Skip to main content

Repair of the CNS Using Endogenous and Transplanted Neural Stem Cells

  • Chapter
  • First Online:
Neurogenesis and Neural Plasticity

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 15))

Abstract

Restoration of the damaged central nervous system is a vast challenge. However, there is a great need for research into this topic, due to the prevalence of central nervous system disorders and the devastating impact they have on people’s lives. A number of strategies are being examined to achieve this goal, including cell replacement therapy, enhancement of endogenous plasticity and the recruitment of endogenous neurogenesis. The current chapter reviews this topic within the context of Parkinson’s disease, Huntington’s disease and stroke. For each disease exogenous cell therapies are discussed including primary (foetal) cell transplants, neural stem cells, induced pluripotent stem cells and marrow stromal cells. This chapter highlights the different mechanistic approaches of cell replacement therapy versus cells that deliver neurotropic factors, or enhance the endogenous production of these factors. Evidence of exogenously transplanted cells functionally integrating into the host brain, replacing cells, and having a behavioural benefit are discussed, along with the ability of some cell sources to stimulate endogenous neuroprotective and restorative events. Alongside exogenous cell therapy, the role of endogenous neurogenesis in each of the three diseases is outlined and methods to enhance this phenomenon are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

bNGF:

Nerve growth factor beta

DA:

Dopamine

DAergic:

Dopaminergic

ESCs:

Embryonic stem cells

FGF:

Fibroblast growth factor

GDNF:

Glial cell line-derived growth factor

GE:

Ganglionic eminence

HD:

Huntington’s disease

iNs:

Induced neural stem cells

iPSCs:

Induced pluripotent stem cells

L-DOPA:

L-dihydroxyphenylalanine

MPTP:

1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

MSCs:

Mesenchymal stem cells

NSCs:

Neural stem cells

PD:

Parkinson’s disease

SGZ:

Subgranular zone

SN:

Substantia nigra

SVZ:

Subventricular zone

TH:

Tyrosine hydroxylase

VEGF:

Vascular endothelial growth factor

VM:

Ventral mesencephalon

References

  • Abrous DN, Torres EM, Dunnett SB (1993) Dopaminergic grafts implanted into the neonatal or adult striatum: comparative effects on rotation and paw reaching deficits induced by subsequent unilateral nigrostriatal lesions in adulthood. Neuroscience 54:657–668

    PubMed  CAS  Google Scholar 

  • Aihara N, Mizukawa K, Koide K, Mabe H, Nishino H (1994) Striatal grafts in infarct striatopallidum increase GABA release, reorganize GABAA receptor and improve water-maze learning in the rat. Brain Res Bull 33:483–488

    PubMed  CAS  Google Scholar 

  • Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596

    PubMed  CAS  Google Scholar 

  • Alonso-Frech F, Sanahuja JJ, Rodriguez AM (2011) Exercise and physical therapy in early management of Parkinson disease. Neurologist 17:S47–S53

    PubMed  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    PubMed  CAS  Google Scholar 

  • Andrews EM, Tsai S-Y, Johnson SC, Farrer JR, Wagner JP, Kopen GC, Kartje GL (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211:588–592

    PubMed  CAS  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    PubMed  CAS  Google Scholar 

  • Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105:16707–16712

    PubMed  CAS  Google Scholar 

  • Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B, Boisse MF, Grandmougin T, Jeny R, Bartolomeo P, Dalla BG, Degos JD, Lisovoski F, Ergis AM, Pailhous E, Cesaro P, Hantraye P, Peschanski M (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356:1975–1979

    PubMed  CAS  Google Scholar 

  • Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ, Bourdet C, Remy P, Cesaro P, Hantraye P, Peschanski M (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309

    PubMed  Google Scholar 

  • Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Jametti LP, Kilic E, Kilic U, Salani G, Brambilla E, West MJ, Comi G, Martino G, Hermann DM (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain J Neurol 132:2239–2251

    Google Scholar 

  • Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20:575–579

    PubMed  Google Scholar 

  • Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells (Dayton, Ohio) 22:1246–1255

    Google Scholar 

  • Benowitz LI, Carmichael ST (2010) Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 37:259–266

    PubMed  Google Scholar 

  • Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349

    PubMed  CAS  Google Scholar 

  • Björklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 199:307–333

    PubMed  Google Scholar 

  • Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science (New York) 283:534–537

    Google Scholar 

  • Bjugstad KB, Zawada WM, Goodman S, Freed CR (2001) IGF-1 and bFGF reduce glutaric acid and 3-hydroxyglutaric acid toxicity in striatal cultures. J Inherit Metab Dis 24:631–647

    PubMed  CAS  Google Scholar 

  • Boy S, Sauerbruch S, Kraemer M, Schormann T, Schlachetzki F, Schuierer G, Luerding R, Hennemann B, Orso E, Dabringhaus A, Winkler J, Bogdahn U (2011) Mobilisation of hematopoietic CD34+ precursor cells in patients with acute stroke is safe—results of an open-labeled non randomized phase I/II trial. PloS One 6:e23099

    PubMed  CAS  Google Scholar 

  • Brasted PJ, Watts C, Torres EM, Robbins TW, Dunnett SB (2000) Behavioral recovery after transplantation into a rat model of Huntington’s disease: dependence on anatomical connectivity and extensive postoperative training. Behav Neurosci 114:431–436

    PubMed  CAS  Google Scholar 

  • Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson PS, Li J-Y (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells (Dayton, Ohio) 24:1433–1440

