Skip to main content

Prolonged Running, not Fluoxetine Treatment, Increases Neurogenesis, but does not Alter Neuropathology, in the 3xTg Mouse Model of Alzheimer’s Disease

  • Chapter
  • First Online:
Neurogenesis and Neural Plasticity

Abstract

Reductions in adult neurogenesis have been documented in the original 3xTg mouse model of Alzheimer’s disease (AD), notably occurring at the same age when spatial memory deficits and amyloid plaque pathology appeared. As this suggested reduced neurogenesis was associated with behavioral deficits, we tested whether activity and pharmacological stimulation could prevent memory deficits and modify neurogenesis and/or neuropathology in the 3xTg model backcrossed to the C57Bl/6 strain. We chronically administered the antidepressant fluoxetine to one group of mice, allowed access to a running wheel in another, and combined both treatments in a third cohort. All treatments lasted for 11 months. The female 3xTg mice failed to exhibit any deficits in spatial learning and memory as measured in the Morris water maze, indicating that when backcrossed to the C57Bl/6 strain, the 3xTg mice lost the behavioral phenotype that was present in the original 3xTg mouse maintained on a hybrid background. Despite this, the backcrossed 3xTg mice expressed prominent intraneuronal amyloid beta (Aβ) levels in the cortex and amygdala, with lower levels in the CA1 area of the hippocampus. In the combined cohort, fluoxetine treatment interfered with exercise and reduced the total distance run. The extent of Aβ neuropathology, the tau accumulations, or BDNF levels, were not altered by prolonged exercise. Thus, neuropathology was present but not paralleled by spatial memory deficits in the backcrossed 3xTg mouse model of AD. Prolonged exercise for 11 months did improve the long-term survival of newborn neurons generated during middle-age, whereas fluoxetine had no effect. We further review and discuss the relevant literature in this respect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25(22):5446–5454

    Article  PubMed  CAS  Google Scholar 

  • Bayer TA, Wirths O (2010) Intracellular accumulation of amyloid-Beta—a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci 2:8

    PubMed  CAS  Google Scholar 

  • Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688

    Google Scholar 

  • Boekhoorn K, Joels M, Lucassen PJ (2006a) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 24(1):1–14

    Google Scholar 

  • Boekhoorn K, Terwel D, Biemans B, Borghgraef P, Wiegert O et al (2006b) Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy. J Neurosci 26(13):3514–3523

    Article  PubMed  CAS  Google Scholar 

  • Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, Mann JJ, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34(11):2376–2389

    Google Scholar 

  • Brocco M, Dekeyne A, Veiga S, Girardon S, Millan MJ (2002) Induction of hyperlocomotion in mice exposed to a novel environment by inhibition of serotonin reuptake. A pharmacological characterization of diverse classes of antidepressant agents. Pharmacol biochem behav 71(4):667–680

    Google Scholar 

  • Brown J, Cooper-Kuhn CM, Kempermann G, van Praag H, Winkler J, Gage FH et al (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17(10):2042–2046

    Article  PubMed  Google Scholar 

  • Cai Y, Zhang X-M, Macklin LN, Cai H, Luo X-G, Oddo S et al (2012) BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer’s disease: differential Aβ antibody labeling of early-onset axon terminal pathology. Neurotox Res 21(2):160–174

    Article  PubMed  Google Scholar 

  • Chadwick W, Mitchell N, Caroll J, Zhou Y, Park S-S, Wang L et al (2011) Amitriptyline-mediated cognitive enhancement in aged 3xTg Alzheimer’s disease mice is associated with neurogenesis and neurotrophic activity. PLoS One 6(6):e21660

    Article  PubMed  CAS  Google Scholar 

  • Christensen DZ, Bayer TA, Wirths O (2009) Formic acid is essential for immunohistochemical detection of aggregated intraneuronal Abeta peptides in mouse models of Alzheimer’s disease. Brain Res 1301:116–125

    Google Scholar 

  • Christensen DZ, Schneider-Axmann T, Lucassen PJ, Bayer TA, Wirths O (2010) Accumulation of intraneuronal Abeta correlates with ApoE4 genotype. Acta Neuropathol 119(5):555–566

    Article  PubMed  CAS  Google Scholar 

  • Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S et al (2007) Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis 28(1):76–82

    Article  PubMed  CAS  Google Scholar 

  • Couillard-Despres S et al (2009). Ageing abolishes the effects of fluoxetine on Neurogenesis. Mol Psychiatry 14:856–864

