  Google Scholar 

  • Maxwell DL, Polkey MI, Henry JA (1993) Hyponatraemia and catatonic stupor after taking “ecstasy”. BMJ (Clinical research ed) 307(6916):1399

    CAS  Google Scholar 

  • Melloni RH, Connor DF, Hang PT, Harrison RJ, Ferris CF (1997) Anabolic-androgenic steroid exposure during adolescence and aggressive behavior in golden hamsters. Physiol Behav 61(3):359–364

    CAS  PubMed  Google Scholar 

  • Melloni RH, Ricci LA (2010) Adolescent exposure to anabolic/androgenic steroids and the neurobiology of offensive aggression: a hypothalamic neural model based on findings in pubertal Syrian hamsters. Horm Behav 58(1):177–191

    CAS  PubMed  Google Scholar 

  • Micev V, Lynch DM (1974) Effect of lithium on disturbed severely mentally retarded patients. Br J Psychiatry 125(584):110–111

    CAS  PubMed  Google Scholar 

  • Miczek KA, de Almeida RM (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology 157(4):421–429

    CAS  PubMed  Google Scholar 

  • Miczek KA, Tidey JW (1989) Amphetamines: aggressive and social behavior. NIDA Res Monogr 94:68–100

    CAS  PubMed  Google Scholar 

  • Miczek KA, Hussain S, Faccidomo S (1998) Alcohol-heightened aggression in mice: attenuation by 5-HT 1A receptor agonists. Psychopharmacology 139(1–2):160–168

    CAS  PubMed  Google Scholar 

  • Militante JD, Lombardini JB (2002) Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23(4):381–393

    CAS  PubMed  Google Scholar 

  • Miller LL, Whitsett JM, Vandenbergh JG, Colby DR (1977) Physical and behavioral aspects of sexual maturation in male golden hamsters. J Comp Physiol Psychol 91(2):245–259

    CAS  PubMed  Google Scholar 

  • Mitchell PJ, Fletcher A, Redfern PH (1991) Is antidepressant efficacy revealed by drug-induced changes in rat behaviour exhibited during social interaction? Neurosci Biobehav Rev 15(4):539–544

    CAS  PubMed  Google Scholar 

  • Mocaer E, Rettori MC, Kamoun A (1988) Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol 11(Suppl 2):S32–S42

    CAS  PubMed  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17(9):3157–3167

    CAS  PubMed  Google Scholar 

  • Mos J, Olivier B, Poth M, Van Oorschot R, Van Aken H (1993) The effects of dorsal raphe administration of eltoprazine, TFMPP and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 238(2–3):411–415

    CAS  PubMed  Google Scholar 

  • Muehlenkamp F, Lucion A, Vogel WH (1995) Effects of selective serotonergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50(4):671–674

    CAS  PubMed  Google Scholar 

  • Munro AD (1986) Effects of melatonin, serotonin, and naloxone on aggression in isolated cichlid fish (Aequidens pulcher). J Pineal Res 3(3):257–262

    CAS  PubMed  Google Scholar 

  • Navarro JF, Maldonado E (1999) Behavioral profile of 3,4-methylenedioxy-methamphetamine (MDMA) in agonistic encounters between male mice. Prog Neuropsychopharmacol Biol Psychiatry 23(2):327–334

    CAS  PubMed  Google Scholar 

  • Nencini P (1988) The role of opiate mechanisms in the development of tolerance to the anorectic effects of amphetamines. Pharmacol Biochem Behav 30(3):755–764

    CAS  PubMed  Google Scholar 

  • Nephew BC, Febo M (2010) Effect of cocaine sensitization prior to pregnancy on maternal care and aggression in the rat. Psychopharmacology 209(1):127–135

    CAS  PubMed  Google Scholar 

  • New AS, Trestman RF, Mitropoulou V, Goodman M, Koenigsberg HH, Silverman J, Siever LJ (2004) Low prolactin response to fenfluramine in impulsive aggression. J Psychiatr Res 38(3):223–230

    PubMed  Google Scholar 

  • Nielsen S, Frøkiaer J, Marples D, Kwon T-H, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82(1):205–244

