Skip to main content

Behavioral and Electrophysiological Correlates of Sleep and Sleep Homeostasis

  • Chapter
  • First Online:
Sleep, Neuronal Plasticity and Brain Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

The definition of what sleep is depends on the method that is applied to record sleep. Behavioral and (electro)-physiological measures of sleep clearly overlap in mammals and birds , but it is often unclear how these two relate in other vertebrates and invertebrates. Homeostatic regulation of sleep, where the amount of sleep depends on the amount of previous waking, can be observed in physiology and behavior in all animals this was tested in. In mammals and birds, sleep is generally subdivided into two states, non-rapid eye movement (NREM) sleep and REM sleep . In mammals the combination of behavioral sleep and the changes in the slow-wave range of the NREM sleep electroencephalogram (EEG) can explain and predict the occurrence and depth of sleep in great detail. For REM sleep this is far less clear. Finally, the discovery that slow-waves in the NREM sleep EEG are influenced locally on the cortex depending on prior waking behavior is an interesting new development that asks for an adaptation of the concept of homeostatic regulation of sleep. Incorporating local sleep into models of sleep regulation is needed to obtain a comprehensive picture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann P, Dijk DJ, Brunner DP, Borbely AA (1993) A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull 31:97–113

    CAS  PubMed  Google Scholar 

  • Akerstedt T, Gillberg M (1986) A dose-response study of sleep loss and spontaneous sleep termination. Psychophysiology 23:293–297

    CAS  PubMed  Google Scholar 

  • Aldabal L, Bahammam AS (2011) Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J 5:31–43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amici R, Zamboni G, Perez E, Jones CA, Parmeggiani PL (1998) The influence of a heavy thermal load on REM sleep in the rat. Brain Res 781:252–258

    CAS  PubMed  Google Scholar 

  • Amici R, Cerri M, Ocampo-Garces A, Baracchi F, Dentico D, Jones CA, Luppi M, Perez E, Parmeggiani PL, Zamboni G (2008) Cold exposure and sleep in the rat: REM sleep homeostasis and body size. Sleep 31:708–715

    PubMed Central  PubMed  Google Scholar 

  • Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83

    CAS  PubMed  Google Scholar 

  • Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP (2003) The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26:342–392

    PubMed  Google Scholar 

  • Andersen FS (1968) Sleep in moths and its dependence on the frequency of stimulation in Anagasta kuehniella. Opusc Ent 33:15–24

    Google Scholar 

  • Antle MC, van Diepen HC, Deboer T, Pedram P, Pereira RR, Meijer JH (2012) Methylphenidate modifies the motion of the circadian clock. Neuropsychopharmacology 37:2446–2455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bachmann V, Klaus F, Bodenmann S, Schafer N, Brugger P, Huber S, Berger W, Landolt HP (2012) Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex 22:962–970

    PubMed  Google Scholar 

  • Baglioni C, Battagliese G, Feige B, Spiegelhalder K, Nissen C, Voderholzer U, Lombardo C, Riemann D (2011) Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. J Affect Disord 135:10–19

    PubMed  Google Scholar 

  • Banjanin S, Mrosovsky N (2000) Preferences of mice, Mus musculus, for different types of running wheel. Lab Anim 34:313–318

    CAS  PubMed  Google Scholar 

  • Bastien CH, LeBlanc M, Carrier J, Morin CM (2003) Sleep EEG power spectra, insomnia, and chronic use of benzodiazepines. Sleep 26:313–317

    PubMed  Google Scholar 

  • Benington JH (2002) Debating how REM sleep is regulated (and by what). J Sleep Res 11:29–31

    PubMed  Google Scholar 

  • Benington JH, Heller HC (1994) Does the Function of Rem-Sleep Concern Non-Rem Sleep or Waking. Prog Neurobiol 44:433–449

    CAS  PubMed  Google Scholar 

  • Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360

    CAS  PubMed  Google Scholar 

  • Benington JH, Kodali SK, Heller HC (1995) Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res 692:79–85