    Google Scholar 

  • Ermini FV, Grathwohl S, Radde R, Yamaguchi M, Staufenbiel M, Palmer TD et al (2008) Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. Am J Pathol 172(6):1520–1528

    Article  PubMed  CAS  Google Scholar 

  • Fuster-Matanzo A, Llorens-Martín M, Jurado-Arjona J, Avila J, Hernández F (2012) Tau protein and adult hippocampal neurogenesis. Front Neurosci 6:104

    Article  PubMed  CAS  Google Scholar 

  • Gan L, Qiao S, Lan X, Chi L, Luo C, Lien L et al (2008) Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer’s disease like transgenic (pPDGF-APPSw, Ind) mice. Neurobiol Dis 29(1):71–80

    Article  PubMed  CAS  Google Scholar 

  • García-Mesa Y, López-Ramos JC, Giménez-Llort L, Revilla S, Guerra R, Gruart A et al (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24(3):421–454

    PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8(1):159–168

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Vanmechelen E (1995) Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci lett 189(3):167–169

    Google Scholar 

  • Götz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9(7):532–544

    Article  PubMed  Google Scholar 

  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F et al (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119(5):523–541

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M et al (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18

    Article  PubMed  Google Scholar 

  • Kempermann G (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci 31(4):163–169

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A et al (2010) Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci. 4:189

    Article  PubMed  Google Scholar 

  • Kuhn HG, Cooper-Kuhn CM, Boekhoorn K, Lucassen PJ (2007) Changes in neurogenesis in dementia and Alzheimer mouse models: are they functionally relevant? Eur Arch Psychiatry Clin Neurosci 257(5):281–289

    Article  PubMed  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  PubMed  CAS  Google Scholar 

  • Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S, Iqbal K, Grundke-Iqbal I (2008) Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 67(1):78–84

    Article  PubMed  CAS  Google Scholar 

  • Llorens-Martin M, Teixeira CM, Fuster-Matanzo A, Jurado-Arjona J, Borrell V, Soriano E, Avila J, Hernández F (2012) Tau isoform with three microtubule binding domains is a marker of new axons generated from the subgranular zone in the hippocampal dentate gyrus: implications for Alzheimer’s disease. J Alzheimers Dis 29(4):921–930

    PubMed  CAS  Google Scholar 

  • Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czéh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol 20(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Lucassen PJ, Stumpel M, Wang Q, Aronica E (2010a) Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 58:940–949

    Google Scholar 

  • Marlatt MW, Lucassen PJ (2010) Neurogenesis and dementia: biology and pathophysiology of mice and men. Curr Alzheimer’s Res 7(2):113–125

    Article  CAS  Google Scholar 

  • Marlatt MW, Lucassen PJ, Van Praag H (2010) Side by side comparison of effects of running and antidepressants on neurogenesis in mice. Brain Res 1341:93–99

    Article  PubMed  CAS  Google Scholar 

  • Marlatt MW, Potter MC, Lucassen PJ, van Praag H (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis and BDNF levels in female C57Bl/6 J mice. Dev Neurobiol. doi:10.1002/dneu.22009

    PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  PubMed  CAS  Google Scholar 

  • Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 22(6):85

    Article  Google Scholar 

  • Navailles S et al (2008) Antidepressant drug-induced stimulation of mouse hippocampal neurogenesis is age-dependent and altered by early life stress. J Comp Neurol 509:372–381

    Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373(6510):109

    Google Scholar 

  • Nelson RL, Guo Z, Halagappa VM, Pearson M, Gray AJ, Matsuoka Y et al (2007) Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3xTgAD mice. Exp Neurol 205(1):166–176

    Article  PubMed  CAS  Google Scholar 

  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kövari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71(5):362–381

    Article  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8):1063–1070

    Article  CAS  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R et al (2003b) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    Google Scholar 

  • Oitzl MS, Fluttert M, Sutanto W, de Kloet ER (1998) Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. Eur J neurosci 10(12):3759–3766

    Google Scholar 

  • Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK (2008) The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective. Behav Brain Res 192(1):42–60

    Google Scholar 

  • Prinssen EP, Ballard TM, Kolb Y, Nicolas LB (2006) The effects of serotonin reuptake inhibitors on locomotor activity in gerbils. Pharmacol Biochem Behav 85(1):44–49

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, LaFerla FM et al (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One 3(8):e2935

    Article  PubMed  Google Scholar 

  • Rodriguez JJ, Noristani HN, Olabarria M, Fletcher J, Somerville TDD, Yeh CY et al (2011) Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 8(7):707–717