    CAS  PubMed  Google Scholar 

  • Olivier B, Mos J, Van Oorschot R, Hen R (1995) Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28(Suppl 2):80–90

    PubMed  Google Scholar 

  • Olivier B (2004) Serotonin and aggression. Ann N Y Acad Sci 1036:382–392. doi:10.1196/annals.1330.022

    CAS  PubMed  Google Scholar 

  • Olivier B, Van Oorschot R (2005) 5-HT1B receptors and aggression: a review. Eur J Pharmacol 526(1–3):207–217

    CAS  PubMed  Google Scholar 

  • Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ, Young WS (1992) Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology 131(1):533–535

    CAS  PubMed  Google Scholar 

  • Ostrowski NL, Lolait SJ, Young WS (1994) Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 135(4):1511–1528

    CAS  PubMed  Google Scholar 

  • Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96(3):576–582

    CAS  PubMed  Google Scholar 

  • Pergola PE, Sved AF, Voogt JL, Alper RH (1993) Effect of serotonin on vasopressin release: a comparison to corticosterone, prolactin and renin. Neuroendocrinology 57(3):550–558

    CAS  PubMed  Google Scholar 

  • Perreault H, Semsar K, Godwin J (2003) Fluoxetine treatment decreases territorial aggression in a coral reef fish. Physiol Behav 79(4–5):719–724

    CAS  PubMed  Google Scholar 

  • Perry KW, Fuller RW (1993) Extracellular 5-hydroxytryptamine concentration in rat hypothalamus after administration of fluoxetine plus L-5-hydroxytryptophan. J Pharm Pharmacol 45(8):759–761

    CAS  PubMed  Google Scholar 

  • Phillips PA, Rolls BJ, Ledingham JG, Forsling ML, Morton JJ (1985) Osmotic thirst and vasopressin release in humans: a double-blind crossover study. Am J Physiol 248(6 Pt 2):R645–R650

    CAS  PubMed  Google Scholar 

  • Pinna G, Liskevych U, Doueiri MS, Costa E, Guidotti A (2003a) Antidepressants in doses that increase neurosteroid biosynthesis but fail to inhibit 5-HT reuptake reduce expression of aggression in socially isolated (SI) mice. Program No. 664.2. In 2003 Neuroscience Meeting Planner.

    Google Scholar 

  • Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186(3):362–372

    CAS  PubMed  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2009) SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol 9(1):24–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003b) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Nat Acad Sci USA 100(4):2035–2040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pitkow LJ, Sharer CA, Ren X, Insel TR, Terwilliger EF, Young LJ (2001) Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J Neurosci 21(18):7392–7396

    CAS  PubMed  Google Scholar 

  • Popa D, Léna C, Alexandre C, Adrien J (2008) Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28(14):3546–3554

    CAS  PubMed  Google Scholar 

  • Popova NK, Naumenko VS, Plyusnina IZ (2007) Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci Behav Physiol 37(6):631–635

    CAS  PubMed  Google Scholar 

  • Potegal M, Ferris CF (1989) Intraspecific aggression in male hamsters is inhibited by intrahypothalamic vasopressin-receptor antagonist. Aggressive Behav 15(4):311–320

    Google Scholar 

  • Puciłowski O, Płaźnik A, Kostowski W (1985) Aggressive behavior inhibition by serotonin and quipazine injected into the amygdala in the rat. Behav Neural Biol 43(1):58–68

    PubMed  Google Scholar 

  • Qu Y, Chang L, Klaff J, Seemann R, Rapoport SI (2003) Imaging brain phospholipase A2-mediated signal transduction in response to acute fluoxetine administration in unanesthetized rats. Neuropsychopharmacology 28(7):1219–1226

    CAS  PubMed  Google Scholar 

  • Quattrone A, Tedeschi G, Aguglia U, Scopacasa F, Direnzo GF, Annunziato L (1983) Prolactin secretion in man: a useful tool to evaluate the activity of drugs on central 5-hydroxytryptaminergic neurones. Studies with fenfluramine. Br J Clin Pharmacol 16(5):471–475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raleigh MJ, Brammer GL, Yuwiler A, Flannery JW, McGuire MT, Geller E (1980) Serotonergic influences on the social behavior of vervet monkeys (Cercopithecus aethiops sabaeus). Exp Neurol 68(2):322–334