    CAS  PubMed  Google Scholar 

  • Berger H (1929) Uber das Elektroenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Google Scholar 

  • Berger RJ, Phillips NH (1995) Energy conservation and sleep. Behav Brain Res 69:65–73

    CAS  PubMed  Google Scholar 

  • Blake H, Gerard RW (1937) Brain potentials during sleep. Am J Physiol 119:692–703

    Google Scholar 

  • Blest AD (1958) Some interactions between flight, protective display, and oviposition behaviour in Callosamia and Rothschildia spp. Behaviour 13:297–318

    Google Scholar 

  • Blest AD (1960a) The evolution, ontogeny and quantitative control of the settling movements of some New World saturniid moths, with some comments on distiance communication by honeybees. Behaviour 16:188–253

    Google Scholar 

  • Blest AD (1960b) The testing position of Cerodirphia seciosa (Cramer), (Lepidoptera, Saturniidae): the ritualization of a conflict posture. Zoologica 45:81–90

    Google Scholar 

  • Bobbo D, Nelini C, Mascetti GG (2008) Binocular and monocular/unihemispheric sleep in the domestic chick (Gallus gallus) after a moderate sleep deprivation. Exp Brain Res 185:421–427

    PubMed  Google Scholar 

  • Boerema AS, Riedstra B, Strijkstra AM (2003) Decrease in monocular sleep after sleep deprivation in the domestic chicken. Behaviour 140:1415–1420

    Google Scholar 

  • Borbely AA, Neuhaus HU (1979) Sleep-deprivation—effects on sleep and EEG in the rat. J Comp Physiol 133:71–87

    Google Scholar 

  • Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51:483–495

    CAS  PubMed  Google Scholar 

  • Borbely AA, Tobler I, Hanagasioglu M (1984) Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res 14:171–182

    CAS  PubMed  Google Scholar 

  • Bringmann A (1995) Topographic mapping of the cortical EEG power in the unrestrained rat: peripheral effects of neuroactive drugs. Arch Ital Biol 133:1–16

    CAS  PubMed  Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    CAS  PubMed  Google Scholar 

  • Campbell IG, Grimm KJ, de Bie E, Feinberg I (2012) Sex, puberty, and the timing of sleep EEG measured adolescent brain maturation. Proc Natl Acad Sci U S A 109:5740–5743

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carskadon MA, Dement WC (1975) Sleep studies on a 90-minute day. Electroen Clin Neuro 39:145–155

    CAS  Google Scholar 

  • Caton R (1875) The electric currents of the brain. Br Med J 2:278

    Google Scholar 

  • Caton R (1877) Interim report on investigations of the electric currents of the brain. Br Med J Suppl L:62–65

    Google Scholar 

  • Cerri M, Mastrotto M, Tupone D, Martelli D, Luppi M, Perez E, Zamboni G, Amici R (2013) The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J Neurosci 33:2984–2993

    CAS  PubMed  Google Scholar 

  • Coolen A, Hoffmann K, Barf RP, Fuchs E, Meerlo P (2012) Telemetric study of sleep architecture and sleep homeostasis in the day-active tree shrew Tupaia belangeri. Sleep 35:879–888

    PubMed Central  PubMed  Google Scholar 

  • Crick F, Mitchison G (1983) The function of dream sleep. Nature 304:111–114

    CAS  PubMed  Google Scholar 

  • Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep? Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128:265–268

    CAS  PubMed  Google Scholar 

  • Danker-Hopfe H, Anderer P, Zeitlhofer J, Boeck M, Dorn H, Gruber G, Heller E, Loretz E, Moser D, Parapatics S, Saletu B, Schmidt A, Dorffner G (2009) Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. J Sleep Res 18:74–84

    PubMed  Google Scholar 

  • Deboer T (2005) Cool hamsters get sleepy. J Therm Biol 30:173–178

    Google Scholar 

  • Deboer T (2007) Technologies of sleep research. Cell Mol Life Sci 64:1227–1235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deboer T (2009) Sleep and sleep homeostasis in constant darkness in the rat. J Sleep Res 18:357–364

