Skip to main content

Genetic Dissection of Sleep Homeostasis

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep’s still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achermann P, Borbely AA (2003) Mathematical models of sleep regulation. Front Biosci 8:s683–s693

    PubMed  Google Scholar 

  • Aeschbach D, Cajochen C, Landolt H, Borbely AA (1996) Homeostatic sleep regulation in habitual short sleepers and long sleepers. Am J Physiol 270:R41–R53

    CAS  PubMed  Google Scholar 

  • Aeschbach D, Matthews JR, Postolache TT, Jackson MA, Giesen HA, Wehr TA (1997) Dynamics of the human EEG during prolonged wakefulness: evidence for frequency-specific circadian and homeostatic influences. Neurosci Lett 239:121–124

    CAS  PubMed  Google Scholar 

  • Aeschbach D, Postolache TT, Sher L, Matthews JR, Jackson MA, Wehr TA (2001) Evidence from the waking electroencephalogram that short sleepers live under higher homeostatic sleep pressure than long sleepers. Neuroscience 102:493–502

    CAS  PubMed  Google Scholar 

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ambrosius U, Lietzenmaier S, Wehrle R, Wichniak A, Kalus S, Winkelmann J, Bettecken T, Holsboer F, Yassouridis A, Friess E (2008) Heritability of sleep electroencephalogram. Biol Psychiatry 64:344–348

    PubMed  Google Scholar 

  • Amici R, Cerri M, Ocampo-Garces A, Baracchi F, Dentico D, Jones CA, Luppi M, Perez E, Parmeggiani PL, Zamboni G (2008) Cold exposure and sleep in the rat: REM sleep homeostasis and body size. Sleep 31:708–715

    PubMed Central  PubMed  Google Scholar 

  • Andretic R, Franken P, Tafti M (2008) Genetics of sleep. Annu Rev Genet 42:361–388

    CAS  PubMed  Google Scholar 

  • Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15(13):1165–1175

    CAS  PubMed  Google Scholar 

  • Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89:655–667

    PubMed Central  CAS  PubMed  Google Scholar 

  • Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, von Schantz M (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26:413–415

    PubMed  Google Scholar 

  • Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, Rollmann SM, Duncan LH, Lawrence F, Anholt RR, Mackay TF (2009) Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41:299–307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bachmann V, Klein C, Bodenmann S, Schafer N, Berger W, Brugger P, Landolt HP (2012) The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35:335–344

    PubMed Central  PubMed  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396

    CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belknap JK, Hitzemann R, Crabbe JC, Phillips TJ, Buck KJ, Williams RW (2001) QTL analysis and genomewide mutagenesis in mice: complementary genetic approaches to the dissection of complex traits. Behav Genet 31:5–15

    CAS  PubMed  Google Scholar 

  • Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360

    CAS  PubMed  Google Scholar 

  • Benington JH, Woudenberg MC, Heller HC (1994) REM-sleep propensity accumulates during 2-h REM-sleep deprivation in the rest period in rats. Neurosci Lett 180:76–80

    CAS  PubMed  Google Scholar 

  • Benito J, Zheng H, Ng FS, Hardin PE (2007) Transcriptional feedback loop regulation, function, and ontogeny in Drosophila. Cold Spring Harb Symp Quant Biol 72:437–444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bixler E (2009) Sleep and society: an epidemiological perspective. Sleep Med 10(Suppl 1):S3–S6

    PubMed  Google Scholar 

  • Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW (2009) Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci 29:1267–1276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bodenmann S, Xu S, Luhmann UF, Arand M, Berger W, Jung HH, Landolt HP (2009) Pharmacogenetics of modafinil after sleep loss: catechol-O-methyltransferase genotype modulates waking functions but not recovery sleep. Clin Pharmacol Ther 85:296–304

    CAS  PubMed  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    CAS  PubMed  Google Scholar 

  • Borbely AA, Achermann P (1991) Ultradian dynamics of sleep after a single dose of benzodiazepine hypnotics. Eur J Pharmacol 195:11–18

