Skip to main content

Large Animal Models of Huntington’s Disease

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 22))

Abstract

Huntington’s disease is caused by the expansion of a polyglutamine repeat (> 37 glutamines) in the disease protein huntingtin, which results in preferential neuronal loss in distinct brain regions. Mutant huntingtin causes late-onset neurological symptoms in patients in middle life, though the expression of mutant huntingtin is ubiquitous from early life. Thus, it is important to understand why mutant huntingtin selectively causes neuronal loss in an age-dependent manner. Transgenic animal models have been essential tools for uncovering the pathogenesis and therapeutic targets of neurodegenerative diseases. Genetic mouse models have been investigated extensively and have revealed the common pathological hallmark of age-dependent formation of aggregates or inclusions consisting of misfolded proteins. However, most genetic mouse models lack striking neurodegeneration that has been found in patient brains. Since there are considerable species differences between small and large animals, large animal models of Huntington’s disease may allow one to identify the pathological features that are more similar to those in patients and also help uncover more effective therapeutic targets. This chapter will focus on the important findings from large animal models of Huntington’s disease and discusses the use of large animal models to investigate the pathogenesis of Huntington’s disease and develop new therapeutic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baxa M, Hruska-Plochan M, Juhas S, Vodicka P, Pavlok A, Juhasova J, Miyanohara A, Nejime T, Klima J, Macakova M, Marsala S, Weiss A, Kubickova S, Musilova P, Vrtel R, Sontag EM, Thompson LM, Schier J, Hansikova H, Howland DS, Cattaneo E, DiFiglia M, Marsala M, Motlik J (2013) A transgenic minipig model of huntington’s disease. J Huntington Dis 2:47–68

    CAS  Google Scholar 

  • Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A 106:22480–22485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan AW, Chong KY, Martinovich C, Simerly C, Schatten G (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291:309–312

    Article  CAS  PubMed  Google Scholar 

  • Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AW, Chen CM, and Yang SH (2013). miR-196a Ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet. In press.

    Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66:646–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  PubMed  Google Scholar 

  • Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH, Tao J, Yamazaki I, Li SH, Sun YE et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gusella JF, MacDonald ME, Ambrose CM, Duyao MP (1993) Molecular genetics of Huntington’s disease. Arch Neurol 50:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534

    CAS  PubMed  Google Scholar 

  • Harjes P, Wanker EE (2003) The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 28:425–433

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen JC, Bawden CS, Rudiger SR, McLaughlan CJ, Reid SJ, Waldvogel HJ, MacDonald ME, Gusella JF, Walker SK, Kelly JM et al (2010) An ovine transgenic Huntington’s disease model. Hum Mol Genet 19:1873–1882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LaFerla, FM, and Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harb Perspect Med 2

    Google Scholar 

  • Lai L, Prather RS (2003) Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5:233–241

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Dawson VL, and Dawson TM (2012) Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med 2

    Google Scholar 

  • Li SH, Li XJ (1998) Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum Mol Genet 7:777–782

    Article  CAS  PubMed  Google Scholar 

  • Li SH, Li XJ (2004) Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154

    Article  PubMed  Google Scholar 

  • Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren S, Li XJ, Albin RL, Detloff PJ (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137–144

    Article  CAS  PubMed  Google Scholar 

  • Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK (2007) The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 31:728–751

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama N, Hadano S, Onoe K, Osuga H, Showguchi-Miyata J, Gondo Y, Ikeda JE (2000) Identification and characterization of the miniature pig Huntington’s disease gene homolog: evidence for conservation and polymorphism in the CAG triplet repeat. Genomics 69:72–85

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    Article  CAS  PubMed  Google Scholar 

  • Menalled LB, Sison JD, Wu Y, Olivieri M, Li XJ, Li H, Zeitlin S, Chesselet MF (2002) Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice. J Neurosci 22:8266–8276

    CAS  PubMed  Google Scholar 

  • Niu Y, Yu Y, Bernat A, Yang S, He X, Guo X, Chen D, Chen Y, Ji S, Si W et al (2010) Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc Natl Acad Sci U S A 107:17663–17667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Ann Rev Neurosci 30:575–621

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A 91:5355–5358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin ZH, Gu ZL (2004) Huntingtin processing in pathogenesis of Huntington disease. Acta Pharmacol Sin 25:1243–1249

    CAS  PubMed  Google Scholar 

  • Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

    Article  CAS  PubMed  Google Scholar 

  • Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA et al (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23:720–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda JE, Imai H (2001) Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res 10:577–582

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  PubMed  Google Scholar 

  • Wang CE, Tydlacka S, Orr AL, Yang SH, Graham RK, Hayden MR, Li S, Chan AW, Li XJ (2008) Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington’s disease. Hum Mol Genet 17:2738–2751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ, Li SH, Yi H, Vonsattel JP, Gusella JF et al (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9:503–513

    Article  CAS  PubMed  Google Scholar 

  • Woodman B, Butler R, Landles C, Lupton MK, Tse J, Hockly E, Moffitt H, Sathasivam K, Bates GP (2007) The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull 72:83–97

    Article  CAS  PubMed  Google Scholar 

  • Xu QQ, Huang SS, Song M, Wang CE, Yan S, Liu XD, Gaetig MA, Yu SP, Li H, Li S, Li X-J (2013) Synaptic mutant Huntingtin inhibits synapsin-1 phosphorylation and causes neurological symptoms. J Cell Biol. In press

    Google Scholar 

  • Yang D, Wang CE, Zhao B, Li W, Ouyang Z, Liu Z, Yang H, Fan P, O’Neill A, Gu W et al (2010) Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19:3983–3994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J et al (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Cao F, Wang Z, Yu ZX, Nguyen HP, Evans J, Li SH, Li XJ (2003) Huntingtin forms toxic NH2-terminal fragment complexes that are promoted by the age-dependent decrease in proteasome activity. J Cell Biol 163:109–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants NS036232, AG019206, NS041669 for X.J.L., and AG031153 for S.H.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, XJ., Li, S. (2013). Large Animal Models of Huntington’s Disease. In: Nguyen, H., Cenci, M. (eds) Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease. Current Topics in Behavioral Neurosciences, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2013_246

Download citation

Publish with us

Policies and ethics