    PubMed  Google Scholar 

  • Deboer T, Tobler I (1994) Sleep EEG after daily torpor in the Djungarian hamster: similarity to the effect of sleep deprivation. Neurosci Lett 166:35–38

    CAS  PubMed  Google Scholar 

  • Deboer T, Tobler I (1996) Shortening of the photoperiod affects sleep distribution, EEG and cortical temperature in the Djungarian hamster. J Comp Physiol A 179:483–492

    CAS  PubMed  Google Scholar 

  • Deboer T, Tobler I (2000a) Running wheel size influences circadian rhythm period and its phase shift in mice. J Comp Physiol A 186:969–973

    CAS  PubMed  Google Scholar 

  • Deboer T, Tobler I (2000b) Slow waves in the sleep electroencephalogram after daily torpor are homeostatically regulated. NeuroReport 11:881–885

    CAS  PubMed  Google Scholar 

  • Deboer T, Tobler I (2003) Sleep regulation in the Djungarian hamster: comparison of the dynamics leading to the slow-wave activity increase after sleep deprivation and daily torpor. Sleep 26:567–572

    PubMed  Google Scholar 

  • Deboer T, Franken P, Tobler I (1994) Sleep and cortical temperature in the Djungarian hamster under baseline conditions and after sleep deprivation. J Comp Physiol A 174:145–155

    CAS  PubMed  Google Scholar 

  • Deboer T, Sanford LD, Ross RJ, Morrison AR (1998) Effects of electrical stimulation in the amygdala on ponto-geniculo-occipital waves in rats. Brain Res 793:305–310

    CAS  PubMed  Google Scholar 

  • Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090

    CAS  PubMed  Google Scholar 

  • Deboer T, Detari L, Meijer JH (2007a) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30:257–262

    PubMed  Google Scholar 

  • Deboer T, Ruijgrok G, Meijer JH (2007b) Short light-dark cycles affect sleep in mice. Eur J Neurosci 26:3518–3523

    PubMed  Google Scholar 

  • Deboer T, van Diepen HC, Ferrari MD, Van den Maagdenberg AMJM, Meijer JH (2013) Reduced Sleep and Low Adenosinergic Sensitivity in Cacna1a R192Q Mutant Mice. Sleep 36:127–136

    PubMed  Google Scholar 

  • Dement W (1960) Effect of Dream Deprivation. Science 131:1705–1707

    CAS  PubMed  Google Scholar 

  • Dijk DJ, Beersma DG (1989) Effects of SWS deprivation on subsequent EEG power density and spontaneous sleep duration. Electroencephalogr Clin Neurophysiol 72:312–320

    CAS  PubMed  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    CAS  PubMed  Google Scholar 

  • Dijk DJ, Beersma DG, van den Hoofdakker RH (1989) All night spectral analysis of EEG sleep in young adult and middle-aged male subjects. Neurobiol Aging 10:677–682

    CAS  PubMed  Google Scholar 

  • Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA (1999) Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 516(Pt 2):611–627

    PubMed Central  CAS  PubMed  Google Scholar 

  • Durmer JS, Dinges DF (2005) Neurocognitive consequences of sleep deprivation. Semin Neurol 25:117–129

    PubMed  Google Scholar 

  • Endo T, Schwierin B, Borbely AA, Tobler I (1997) Selective and total sleep deprivation: effect on the sleep EEG in the rat. Psychiatry Res 66:97–110

    CAS  PubMed  Google Scholar 

  • Endo T, Roth C, Landolt HP, Werth E, Aeschbach D, Achermann P, Borbely AA (1998) Effect of frequent brief awakenings from nonREM sleep on the nonREM-REM sleep cycle. Psychiatry Clin Neurosci 52:129–130