    CAS  PubMed  Google Scholar 

  • Borbély AA, Tobler I, Hanagasioglu M (1984) Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res 14(3):171–182

    PubMed  Google Scholar 

  • Bozek K, Relogio A, Kielbasa SM, Heine M, Dame C, Kramer A, Herzel H (2009) Regulation of clock-controlled genes in mammals. PLoS ONE 4:e4882

    PubMed Central  PubMed  Google Scholar 

  • Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bushey D, Huber R, Tononi G, Cirelli C (2007) Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci 27:5384–5393

    CAS  PubMed  Google Scholar 

  • Cannon WB (1915) Bodily changes in pain, hunger, fear and rage: an account of recent researches into the function of emotional excitement. Canon, New York

    Google Scholar 

  • Chiang MC, Avedissian C, Barysheva M, Toga AW, McMahon KL, de Zubicaray GI, Wright MJ, Thompson PM (2009) Extending genetic linkage analysis to diffusion tensor images to map single gene effects on brain fiber architecture. Med Image Comput Comput Assist Interv 12:506–513

    PubMed  Google Scholar 

  • Cirelli C (2003) Searching for sleep mutants of Drosophila melanogaster. BioEssays 25:940–949

    CAS  PubMed  Google Scholar 

  • Cirelli C (2005) A molecular window on sleep: changes in gene expression between sleep and wakefulness. Neuroscientist 11:63–74

    CAS  PubMed  Google Scholar 

  • Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B, Tononi G (2005) Reduced sleep in Drosophila Shaker mutants. Nature 434:1087–1092

    CAS  PubMed  Google Scholar 

  • Cirelli C, Faraguna U, Tononi G (2006) Changes in brain gene expression after long-term sleep deprivation. J Neurochem 98:1632–1645

    CAS  PubMed  Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35–43

    CAS  PubMed  Google Scholar 

  • Cirelli C, Tononi G (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res 885:303–321

    CAS  PubMed  Google Scholar 

  • Clinton JM, Davis CJ, Zielinski MR, Jewett KA, Krueger JM (2011) Biochemical regulation of sleep and sleep biomarkers. J Clin Sleep Med 7:S38–S42

    PubMed Central  PubMed  Google Scholar 

  • Curie T, Mongrain V, Dorsaz S, Mang GM, Emmenegger Y, Franken P (2013) Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36(3):311–323

    Google Scholar 

  • Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246:R161–R183

    CAS  PubMed  Google Scholar 

  • Darko DF, Miller JC, Gallen C, White J, Koziol J, Brown SJ, Hayduk R, Atkinson JH, Assmus J, Munnell DT, Naitoh P, McCutchan JA, Mitler MM (1995) Sleep electroencephalogram delta-frequency amplitude, night plasma levels of tumor necrosis factor alpha, and human immunodeficiency virus infection. Proc Natl Acad Sci U.S.A 92:12080–12084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    CAS  PubMed  Google Scholar 

  • Davis CJ, Bohnet SG, Meyerson JM, Krueger JM (2007) Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett 422:68–73

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Gennaro L, Marzano C, Fratello F, Moroni F, Pellicciari MC, Ferlazzo F, Costa S, Couyoumdjian A, Curcio G, Sforza E, Malafosse A, Finelli LA, Pasqualetti P, Ferrara M, Bertini M, Rossini PM (2008) The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol 64:455–460

    PubMed  Google Scholar 

  • Deboer T (2009) Sleep and sleep homeostasis in constant darkness in the rat. J Sleep Res 18:357–364

    PubMed  Google Scholar 

  • Deboer T, Fontana A, Tobler I (2002) Tumor necrosis factor (TNF) ligand and TNF receptor deficiency affects sleep and the sleep EEG. J Neurophysiol 88(2):839–846

    CAS  PubMed  Google Scholar 

  • DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delaney SM, Geiger JD (1996) Brain regional levels of adenosine and adenosine nucleotides in rats killed by high-energy focused microwave irradiation. J Neurosci Methods 64:151–156