    CAS  PubMed  Google Scholar 

  • Ramboz S, Saudou F, Amara DA, Belzung C, Segu L, Misslin R, Buhot MC et al (1996) 5-HT1B receptor knock out—behavioral consequences. Behav Brain Res 73(1–2):305–312

    CAS  PubMed  Google Scholar 

  • Reist C, Nakamura K, Sagart E, Sokolski KN, Fujimoto KA (2003) Impulsive aggressive behavior: open-label treatment with citalopram. J Clin Psychiatry 59(1):676–680

    Google Scholar 

  • Ribeiro EB, Bettiker RL, Bogdanov M, Wurtman RJ (1993) Effects of systemic nicotine on serotonin release in rat brain. Brain Res 621(2):311–318

    CAS  PubMed  Google Scholar 

  • Ricci LA, Grimes JM, Melloni RH (2004) Serotonin type 3 receptors modulate the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters (Mesocricetus auratus). Behav Neurosci 118(5):1097–1110

    CAS  PubMed  Google Scholar 

  • Ricci LA, Knyshevski I, Melloni RH (2005) Serotonin type 3 receptors stimulate offensive aggression in Syrian hamsters. Behav Brain Res 156(1):19–29

    CAS  PubMed  Google Scholar 

  • Ricci LA, Melloni RH (2012) Repeated fluoxetine administration during adolescence stimulates aggressive behavior and alters serotonin and vasopressin neural development in hamsters. Behav Neurosci 126(5):640–653

    CAS  PubMed  Google Scholar 

  • Ricci LA, Rasakham K, Grimes JM, Melloni RH (2006) Serotonin-1A receptor activity and expression modulate adolescent anabolic/androgenic steroid-induced aggression in hamsters. Pharmacol Biochem Behav 85(1):1–11

    CAS  PubMed  Google Scholar 

  • Rilke O, Will K, Jähkel M, Oehler J (2001) Behavioral and neurochemical effects of anpirtoline and citalopram in isolated and group housed mice. Prog Neuropsychopharmacol Biol Psychiatry 25(5):1125–1144

    CAS  PubMed  Google Scholar 

  • Rittig S, Robertson GL, Siggaard C, Kovács L, Gregersen N, Nyborg J, Pedersen EB (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58(1):107–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roliński Z, Herbut M (1981) The role of the serotonergic system in foot shock-induced behavior in mice. Psychopharmacology 73(3):246–251

    PubMed  Google Scholar 

  • Rood BD, De Vries GJ (2011) Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 519(12):2434–2474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosa M, Franzini A, Giannicola G, Messina G, Altamura AC, Priori A (2012) Hypothalamic oscillations in human pathological aggressiveness. Biol Psychiatry 72(12):e33–e35

    PubMed  Google Scholar 

  • Roth BL, Choudhary MS, Khan N, Uluer AZ (1997) High-affinity agonist binding is not sufficient for agonist efficacy at 5-hydroxytryptamine2A receptors: evidence in favor of a modified ternary complex model. J Pharmacol Exp Ther 280(2):576–583

    CAS  PubMed  Google Scholar 

  • Roy A, Adinoff B, Linnoila M (1988) Acting out hostility in normal volunteers: negative correlation with levels of 5HIAA in cerebrospinal fluid. Psychiatry Res 24(2):187–194

    CAS  PubMed  Google Scholar 

  • Sabol KE, Richards JB, Seiden LS (1992) Fluoxetine attenuates the DL-fenfluramine-induced increase in extracellular serotonin as measured by in vivo dialysis. Brain Res 585(1–2):421–424

    CAS  PubMed  Google Scholar 

  • Saito M, Sugimoto T, Tahara A, Kawashima H (1995) Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extra-pituitary tissues. Biochem Biophys Res Commun 212(3):751–757

    CAS  PubMed  Google Scholar 

  • Salomé N, Stemmelin J, Cohen C, Griebel G (2006) Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology 187(2):237–244

    PubMed  Google Scholar 

  • Sammler EM, Foley PL, Lauder GD, Wilson SJ, Goudie AR, O’Riordan JI (2010) A harmless high? Lancet 376(9742):742