    CAS  PubMed  Google Scholar 

  • Everson CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 12:13–21

    CAS  PubMed  Google Scholar 

  • Farajnia S, Michel S, Deboer T, vanderLeest HT, Houben T, Rohling JH, Ramkisoensing A, Yasenkov R, Meijer JH (2012) Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci 32:5891–5899

    Google Scholar 

  • Ferrara M, De Gennaro L, Casagrande M, Bertini M (1999) Auditory arousal thresholds after selective slow-wave sleep deprivation. Clin Neurophysiol 110:2148–2152

    CAS  PubMed  Google Scholar 

  • Fiebrig K (1912) Schlafende Insekten. Jenaische Zeit. Naturwissenschaften 48:315–364

    Google Scholar 

  • Fisher SP, Godinho SI, Pothecary CA, Hankins MW, Foster RG, Peirson SN (2012) Rapid assessment of sleep-wake behavior in mice. J Biol Rhythms 27:48–58

    PubMed  Google Scholar 

  • Flanigan WF (1972) Behavioral states and electroencephalograms of reptiles. In: Chase MH (ed) The sleeping brain. Unviersity of California at Los Angeles, Los Angeles, pp 14–18

    Google Scholar 

  • Frank MG (2012) Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012:264378

    PubMed Central  PubMed  Google Scholar 

  • Franken P (2002a) Debating how REM sleep is regulated (and by what)—response. J Sleep Res 11:31–33

    Google Scholar 

  • Franken P (2002b) Long-term vs. short-term processes regulating REM sleep. J Sleep Res 11:17–28

    PubMed  Google Scholar 

  • Franken P, Dijk DJ, Tobler I, Borbely AA (1991a) Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol 261:R198–R208

    CAS  PubMed  Google Scholar 

  • Franken P, Tobler I, Borbely AA (1991b) Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci Lett 130:141–144

    CAS  PubMed  Google Scholar 

  • Franken P, Malafosse A, Tafti M (1999) Genetic determinants of sleep regulation in inbred mice. Sleep 22:155–169

    CAS  PubMed  Google Scholar 

  • Franken P, Chollet D, Tafti M (2001) The homeostatic regulation of sleep need is under genetic control. J Neurosci 21:2610–2621

    CAS  PubMed  Google Scholar 

  • Gottesmann C (1996) The transition from slow-wave sleep to paradoxical sleep: evolving facts and concepts of the neurophysiological processes underlying the intermediate stage of sleep. Neurosci Biobehav Rev 20:367–387

    CAS  PubMed  Google Scholar 

  • Hasan S, Dauvilliers Y, Mongrain V, Franken P, Tafti M (2012) Age-related changes in sleep in inbred mice are genotype dependent. Neurobiol Aging 33(195):e113–e126

    Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138

    CAS  PubMed  Google Scholar 

  • Huber R, Deboer T, Tobler I (2000a) Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res 857:8–19

    CAS  PubMed  Google Scholar 

  • Huber R, Deboer T, Tobler I (2000b) Topography of EEG dynamics after sleep deprivation in mice. J Neurophysiol 84:1888–1893

    CAS  PubMed  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004a) Local sleep and learning. Nature 430:78–81

    CAS  PubMed  Google Scholar 

  • Huber R, Hill SL, Holladay C, Biesiadecki M, Tononi G, Cirelli C (2004b) Sleep homeostasis in Drosophila melanogaster. Sleep 27:628–639

    PubMed  Google Scholar 

  • Iber C, Ancoli-Israel S, Quan SF (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  • Jenni OG, Borbely AA, Achermann P (2004) Development of the nocturnal sleep electroencephalogram in human infants. Am J Physiol Regul Integr Comp Physiol 286:R528–R538

    CAS  PubMed  Google Scholar 

  • Jenni OG, Deboer T, Achermann P (2006) Development of the 24-h rest-activity pattern in human infants. Infant Behav Dev 29:143–152

    PubMed  Google Scholar 

  • Jones BE (2004) Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res 145:157–169