    CAS  PubMed  Google Scholar 

  • Dijk DJ, Archer SN (2009) PERIOD3, circadian phenotypes, and sleep homeostasis. Sleep Med Rev 14:151–160

    PubMed  Google Scholar 

  • Dijk DJ, Beersma DG, Daan S (1987) EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms 2:207–219

    CAS  PubMed  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    CAS  PubMed  Google Scholar 

  • Dijk DJ, Franken P (2005) Interaction of sleep homeostasis and circadian rhythmicity: dependent or independent systems? In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medecine. Saunders/Elsevier, Philadelphia, pp 418–434

    Google Scholar 

  • Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C (2007) Sleep in Kcna2 knockout mice. BMC Biol 5:42

    PubMed Central  PubMed  Google Scholar 

  • Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383

    CAS  PubMed  Google Scholar 

  • Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27:1307–1318

    PubMed  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    CAS  PubMed  Google Scholar 

  • Endo T, Roth C, Landolt HP, Werth E, Aeschbach D, Achermann P, Borbely AA (1998) Selective REM sleep deprivation in humans: effects on sleep and sleep EEG. Am J Physiol 274:R1186–R1194

    CAS  PubMed  Google Scholar 

  • Endo T, Schwierin B, Borbely AA, Tobler I (1997) Selective and total sleep deprivation: effect on the sleep EEG in the rat. Psychiatry Res 66:97–110

    CAS  PubMed  Google Scholar 

  • Fang J, Wang Y, Krueger JM (1997) Mice lacking the TNF 55 kDa receptor fail to sleep more after TNFalpha treatment. J Neurosci 17(15):5949–5955

    CAS  PubMed  Google Scholar 

  • Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28:4088–4095

    CAS  PubMed  Google Scholar 

  • Fedele DE, Gouder N, Guttinger M, Gabernet L, Scheurer L, Rulicke T, Crestani F, Boison D (2005) Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain 128:2383–2395

    PubMed  Google Scholar 

  • Flint J, Mott R (2001) Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet 2:437–445

    CAS  PubMed  Google Scholar 

  • Foltenyi K, Greenspan RJ, Newport JW (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10:1160–1167

    CAS  PubMed  Google Scholar 

  • Frank MG, Stryker MP, Tecott LH (2002) Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology 27:869–873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franken P (2002) Long-term vs. short-term processes regulating REM sleep. J Sleep Res 11:17–28

    PubMed  Google Scholar 

  • Franken P (2012) Genetic mechanisms underlying rhythmic EEG activity during sleep. In: Frank MG (ed) Brain activity in sleep. Elsevier, Amsterdam, pp 55–89

    Google Scholar 

  • Franken P (2013) A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 23(5):864–872

    CAS  PubMed  Google Scholar 

  • Franken P, Chollet D, Tafti M (2001) The homeostatic regulation of sleep need is under genetic control. J Neurosci 21:2610–2621

    CAS  PubMed  Google Scholar 

  • Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29:1820–1829

    CAS  PubMed  Google Scholar 

  • Franken P, Dijk DJ, Tobler I, Borbely AA (1991a) Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol 261:R198–R208

    CAS  PubMed  Google Scholar 

  • Franken P, Dudley CA, Estill SJ, Barakat M, Thomason R, O’Hara BF, McKnight SL (2006) NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci U S A 103:7118–7123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franken P, Lopez-Molina L, Marcacci L, Schibler U, Tafti M (2000) The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 20:617–625

    CAS  PubMed  Google Scholar 

  • Franken P, Malafosse A, Tafti M (1999) Genetic determinants of sleep regulation in inbred mice. Sleep 22:155–169

    CAS  PubMed  Google Scholar 

  • Franken P, Thomason R, Heller HC, O’Hara BF (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8:87

    PubMed Central  PubMed  Google Scholar 

  • Franken P, Tobler I, Borbely AA (1991b) Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci Lett 130:141–144

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Irenius E, Kull B, Schulte G (2001) Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 61:443–448