    PubMed  Google Scholar 

  • Sánchez C, Arnt J, Hyttel J, Moltzen EK (1993) The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology 110(1–2):53–59

    PubMed  Google Scholar 

  • Sánchez C, Hyttel J (1994) Isolation-induced aggression in mice: effects of 5-hydroxytryptamine uptake inhibitors and involvement of postsynaptic 5-HT1A receptors. Eur J Pharmacol 264(3):241–247

    PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC et al (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265(5180):1875–1878

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW, Steinbusch HW, Verhofstad AA (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277(2):355–360

    CAS  PubMed  Google Scholar 

  • Schoenfeld T, Leonard C (1985) Behavioral development in the syrian golden hamster. In: Siegel H (ed) The hamster: reproduction and behavior. Plenum Press, New York, pp 289–321

    Google Scholar 

  • Schwartzer JJ, Ricci LA, Melloni RH (2009) Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters. Behav Brain Res 199(2):257–262

    CAS  PubMed  Google Scholar 

  • Scordalakes EM, Rissman EF (2004) Aggression and arginine vasopressin immunoreactivity regulation by androgen receptor and estrogen receptor alpha. Genes Brain Behav 3(1):20–26

    CAS  PubMed  Google Scholar 

  • Semsar K, Kandel FL, Godwin J (2001) Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm Behav 40(1):21–31

    CAS  PubMed  Google Scholar 

  • Share L (1988) Role of vasopressin in cardiovascular regulation. Physiol Rev 68(4):1248–1284

    CAS  PubMed  Google Scholar 

  • Sheard MH, Marini JL, Bridges CI, Wagner E (1976) The effect of lithium on impulsive aggressive behavior in man. Am J Psychiatry 133(12):1409–1413

    CAS  PubMed  Google Scholar 

  • Shimizu H, Bray GA (1989) Effects of neuropeptide Y on norepinephrine and serotonin metabolism in rat hypothalamus in vivo. Brain Res Bull 22(6):945–950

    CAS  PubMed  Google Scholar 

  • Shoaf SE, Carson R, Hommer D, Williams W, Higley JD, Schmall B, Herscovitch P et al (1998) Brain serotonin synthesis rates in rhesus monkeys determined by [11C]alpha-methyl-l-tryptophan and positron emission tomography compared to CSF 5-hydroxyindole-3-acetic acid concentrations. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 19(5):345–353

    CAS  Google Scholar 

  • Sijbesma H, Schipper J, De Kloet ER, Mos J, Van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38(2):447–458

    CAS  PubMed  Google Scholar 

  • Soloff PH, Kelly TM, Strotmeyer SJ, Malone KM, Mann JJ (2003) Impulsivity, gender, and response to fenfluramine challenge in borderline personality disorder. Psychiatry Res 119(1–2):11–24

    CAS  PubMed  Google Scholar 

  • Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(±)MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol Biochem Behav 32(4):835–840

    CAS  PubMed  Google Scholar 

  • Sperry TS, Moore IT, Meddle SL, Benowitz-Fredericks ZM, Wingfield JC (2005) Increased sensitivity of the serotonergic system during the breeding season in free-living American tree sparrows. Behav Brain Res 157(1):119–126

    CAS  PubMed  Google Scholar 

  • Sperry TS, Thompson CK, Wingfield JC (2003) Effects of acute treatment with 8-OH-DPAT and fluoxetine on aggressive behaviour in male song sparrows (Melospiza melodia morphna). J Neuroendocrinol 15(2):150–160

    CAS  PubMed  Google Scholar 

  • Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol 49(6):499–505

    CAS  Google Scholar 

  • Sprouse J, Braselton J, Reynolds L, Clarke T, Rollema H (2001) Activation of postsynaptic 5-HT(1A) receptors by fluoxetine despite the loss of firing-dependent serotonergic input: electrophysiological and neurochemical studies. Synapse 41(1):49–57

    CAS  PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1(1):3–9

    CAS  PubMed  Google Scholar 

  • Steensland P, Hallberg M, Kindlundh A, Fahlke C, Nyberg F (2005) Amphetamine-induced aggression is enhanced in rats pre-treated with the anabolic androgenic steroid nandrolone decanoate. Steroids 70(3):199–204