    CAS  PubMed  Google Scholar 

  • Jouvet M (1998) Paradoxical sleep as a programming system. J Sleep Res 7(Suppl 1):1–5

    PubMed  Google Scholar 

  • Kaiser W (1988) Busy bees need rest, too—behavioral and electromyographical sleep signs in honeybees. J Comp Physiol A 163:565–584

    Google Scholar 

  • Kaiser W, Steinerkaiser J (1983) Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature 301:707–709

    CAS  PubMed  Google Scholar 

  • Kas MJ, Edgar DM (1999) A nonphotic stimulus inverts the diurnal-nocturnal phase preference in Octodon degus. J Neurosci 19:328–333

    CAS  PubMed  Google Scholar 

  • Kattler H, Dijk DJ, Borbely AA (1994) Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res 3:159–164

    PubMed  Google Scholar 

  • Kavanau JL (1997) Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neuroscience 79:7–44

    CAS  PubMed  Google Scholar 

  • Keenan S, Hirshkowitz M (2011) Monitoring and staging human sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. Elsevier Saunders, St. Louis

    Google Scholar 

  • Kim Y, Laposky AD, Bergmann BM, Turek FW (2007) Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep. Proc Natl Acad Sci U S A 104:10697–10702

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kleitman N (1927) Studies on the physiology of sleep V: some experiments on puppies. Am J Physiol 84:386–395

    Google Scholar 

  • Krueger JM, Obal F (1993) A neuronal group theory of sleep function. J Sleep Res 2:63–69

    PubMed  Google Scholar 

  • Krueger JM, Obal F Jr, Fang J (1999) Why we sleep: a theoretical view of sleep function. Sleep Med Rev 3:119–129

    CAS  PubMed  Google Scholar 

  • Kurth S, Jenni OG, Riedner BA, Tononi G, Carskadon MA, Huber R (2010) Characteristics of sleep slow waves in children and adolescents. Sleep 33:475–480

    PubMed Central  PubMed  Google Scholar 

  • Lafont A (1870) Journal d’observation faites sur les animaux marins du Bassin d’Arcachon; pendant les années 1866, 1867, 1868

    Google Scholar 

  • Lancel M, van Riezen H, Glatt A (1991) Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat. Brain Res 548:206–214

    CAS  PubMed  Google Scholar 

  • Landolt HP, Dijk DJ, Gaus SE, Borbely AA (1995a) Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology 12:229–238

    CAS  PubMed  Google Scholar 

  • Landolt HP, Werth E, Borbely AA, Dijk DJ (1995b) Caffeine intake (200 mg) in the morning affects human sleep and EEG power spectra at night. Brain Res 675:67–74

    CAS  PubMed  Google Scholar 

  • Landolt HP, Dijk DJ, Achermann P, Borbely AA (1996) Effect of age on the sleep EEG: slow-wave activity and spindle frequency activity in young and middle-aged men. Brain Res 738:205–212

    CAS  PubMed  Google Scholar 

  • Larkin JE, Heller CH (1998) The disappearing slow wave activity of hibernators. Sleep Res Online 1:96–101

    CAS  PubMed  Google Scholar 

  • Lavie P, Scherson A (1981) Ultrashort sleep-waking schedule. 1. Evidence of ultradian rhythmicity in sleepability. Electroen Clin Neuro 52:163–174

    CAS  Google Scholar 

  • Leemburg S, Vyazovskiy VV, Olcese U, Bassetti CL, Tononi G, Cirelli C (2010) Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proc Natl Acad Sci U S A 107:15939–15944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manaceine M (1894) Quelques observations experimentales sur l’influence de l’insomnie absolue. Arch Ital Biol 21:322–325

    Google Scholar 

  • McCarley RW, Massaquoi SG (1992) Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J Sleep Res 1:132–137

    PubMed  Google Scholar 

  • McGinty D, Szymusiak R (1990) Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep. Trends Neurosci 13:480–487

    CAS  PubMed  Google Scholar 

  • McShane BB, Galante RJ, Biber M, Jensen ST, Wyner AJ, Pack AI (2012) Assessing REM sleep in mice using video data. Sleep 35:433–442