    CAS  PubMed  Google Scholar 

  • Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J, Reick M, Scott K, Diaz-Arrastia R, McKnight SL (2000) Impaired cued and contextual memory in NPAS2-deficient mice. Science 288:2226–2230

    CAS  PubMed  Google Scholar 

  • Geyer H (1937) Uber den Schlaf von Zwillingen. Z Indukt Abstamm verebungsl 78:524–527

    Google Scholar 

  • Goel N, Banks S, Lin L, Mignot E, Dinges DF (2011) Catechol-O-methyltransferase Val158Met polymorphism associates with individual differences in sleep physiologic responses to chronic sleep loss. PLoS ONE 6:e29283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Groeger JA, Viola AU, Lo JC, von Schantz M, Archer SN, Dijk DJ (2008) Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep 31:1159–1167

    PubMed Central  PubMed  Google Scholar 

  • Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561

    CAS  PubMed  Google Scholar 

  • Guan Z, Peng X, Fang J (2004) Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res 1018:38–47

    CAS  PubMed  Google Scholar 

  • Hajdu I, Obal F Jr, Fang J, Krueger JM, Rollo CD (2002) Sleep of transgenic mice producing excess rat growth hormone. Am J Physiol Regul Integr Comp Physiol 282:R70–R76

    CAS  PubMed  Google Scholar 

  • Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hasan S, van der Veen DR, Winsky-Sommerer R, Dijk DJ, Archer SN (2011) Altered sleep and behavioral activity phenotypes in PER3-deficient mice. Am J Physiol Regul Integr Comp Physiol 301:R1821–R1830

    CAS  PubMed  Google Scholar 

  • Hasan S, Winsky-Sommerer R, Dijk DJ, Archer SN (2012) Abstracts. J Sleep Res 21:1–387

    Google Scholar 

  • Hayaishi O, Urade Y, Eguchi N, Huang ZL (2004) Genes for prostaglandin d synthase and receptor as well as adenosine A2A receptor are involved in the homeostatic regulation of nrem sleep. Arch Ital Biol 142:533–539

    CAS  PubMed  Google Scholar 

  • He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL Jr, Rossner MJ, Nishino S, Fu YH (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:866–870

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hinard V, Mikhail C, Pradervand S, Curie T, Houtkooper RH, Auwerx J, Franken P, Tafti M (2012) Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 32(36):12506–12517

    CAS  PubMed  Google Scholar 

  • Hu JH, Park JM, Park S, Xiao B, Dehoff MH, Kim S, Hayashi T, Schwarz MK, Huganir RL, Seeburg PH, Linden DJ, Worley PF (2010) Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron 68(6):1128–1142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38

    CAS  PubMed  Google Scholar 

  • Huber R, Deboer T, Tobler I (2000) Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res 857:8–19

    CAS  PubMed  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    CAS  PubMed  Google Scholar 

  • Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30:129–139

    PubMed  Google Scholar 

  • Jenkins A, Archer SN, von Schantz M (2005) Expansion during primate radiation of a variable number tandem repeat in the coding region of the circadian clock gene period3. J Biol Rhythms 20:470–472

    CAS  PubMed  Google Scholar 

  • Johnson TE, Wood WB (1982) Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci U S A 79:6603–6607

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116:260–272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaushal N, Ramesh V, Gozal D (2012) TNF-α and temporal changes in sleep architecture in mice exposed to sleep fragmentation. PLoS ONE 7(9):e45610

    PubMed Central  CAS  PubMed  Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York

    Google Scholar 

  • Knight J, Abbott A (2002) Full house. Nature 417:785–786

    CAS  PubMed  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277

    Google Scholar 

  • Koh K, Joiner WJ, Wu MN, Yue Z, Smith CJ, Sehgal A (2008) Identification of SLEEPLESS, a sleep-promoting factor. Science 321:372–376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16:1099–1106

    PubMed  Google Scholar 

  • Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A Multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    PubMed Central  PubMed  Google Scholar 