    CAS  PubMed  Google Scholar 

  • Stemmelin J, Lukovic L, Salome N, Griebel G (2005) Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30(1):35–42

    CAS  PubMed  Google Scholar 

  • Stribley JM, Carter CS (1999) Developmental exposure to vasopressin increases aggression in adult prairie voles. Proc Nat Acad Sci USA 96(22):12601–12604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Summers CH, Korzan WJ, Lukkes JL, Watt MJ, Forster GL, Øverli Ø, Höglund E et al (2005) Does serotonin influence aggression? Comparing regional activity before and during social interaction. Physiol Biochem Zool PBZ 78(5):679–694

    CAS  Google Scholar 

  • Swanson LW, Kuypers HG (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194(3):555–570

    CAS  PubMed  Google Scholar 

  • Taravosh-Lahn K, Bastida C, Delville Y (2006) Differential responsiveness to fluoxetine during puberty. Behav Neurosci 120(5):1084–1092

    CAS  PubMed  Google Scholar 

  • Thurmond JB, Lasley SM, Kramarcy NR, Brown JW (1979) Differential tolerance to dietary amino acid-induced changes in aggressive behavior and locomotor activity in mice. Psychopharmacology 66(3):301–308

    CAS  PubMed  Google Scholar 

  • Treiser SL, Cascio CS, O’Donohue TL, Thoa NB, Jacobowitz DM, Kellar KJ (1981) Lithium increases serotonin release and decreases serotonin receptors in the hippocampus. Science 213(4515):1529–1531

    CAS  PubMed  Google Scholar 

  • Tribollet E, Barberis C, Jard S, Dubois-Dauphin M, Dreifuss JJ (1988) Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res 442(1):105–118

    CAS  PubMed  Google Scholar 

  • Tupin JP, Smith DB, Clanon TL, Kim LI, Nugent A, Groupe A (1973) The long-term use of lithium in aggressive prisoners. Compr Psychiatry 14(4):311–317

    CAS  PubMed  Google Scholar 

  • Vaccari C, Lolait SJ, Ostrowski NL (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139(12):5015–5033

    CAS  PubMed  Google Scholar 

  • Vacher C-M, Calas A, Maltonti F, Hardin-Pouzet H (2004) Postnatal regulation by monoamines of vasopressin expression in the neuroendocrine hypothalamus of MAO-A-deficient mice. Eur J Neurosci 19(4):1110–1114

    PubMed  Google Scholar 

  • Vacher C-M, Frétier P, Créminon C, Calas A, Hardin-Pouzet H (2002) Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei. J Neurosci 22(5):1513–1522

    CAS  PubMed  Google Scholar 

  • Van Der Vegt BJ, Lieuwes N, Van De Wall EHEM, Kato K, Moya-Albiol L, Martínez-Sanchis S, De Boer SF et al (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117(4):667–674

    PubMed  Google Scholar 

  • Van Erp AM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci: Off J Soc Neurosci 20(24):9320–9325

    Google Scholar 

  • Van Putten T, Sanders DG (1975) Lithium in treatment failures. J Nerv Ment Dis 161(4):255–264

    PubMed  Google Scholar 

  • Veenema AH, Beiderbeck DI, Lukas M, Neumann ID (2010) Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the stria terminalis with the display of intermale aggression. Horm Behav 58(2):273–281

    CAS  PubMed  Google Scholar 

  • Veiga CP, Miczek KA, Lucion AB, De Almeida RMM (2007) Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz J Med Biol Res 40(6):825–830

    CAS  PubMed  Google Scholar 

  • Vergnes M, Depaulis A, Boehrer A (1986) Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol Behav 36(4):653–658

    CAS  PubMed  Google Scholar 

  • Vergnes M, Depaulis A, Boehrer A, Kempf E (1988) Selective increase of offensive behavior in the rat following intrahypothalamic 5,7-DHT-induced serotonin depletion. Behav Brain Res 29(1–2):85–91

    CAS  PubMed  Google Scholar 

  • Vergnes M, Kempf E (1982) Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats. Behav Brain Res 5(4):387–397