    PubMed Central  PubMed  Google Scholar 

  • Meddis R (1975) On the function of sleep. Anim Behav 23:676–691

    CAS  PubMed  Google Scholar 

  • Meerlo P, Pragt BJ, Daan S (1997) Social stress induces high intensity sleep in rats. Neurosci Lett 225:41–44

    CAS  PubMed  Google Scholar 

  • Meerlo P, Easton A, Bergmann BM, Turek FW (2001) Restraint increases prolactin and REM sleep in C57BL/6 J mice but not in BALB/cJ mice. Am J Physiol-Reg I 281:R846–R854

    CAS  Google Scholar 

  • Meerlo P, Westerveld P, Turek FW, Koehl M (2004) Effects of gamma-hydroxybutyrate (GHB) on vigilance states and EEG in mice. Sleep 27:899–904

    PubMed  Google Scholar 

  • Meerlo P, Sgoifo A, Suchecki D (2008) Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev 12:197–210

    PubMed  Google Scholar 

  • Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    CAS  PubMed  Google Scholar 

  • Miano S, Paolino MC, Castaldo R, Villa MP (2010) Visual scoring of sleep: a comparison between the Rechtschaffen and Kales criteria and the American Academy of Sleep Medicine criteria in a pediatric population with obstructive sleep apnea syndrome. Clin Neurophysiol 121:39–42

    PubMed  Google Scholar 

  • Moser D, Anderer P, Gruber G, Parapatics S, Loretz E, Boeck M, Kloesch G, Heller E, Schmidt A, Danker-Hopfe H, Saletu B, Zeitlhofer J, Dorffner G (2009) Sleep classification according to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. Sleep 32:139–149

    PubMed Central  PubMed  Google Scholar 

  • Mrosovsky N, Salmon PA, Vrang N (1998) Revolutionary science: an improved running wheel for hamsters. Chronobiol Int 15:147–158

    CAS  PubMed  Google Scholar 

  • Mukhametov LM, Supin AY, Polyakova IG (1977) Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res 134:581–584

    CAS  PubMed  Google Scholar 

  • Neckelmann D, Ursin R (1993) Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep 16:467–477

    CAS  PubMed  Google Scholar 

  • Novelli L, Ferri R, Bruni O (2010) Sleep classification according to AASM and Rechtschaffen and Kales: effects on sleep scoring parameters of children and adolescents. J Sleep Res 19:238–247

    PubMed  Google Scholar 

  • Obal F Jr, Krueger JM (2003) Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 8:d520–d550

    CAS  PubMed  Google Scholar 

  • Ocampo-Garces A, Molina E, Rodriguez A, Vivaldi EA (2000) Homeostasis of REM sleep after total and selective sleep deprivation in the rat. J Neurophysiol 84:2699–2702

    CAS  PubMed  Google Scholar 

  • Oleksenko AI, Mukhametov LM, Polyakova IG, Supin AY, Kovalzon VM (1992) Unihemispheric sleep deprivation in bottlenose dolphins. J Sleep Res 1:40–44

    PubMed  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95:8660–8664

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palchykova S, Deboer T, Tobler I (2002) Selective sleep deprivation after daily torpor in the Djungarian hamster. J Sleep Res 11:313–319

    PubMed  Google Scholar 

  • Parmeggiani PL, Agnati LF, Zamboni G, Cianci T (1975) Hypothalamic temperature during sleep cycle at different ambient-temperatures. Electroen Clin Neuro 38:589–596

    CAS  Google Scholar 

  • Pieron H (1913) Le Probleme Physiologique du Sommeil. Masson, Paris

    Google Scholar 

  • Pittioni B (1933) Ueber Schlafgesellschaften solitaerer Insekten. Verh Zool-Botan Ges 83:192–201

    Google Scholar 

  • Rampin C, Cespuglio R, Chastrette N, Jouvet M (1991) Immobilization stress induces a paradoxical sleep rebound in rat. Neurosci Lett 126:113–118