  • Krueger JM (2008) The role of cytokines in sleep regulation. Curr Pharm Des 14:3408–3416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krueger JM, Clinton JM, Winters BD, Zielinski MR, Taishi P, Jewett KA, Davis CJ (2011) Involvement of cytokines in slow wave sleep. Prog Brain Res 193:39–47

    PubMed Central  PubMed  Google Scholar 

  • Kume K, Kume S, Park SK, Hirsh J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25:7377–7384

    CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409

    PubMed  Google Scholar 

  • Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF (2004) Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R104–R111

    CAS  PubMed  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    CAS  PubMed  Google Scholar 

  • Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JA, Hazendonk E, Prins P, Plasterk RH, Jansen RC, Breitling R, Kammenga JE (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2:e222

    PubMed Central  PubMed  Google Scholar 

  • Linkowski P (1999) EEG sleep patterns in twins. J Sleep Res 8(Suppl 1):11–13

    PubMed  Google Scholar 

  • Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16:6762–6771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mackiewicz M, Pack AI (2003) Functional genomics of sleep. Respir Physiol Neurobiol 135:207–220

    CAS  PubMed  Google Scholar 

  • Mackiewicz M, Paigen B, Naidoo N, Pack AI (2008) Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate. Physiol Genomics 33:91–99

    CAS  PubMed  Google Scholar 

  • Mackiewicz M, Shockley KR, Romer MA, Galante RJ, Zimmerman JE, Naidoo N, Baldwin DA, Jensen ST, Churchill GA, Pack AI (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31:441–457

    CAS  PubMed  Google Scholar 

  • Mackiewicz M, Zimmerman JE, Shockley KR, Churchill GA, Pack AI (2009) What are microarrays teaching us about sleep? Trends Mol Med 15:79–87

    PubMed Central  PubMed  Google Scholar 

  • Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O’Hara BF, Franken P, Tafti M (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U.S.A 104:20090–20095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maret S, Franken P, Dauvilliers Y, Ghyselinck NB, Chambon P, Tafti M (2005) Retinoic acid signaling affects cortical synchrony during sleep. Science 310:111–113

    CAS  PubMed  Google Scholar 

  • Mizoguchi A, Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, Mochizuki T, Lazarus M, Kobayashi T, Kaneko T, Narumiya S, Urade Y, Hayaishi O (2001) Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 98:11674–11679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mongrain V, Hernandez SA, Pradervand S, Dorsaz S, Curie T, Hagiwara G, Gip P, Heller HC, Franken P (2010) Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33:1147–1157

    PubMed Central  PubMed  Google Scholar 

  • Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS ONE 6:e26622

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mracek P, Santoriello C, Idda ML, Pagano C, Ben-Moshe Z, Gothilf Y, Vallone D, Foulkes NS (2012) Regulation of per and cry genes reveals a central role for the D-box enhancer in light-dependent gene expression. PLoS ONE 7:e51278

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naidoo N, Casiano V, Cater J, Zimmerman J, Pack AI (2007) A role for the molecular chaperone protein BiP/GRP78 in Drosophila sleep homeostasis. Sleep 30:557–565

    PubMed  Google Scholar 

  • Naidoo N, Ferber M, Galante RJ, McShane B, Hu JH, Zimmerman J, Maislin G, Cater J, Wyner A, Worley P, Pack AI (2012) Role of Homer proteins in the maintenance of sleep-wake states. PLoS ONE 7:e35174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naidoo N, Giang W, Galante RJ, Pack AI (2005) Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 92:1150–1157

    CAS  PubMed  Google Scholar 

  • Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, Turek FW (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143

    CAS  PubMed  Google Scholar 

  • Neckelmann D, Ursin R (1993) Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep 16:467–477

    CAS  PubMed  Google Scholar 

  • Obal F Jr, Alt J, Taishi P, Gardi J, Krueger JM (2003) Sleep in mice with nonfunctional growth hormone-releasing hormone receptors. Am J Physiol Regul Integr Comp Physiol 284:R131–R139