    CAS  PubMed  Google Scholar 

  • Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668

    CAS  PubMed  Google Scholar 

  • Villalba C, Boyle PA, Caliguri EJ, De Vries GJ (1997) Effects of the selective serotonin reuptake inhibitor fluoxetine on social behaviors in male and female prairie voles (Microtus ochrogaster). Horm Behav 32(3):184–191

    CAS  PubMed  Google Scholar 

  • Vincent J-L, Su F (2008) Physiology and pathophysiology of the vasopressinergic system. Best Pract Res Clin Anaesthesiol 22(2):243–252

    CAS  PubMed  Google Scholar 

  • Vomachka AJ, Ruppert PH, Clemens LG, Greenwald GS (1981) Adult sexual behavior deficits and altered hormone levels in male hamsters given steroids during development. Physiol Behav 26(3):461–466

    CAS  PubMed  Google Scholar 

  • Wagner GC, Fisher H, Pole N, Borve T, Johnson SK (1993) Effects of monoaminergic agonists on alcohol-induced increases in mouse aggression. J Stud Alcohol Suppl 11:185–191

    CAS  PubMed  Google Scholar 

  • Wang Z, Bullock NA, De Vries GJ (1993) Sexual differentiation of vasopressin projections of the bed nucleus of the stria terminals and medial amygdaloid nucleus in rats. Endocrinology 132(6):2299–2306

    CAS  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Christiansen M, Young WS (2007a) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav 6(7):653–660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu S-B, Young WS (2007b) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6(6):540–551

    CAS  PubMed  Google Scholar 

  • Wersinger SR, Ginns EI, O’Carroll A-M, Lolait SJ, Young WS (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7(9):975–984

    CAS  PubMed  Google Scholar 

  • Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ (2000) Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology 150(1):120–122

    CAS  PubMed  Google Scholar 

  • Whitsett JM (1975) The development of aggressive and marking behavior in intact and castrated male hamsters. Horm Behav 6(1):47–57

    CAS  PubMed  Google Scholar 

  • Willoughby JO, Blessing WW (1987) Neuropeptide Y injected into the supraoptic nucleus causes secretion of vasopressin in the unanesthetized rat. Neurosci Lett 75(1):17–22

    CAS  PubMed  Google Scholar 

  • Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR (1993) A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365(6446):545–548

    CAS  PubMed  Google Scholar 

  • Wood DM, Davies S, Greene SL, Button J, Holt DW, Ramsey J, Dargan PI (2010) Case series of individuals with analytically confirmed acute mephedrone toxicity. Clin Toxicol 48(9):324–327

    Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351(3):357–373

    CAS  PubMed  Google Scholar 

  • Yatham LN, Steiner M (1993) Neuroendocrine probes of serotonergic function: a critical review. Life Sci 53(6):447–463

    CAS  PubMed  Google Scholar 

  • Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400(6746):766–768

    CAS  PubMed  Google Scholar 

  • Young WS, Li J, Wersinger SR, Palkovits M (2006) The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143(4):1031–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zai CC, Muir KE, Nowrouzi B, Shaikh SA, Choi E, Berall L, Trépanier M-O et al (2012) Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res 200(2–3):784–788

    CAS  PubMed  Google Scholar 

  • Zhang L, Hernández VS (2013) Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei. Neuroscience 228:139–162

    CAS  PubMed  Google Scholar 

  • Zhang L, Ma W, Barker JL, Rubinow DR (1999) Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: a possible role of testosterone. Neuroscience 94(1):251–259

    CAS  PubMed  Google Scholar 

  • Zimmermann M, Grabemann M, Mette C, Abdel-Hamid M, Uekermann J, Ueckermann J, Kraemer M et al (2012) The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. PLoS ONE 7(3):e32023

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Melloni Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morrison, T.R., Melloni, R.H. (2014). The Role of Serotonin, Vasopressin, and Serotonin/Vasopressin Interactions in Aggressive Behavior. In: Miczek, K., Meyer-Lindenberg, A. (eds) Neuroscience of Aggression. Current Topics in Behavioral Neurosciences, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_283

Download citation

Publish with us

Policies and ethics