    CAS  PubMed  Google Scholar 

  • Rattenborg NC, Martinez-Gonzalez D, Lesku JA (2009) Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds. Neurosci Biobehav R 33:253–270

    Google Scholar 

  • Rau P (1938) Additional observation on the sleep of insects. Ann Ent Soc Am 13:540–556

    Google Scholar 

  • Rau P, Rau N (1916) The sleep of insects. An ecological study. Ann Ent Soc Am 13:227–274

    Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques an scoring system of sleep stages in human subjects. Brain information service/Brain research institute, University of California, Los Angeles

    Google Scholar 

  • Retey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP (2005) A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A 102:15676–15681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosa RR, Bonnet MH (1985) Sleep stages, auditory arousal threshold, and body-temperature as predictors of behavior upon awakening. Int J Neurosci 27:73–83

    CAS  PubMed  Google Scholar 

  • Roussel B, Turrillot P, Kitahama K (1984) Effect of ambient-temperature on the sleep-waking cycle in 2 strains of mice. Brain Res 294:67–73

    CAS  PubMed  Google Scholar 

  • Rusterholz T, Achermann P (2011) Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neurosci 12:84

    PubMed Central  PubMed  Google Scholar 

  • Sanford LD, Yang LH, Wellman LL, Liu XL, Tang XD (2010) Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep 33:621–630

    PubMed Central  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    CAS  PubMed  Google Scholar 

  • Sauer S, Herrmann E, Kaiser W (2004) Sleep deprivation in honey bees. J Sleep Res 13:145–152

    PubMed  Google Scholar 

  • Schaul N, Gloor P, Ball G, Gotman J (1978) The electromicrophysiology of delta waves induced by systemic atropine. Brain Res 143:475–486

    CAS  PubMed  Google Scholar 

  • Schwierin B, Borbely AA, Tobler I (1996) Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eur J Pharmacol 300:163–171

    CAS  PubMed  Google Scholar 

  • Sharplin J (1963) Choice of resting stie by notuoidea (Lepidoptera). Ent Mon Mag 99:53–62

    Google Scholar 

  • Shaw P (2003) Awakening to the behavioral analysis of sleep in Drosophila. J Biol Rhythms 18:4–11

    PubMed  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837

    CAS  PubMed  Google Scholar 

  • Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264–1271

    CAS  PubMed  Google Scholar 

  • Siegel JM (2009) Sleep viewed as a state of adaptive inactivity. Nat Rev Neurosci 10:747–753

    CAS  PubMed  Google Scholar 

  • Spiegel K, Tasali E, Leproult R, Van Cauter E (2009) Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocr 5:253–261

    CAS  Google Scholar 

  • Stickgold R (2013) Parsing the role of sleep in memory processing. Curr Opin Neurobiol 23:847–853

    Google Scholar 

  • Strijkstra AM, Daan S (1998) Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator. Am J Physiol 275:R1110–R1117

    CAS  PubMed  Google Scholar 

  • Strumwasser F (1971) The cellular basis of behavior in Aplysia. J Psychiatr Res 8:237–257

    CAS  PubMed  Google Scholar 

  • Szentirmai E, Krueger JM (2006) Obestatin alters sleep in rats. Neurosci Lett 404:222–226

    CAS  PubMed  Google Scholar 

  • Tafti M, Franken P (2002) Invited review: genetic dissection of sleep. J Appl Physiol 92:1339–1347

    PubMed  Google Scholar 

  • Timofeev I, Bazhenov M, Seigneur J, Sejnowski T (2012) Neuronal synchronization and thalamocortical rhythms in sleep, wake and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper's basic mechanisms of the epilepsies 4th edition. NCBI, pp 1–24

    Google Scholar 

  • Tobler I (1984) Evolution of the sleep process: a phylogenetic approach. Exp Brain Res Suppl 8:207–226