    CAS  PubMed  Google Scholar 

  • Obal F Jr, Fang J, Taishi P, Kacsoh B, Gardi J, Krueger JM (2001) Deficiency of growth hormone-releasing hormone signaling is associated with sleep alterations in the dwarf rat. J Neurosci 21:2912–2918

    CAS  PubMed  Google Scholar 

  • Obal F Jr, Krueger JM (2004) GHRH and sleep. Sleep Med Rev 8:367–377

    PubMed  Google Scholar 

  • Ocampo-Garcés A, Molina E, Rodríguez A, Vivaldi EA (2000) Homeostasis of REM sleep after total and selective sleep deprivation in the rat. J Neurophysiol 84:2699–2702

    PubMed  Google Scholar 

  • Palchykova S, Winsky-Sommerer R, Shen HY, Boison D, Gerling A, Tobler I (2010) Manipulation of adenosine kinase affects sleep regulation in mice. J Neurosci 30:13157–13165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Philip VM, Sokoloff G, Ackert-Bicknell CL, Striz M, Branstetter L, Beckmann MA, Spence JS, Jackson BL, Galloway LD, Barker P, Wymore AM, Hunsicker PR, Durtschi DC, Shaw GS, Shinpock S, Manly KF, Miller DR, Donohue KD, Culiat CT, Churchill GA, Lariviere WR, Palmer AA, O’Hara BF, Voy BH, Chesler EJ (2001) Genetic analysis in the Collaborative Cross breeding population. Genome Res 21:1223–1238

    Google Scholar 

  • Popa D, El Yacoubi M, Vaugeois JM, Hamon M, Adrien J (2006) Homeostatic regulation of sleep in a genetic model of depression in the mouse: effects of muscarinic and 5-HT1A receptor activation. Neuropsychopharmacology 31:1637–1646

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL (2010) Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 30:4382–4389

    CAS  PubMed  Google Scholar 

  • Rainnie DG, Grunze HC, McCarley RW, Greene RW (1994) Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science 263:689–692

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Bergmann BM, Gilliland MA, Bauer K (1999) Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 22:11–13

    CAS  PubMed  Google Scholar 

  • Retey JV, Adam M, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP (2007) A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther 81:692–698

    CAS  PubMed  Google Scholar 

  • Rhyner TA, Borbely AA, Mallet J (1990) Molecular cloning of forebrain mRNAs which are modulated by sleep deprivation. Eur J Neurosci 2:1063–1073

    PubMed  Google Scholar 

  • Ringwald M, Iyer V, Mason JC, Stone KR, Tadepally HD, Kadin JA, Bult CJ, Eppig JT, Oakley DJ, Briois S, Stupka E, Maselli V, Smedley D, Liu S, Hansen J, Baldock R, Hicks GG, Skarnes WC (2011) The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res 39:D849–D855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rockman MV, Kruglyak L (2009) Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet 5:e1000419

    PubMed Central  PubMed  Google Scholar 

  • Roth C, Achermann P, Borbely AA (1999) Alpha activity in the human REM sleep EEG: topography and effect of REM sleep deprivation. Clin Neurophysiol 110:632–635

    CAS  PubMed  Google Scholar 

  • Rupp TL, Wesensten NJ, Newman R, Balkin TJ (2012) PER3 and ADORA2A polymorphisms impact neurobehavioral performance during sleep restriction. J Sleep Res 22(2):160–165

    Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    CAS  PubMed  Google Scholar 

  • Schmitt LI, Sims RE, Dale N, Haydon PG (2012) Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci 32:4417–4425

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seugnet L, Boero J, Gottschalk L, Duntley SP, Shaw PJ (2006) Identification of a biomarker for sleep drive in flies and humans. Proc Natl Acad Sci U.S.A 103:19913–19918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837

    CAS  PubMed  Google Scholar 

  • Shaw PJ, Franken P (2003) Perchance to dream: solving the mystery of sleep through genetic analysis. J Neurobiol 54:179–202