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM, Herdener N, Camandola S, Texel SJ, Mughal MR, Cong WN et al (2012) 3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress. Neurobiol Aging 33(4):830, e1−12

    Google Scholar 

  • Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW (2000) Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101(2):305–312

    Article  PubMed  CAS  Google Scholar 

  • Schaaf MJ, Sibug RM, Duurland R, Fluttert MF, Oitzl MS, de Kloet ER et al (1999) Corticosterone effects on BDNF mRNA expression in the rat hippocampus during Morris water maze training. Stress 3(2):173–183

    Article  PubMed  CAS  Google Scholar 

  • Schindowski K, Belarbi K, Bretteville A, Ando K, Buee L (2008) Neurogenesi and cell cycle-reactivated neuronal death during pathogenic tau aggregation. Genes Brain Behav 7(Suppl 1):92–100

    PubMed  CAS  Google Scholar 

  • Sennvik K, Boekhoorn K, Lasrado R, Terwel D, Verhaeghe S, Korr H et al (2007) Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice. FASEB J 21(9):2149–2161

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    Article  PubMed  CAS  Google Scholar 

  • Thompson A, Boekhoorn K, van Dam AM, Lucassen PJ (2008) Changes in adult neurogenesis in neurodegenerative diseases; cause or consequence? Genes Brain Behav 7:28–42

    Google Scholar 

  • Tucker S, Ahl M, Bush A, Westaway D, Huang X, Rogers JT (2005) Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimer’s “APP 5” untranslated region. Curr Alzheimer Res 2(2):249–254

    Article  PubMed  CAS  Google Scholar 

  • van der Borght K, Kobor-Nyakas DE, Klauke K, Eggen BJ, Nyakas C, van der Zee EA et al (2009) Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus 19(10):928–936

    Article  PubMed  Google Scholar 

  • van Dooren T, Dewachter I, Borghgraef P, van Leuven F (2005) Transgenic mouse models for APP processing and Alzheimer’s disease: early and late defects. Subcell Biochem 38:45–63

    Article  PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999a) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Nat Acad Sci U S A 96(23):13427–13431

    Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999b) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270

    Article  Google Scholar 

  • van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685

    Google Scholar 

  • Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CMF, Wouda J, van Dam AM et al (2007) Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 130:3321–3335

    Google Scholar 

  • Wang R, Dineley KT, Sweatt JD, Zheng H (2004) Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126(2):305–312

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Talmon S, Schulze I, Boeddinghaus C, Gross G, Schoemaker H et al (2009) Running wheel activity is sensitive to acute treatment with selective inhibitors for either serotonin or norepinephrine reuptake. Psychopharmacology 203(4):753–762

    Article  PubMed  CAS  Google Scholar 

  • Wen PH, Shao X, Shao Z, Hof PR, Wisniewski T, Kelley K et al (2002) Overexpression of wild type but not an FAD mutant presenilin-1 promotes neurogenesis in the hippocampus of adult mice. Neurobiol Dis 10(1):8–19

    Google Scholar 

  • Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG et al (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188(2):224–237

    Article  PubMed  CAS  Google Scholar 

  • Wirths O, Multhaup G, Bayer TA (2004) A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide–the first step of a fatal cascade. J Neurochem 91(3):513–520

    Article  PubMed  CAS  Google Scholar 

  • Wirths O, Dins A, Bayer TA (2012) AβPP Accumulation and/or Intraneuronal Amyloid-β Accumulation? The 3xTg-AD Mouse Model Revisited. J Alzheimers Dis 28(4):897−904

    PubMed  CAS  Google Scholar 

  • Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M et al (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60(12):1314–1323

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, McNeil E, Dressler L, Siman R (2007) Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol 204(1):77–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institute on Aging (NIA), Intramural Research Program. We thank Dr. Mark Mattson (NIA) for providing the 3xTg mice. MM, TAB, and PJL are supported by the EU (NEURAD consortium). MM and PJL are supported by ISAO. PJL is further supported by the Dutch Brain Foundation, by the International Parkinson Foundation IPF, and by the Netherlands Organization for Scientific Research NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Lucassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marlatt, M.W., Potter, M.C., Bayer, T.A., van Praag, H., Lucassen, P.J. (2013). Prolonged Running, not Fluoxetine Treatment, Increases Neurogenesis, but does not Alter Neuropathology, in the 3xTg Mouse Model of Alzheimer’s Disease. In: Belzung, C., Wigmore, P. (eds) Neurogenesis and Neural Plasticity. Current Topics in Behavioral Neurosciences, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2012_237

Download citation

Publish with us

Policies and ethics