    Google Scholar 

  • Tobler I, Borbely AA (1986) Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol 64:74–76

    CAS  PubMed  Google Scholar 

  • Tobler I, Borbely AA (1988) Sleep and Eeg Spectra in the Pigeon (Columba, Livia) under Baseline Conditions and after Sleep-Deprivation. J Comp Physiol A 163:729–738

    Google Scholar 

  • Tobler I, Jaggi K (1987) Sleep and EEG spectra in the Syrian hamster (Mesocricetus auratus) under baseline conditions and following sleep deprivation. J Comp Physiol A 161:449–459

    CAS  PubMed  Google Scholar 

  • Tobler I, Neuner-Jehle M (1992) 24-h variation of vigilance in the cockroach Blaberus giganteus. J Sleep Res 1:231–239

    PubMed  Google Scholar 

  • Tobler I, Stalder J (1988) Rest in the scorpion—a sleep-like state? J Comp Physiol A 163:227–235

    Google Scholar 

  • Tobler I, Franken P, Alfoldi P, Borbely AA (1994) Room light impairs sleep in the albino rat. Behav Brain Res 63:205–211

    CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150

    PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  • Trachsel L, Edgar DM, Heller HC (1991) Are ground squirrels sleep deprived during hibernation? Am J Physiol 260:R1123–R1129

    CAS  PubMed  Google Scholar 

  • Valatx JL, Bugat R, Jouvet M (1972) Genetic studies of sleep in mice. Nature 238:226–227

    CAS  PubMed  Google Scholar 

  • van Oort BE, Tyler NJ, Gerkema MP, Folkow L, Blix AS, Stokkan KA (2005) Circadian organization in reindeer. Nature 438:1095–1096

    PubMed  Google Scholar 

  • Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ, von Schantz M, Dijk DJ (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618

    CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Tobler I (2008) Handedness leads to interhemispheric EEG asymmetry during sleep in the rat. J Neurophysiol 99:969–975

    CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Welker E, Fritschy JM, Tobler I (2004) Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur J Neurosci 20:1363–1370

    PubMed  Google Scholar 

  • Vyazovskiy VV, Ruijgrok G, Deboer T, Tobler I (2006) Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb Cortex 16:328–336

    PubMed  Google Scholar 

  • Vyazovskiy VV, Achermann P, Tobler I (2007) Sleep homeostasis in the rat in the light and dark period. Brain Res Bull 74:37–44

    CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werth E, Achermann P, Borbely AA (1996a) Brain topography of the human sleep EEG: antero-posterior shifts of spectral power. NeuroReport 8:123–127

    CAS  PubMed  Google Scholar 

  • Werth E, Dijk DJ, Achermann P, Borbely AA (1996b) Dynamics of the sleep EEG after an early evening nap: experimental data and simulations. Am J Physiol 271:R501–R510

    CAS  PubMed  Google Scholar 

  • Werth E, Achermann P, Borbely AA (1997) Fronto-occipital EEG power gradients in human sleep. J Sleep Res 6:102–112

    CAS  PubMed  Google Scholar 

  • Williams HL, Lubin A, Daly RL, Hammack JT, Dement WC (1964) Responses to auditory stimulation sleep loss + EEG stages of sleep. Electroen Clin Neuro 16:269–279

    CAS  Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    CAS  PubMed  Google Scholar 

  • Yasenkov R, Deboer T (2010) Circadian regulation of sleep and the sleep EEG under constant sleep pressure in the rat. Sleep 33:631–641

    PubMed Central  PubMed  Google Scholar 

  • Yasenkov R, Deboer T (2012) Circadian modulation of sleep in rodents. Prog Brain Res 199:203–218

    CAS  PubMed  Google Scholar 

  • Young R (1935) Sleep aggregations of the beetle, Altica Bimarginata. Science 81:435–436

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Deboer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deboer, T. (2013). Behavioral and Electrophysiological Correlates of Sleep and Sleep Homeostasis. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2013_248

Download citation

Publish with us

Policies and ethics