    CAS  PubMed  Google Scholar 

  • Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417:287–291

    CAS  PubMed  Google Scholar 

  • Shearman LP, Jin X, Lee C, Reppert SM, Weaver DR (2000) Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol 20:6269–6275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR (2004) Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287:R47–R57

    CAS  PubMed  Google Scholar 

  • Stassen HH, Coppola R, Gottesman II, Torrey EF, Kuny S, Rickler KC, Hell D (1999) EEG differences in monozygotic twins discordant and concordant for schizophrenia. Psychophysiology 36:109–117

    CAS  PubMed  Google Scholar 

  • Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T (2003) Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res 12:283–290

    PubMed  Google Scholar 

  • Szumlinski KK, Kalivas PW, Worley PF (2006) Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 16(3):251–257

    CAS  PubMed  Google Scholar 

  • Taishi P, Churchill L, Wang M, Kay D, Davis CJ, Guan X, De A, Yasuda T, Liao F, Krueger JM (2007) TNFalpha siRNA reduces brain TNF and EEG delta wave activity in rats. Brain Res 1156:125–132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi Y, Ebihara S, Nakamura Y, Takahashi K (1981) A model of human sleep-related growth hormone secretion in dogs: effects of 3, 6, and 12 hours of forced wakefulness on plasma growth hormone, cortisol, and sleep stages. Endocrinology 109:262–272

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Kipnis DM, Daughaday WH (1968) Growth hormone secretion during sleep. J Clin Invest 47:2079–2090

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, Flint J (1999) High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet 21:305–308

    CAS  PubMed  Google Scholar 

  • Tasali E, Leproult R, Ehrmann DA, Van Cauter E (2008) Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 105:1044–1049

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terao A, Wisor JP, Peyron C, Apte-Deshpande A, Wurts SW, Edgar DM, Kilduff TS (2006) Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study. Neuroscience 137:593–605

    CAS  PubMed  Google Scholar 

  • Thompson CL, Wisor JP, Lee CK, Pathak SD, Gerashchenko D, Smith KA, Fischer SR, Kuan CL, Sunkin SM, Ng LL, Lau C, Hawrylycz M, Jones AR, Kilduff TS, Lein ES (2010) Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front Neurosci 4:165

    PubMed Central  PubMed  Google Scholar 

  • Tobler I, Borbely AA (1986) Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol 64:74–76

    CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62

    PubMed  Google Scholar 

  • Tomioka K, Matsumoto A (2010) A comparative view of insect circadian clock systems. Cell Mol Life Sci 67:1397–1406

    CAS  PubMed  Google Scholar 

  • Trachsel L, Edgar DM, Seidel WF, Heller HC, Dement WC (1992) Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res 589:253–261

    CAS  PubMed  Google Scholar 

  • Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (2011) Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144:268–281

    CAS  PubMed  Google Scholar 

  • Urade Y, Eguchi N, Qu WM, Sakata M, Huang ZL, Chen JF, Schwarzschild MA, Fink JS, Hayaishi O (2003) Sleep regulation in adenosine A2A receptor-deficient mice. Neurology 61:S94–S96

    CAS  PubMed  Google Scholar 

  • Urade Y, Hayaishi O (2011) Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 15:411–418

    PubMed  Google Scholar 

  • Valatx JL, Bugat R (1974) Genetic factors as determinants of the waking-sleep cycle in the mouse (author’s transl). Brain Res 69:315–330

    CAS  PubMed  Google Scholar 

  • Valatx JL, Bugat R, Jouvet M (1972) Genetic studies of sleep in mice. Nature 238:226–227

    CAS  PubMed  Google Scholar 

  • van Beijsterveldt CE, Molenaar PC, de Geus EJ, Boomsma DI (1996) Heritability of human brain functioning as assessed by electroencephalography. Am J Hum Genet 58:562–573

    PubMed Central  PubMed  Google Scholar 

  • van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630

    PubMed  Google Scholar 

  • Van der Veen DR, Archer SN (2010) Light-dependent behavioral phenotypes in PER3-deficient mice. J Biol Rhythms 25:3–8

    PubMed  Google Scholar 

  • Vatine G, Vallone D, Appelbaum L, Mracek P, Ben-Moshe Z, Lahiri K, Gothilf Y, Foulkes NS (2009) Light directs zebrafish period2 expression via conserved D and E boxes. PLoS Biol 7:e1000223

    PubMed Central  PubMed  Google Scholar 

  • Vienne J, Bettler B, Franken P, Tafti M (2010) Differential effects of GABAB receptor subtypes, {gamma}-hydroxybutyric Acid, and Baclofen on EEG activity and sleep regulation. J Neurosci 30:14194–14204

    CAS  PubMed  Google Scholar 

  • Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618

    CAS  PubMed  Google Scholar 

  • Viola AU, Chellappa SL, Archer SN, Pugin F, Gotz T, Dijk DJ, Cajochen C (2012) Interindividual differences in circadian rhythmicity and sleep homeostasis in older people: effect of a PER3 polymorphism. Neurobiol Aging 33(1010):e1017–e1027

    Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A 96:12114–12119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werth E, Dijk DJ, Achermann P, Borbely AA (1996) Dynamics of the sleep EEG after an early evening nap: experimental data and simulations. Am J Physiol 271:R501–R510

    CAS  PubMed  Google Scholar 

  • Wimmer RD, Astori S, Bond CT, Rovo Z, Chatton JY, Adelman JP, Franken P, Luthi A (2012) Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J Neurosci 32:13917–13928

    PubMed Central  CAS  PubMed  Google Scholar 

  • Winsky-Sommerer R (2009) Role of GABAA receptors in the physiology and pharmacology of sleep. Eur J Neurosci 29:1779–1794

    PubMed  Google Scholar 

  • Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    PubMed Central  PubMed  Google Scholar 

  • Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S, Sancar A, Franken P, Lein ES, Kilduff TS (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28:7193–7201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu MN, Ho K, Crocker A, Yue Z, Koh K, Sehgal A (2009) The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J Neurosci 29:11029–11037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu MN, Koh K, Yue Z, Joiner WJ, Sehgal A (2008) A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep 31:465–472

    PubMed Central  PubMed  Google Scholar 

  • Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, Farinelli L, Osteras M, Whitley A, Yuan W, Gan X, Goodson M, Klenerman P, Satpathy A, Mathis D, Benoist C, Adams DJ, Mott R, Flint J (2010) Commercially available outbred mice for genome-wide association studies. PLoS Genet 6(9):e1001085

    Google Scholar 

  • Yamajuku D, Shibata Y, Kitazawa M, Katakura T, Urata H, Kojima T, Nakata O, Hashimoto S (2010) Identification of functional clock-controlled elements involved in differential timing of Per1 and Per2 transcription. Nucleic Acids Res 38:7964–7973

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamajuku D, Shibata Y, Kitazawa M, Katakura T, Urata H, Kojima T, Takayasu S, Nakata O, Hashimoto S (2011) Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator. FEBS Lett 585:2217–2222

    CAS  PubMed  Google Scholar 

  • Yoshida H, Peterfi Z, Garcia-Garcia F, Kirkpatrick R, Yasuda T, Krueger JM (2004) State-specific asymmetries in EEG slow wave activity induced by local application of TNFalpha. Brain Res 1009:129–136

    CAS  PubMed  Google Scholar 

  • Zielinski MR, Taishi P, Clinton JM, Krueger JM (2012) 5’-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation. Eur J Neurosci 35:1789–1798

    PubMed Central  PubMed  Google Scholar 

  • Zimmerman JE, Naidoo N, Raizen DM, Pack AI (2008) Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 31:371–376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman JE, Rizzo W, Shockley KR, Raizen DM, Naidoo N, Mackiewicz M, Churchill GA, Pack AI (2006) Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol Genomics 27:337–350

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géraldine M. Mang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mang, G.M., Franken, P. (2013). Genetic Dissection of Sleep Homeostasis. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2013_270

Download citation

Publish with us

Policies and ethics