    Google Scholar 

  • Bühnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, Dihné M (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129:3238–3248

    PubMed  Google Scholar 

  • Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L (2010) Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 19:1017–1023

    PubMed  CAS  Google Scholar 

  • Chari S, Quraishi SH, Jainer AK (2003) Fluoxetine-induced exacerbation of chorea in Huntington’s disease? A case report. Pharmacopsychiatry 36:41–43

    PubMed  CAS  Google Scholar 

  • Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003a) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    PubMed  CAS  Google Scholar 

  • Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003b) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699

    PubMed  CAS  Google Scholar 

  • Chen S-J, Chang C-M, Tsai S-K, Chang Y-L, Chou S-J, Huang S–S, Tai L-K, Chen Y-C, Ku H–H, Li H-Y, Chiou S-H (2010) Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev 19:1757–1767

    PubMed  CAS  Google Scholar 

  • Chen J, Ye X, Yan T, Zhang C, Yang X-P, Cui X, Cui Y, Zacharek A, Roberts C, Liu X, Dai X, Lu M, Chopp M (2011) Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke 42:3551–3558

    PubMed  Google Scholar 

  • Cho S-R, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman SA (2007) Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest 117:2889–2902

    PubMed  CAS  Google Scholar 

  • Cho MS, Lee Y-E, Kim JY, Chung S, Cho YH, Kim D-S, Kang S-M, Lee H, Kim M-H, Kim J-H, Leem JW, Oh SK, Choi YM, Hwang D-Y, Chang JW, Kim D-W (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105:3392–3397

    PubMed  CAS  Google Scholar 

  • Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlström H, Lendahl U, Frisén J (2000) Generalized potential of adult neural stem cells. Science (New York, NY) 288:1660–1663

    Google Scholar 

  • Como PG, Rubin AJ, O’Brien CF, Lawler K, Hickey C, Rubin AE, Henderson R, McDermott MP, McDermott M, Steinberg K, Shoulson I (1997) A controlled trial of fluoxetine in nondepressed patients with Huntington’s disease. Mov Disord 12:397–401

    PubMed  CAS  Google Scholar 

  • Coronas V, Bantubungi K, Fombonne J, Krantic S, Schiffmann SN, Roger M (2004) Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. J Neurochem 91:1292–1301

    PubMed  CAS  Google Scholar 

  • Cragg SJ, Clarke DJ, Greenfield SA (2000) Real-time dynamics of dopamine released from neuronal transplants in experimental Parkinson’s disease. Exp Neurol 164:145–153

    PubMed  CAS  Google Scholar 

  • Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260

    PubMed  CAS  Google Scholar 

  • Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, Savant-Bhonsale S, Chopp M (2007) Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells (Dayton, Ohio) 25:2777–2785

    Google Scholar 

  • Curtis MA, Penney EB, Pearson AG, Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci U S A 100:9023–9027

    PubMed  CAS  Google Scholar 

  • Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3:e1644

    Google Scholar 

  • Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag A-L, Schaar B, Malenka RC, Palmer TD, Steinberg GK (2009) Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant 18:815–826

    Google Scholar 

  • Dahlqvist P, Zhao L, Johansson IM, Mattsson B, Johansson BB, Seckl JR, Olsson T (1999) Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats. Neuroscience 93:527–535

    PubMed  CAS  Google Scholar 

  • Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26:605–614

    PubMed  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    PubMed  CAS  Google Scholar 

  • Diaz J, Ridray S, Mignon V, Griffon N, Schwartz JC, Sokoloff P (1997) Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci 17:4282–4292

    PubMed  CAS  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    PubMed  CAS  Google Scholar 

  • Döbrössy M, Busse M, Piroth T, Rosser A, Dunnett S, Nikkhah G (2010) Neurorehabilitation with neural transplantation. Neurorehabil Neural Repair 24:692–701

    PubMed  Google Scholar 

  • Donaldson AE, Marshall CE, Yang M, Suon S, Iacovitti L (2005) Purified mouse dopamine neurons thrive and function after transplantation into brain but require novel glial factors for survival in culture. Mol Cell Neurosci 30:601–610

    PubMed  CAS  Google Scholar 

  • Doty RL (2012) Olfactory dysfunction in parkinson disease. Nature Rev Neurol 8:329–339

    CAS  Google Scholar 

  • Dowd E, Dunnett SB (2004) Deficits in a lateralized associative learning task in dopamine-depleted rats with functional recovery by dopamine-rich transplants. Eur J Neurosci 20:1953–1959

    PubMed  Google Scholar 

  • Duan W, Guo Z, Jiang H, Ladenheim B, Xu X, Cadet JL, Mattson MP (2004) Paroxetine retards disease onset and progression in Huntingtin mutant mice. Ann Neurol 55:590–594

    PubMed  CAS  Google Scholar 

  • Duan W, Peng Q, Masuda N, Ford E, Tryggestad E, Ladenheim B, Zhao M, Cadet JL, Wong J, Ross CA (2008) Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington’s disease. Neurobiol Dis 30:312–322

    PubMed  CAS  Google Scholar 

  • Dunn E (1917) Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J Comp Neurol 27:565–582

    Google Scholar 

  • Dunnett SB (2010) Neural transplantation. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology/history of neurology. Elsevier B.V., Amsterdam, pp 885–912

    Google Scholar 

  • Dunnett SB, Björklund A (2010) Transplantation of dopamine neurons: extent and mechanisms of functional recovery in rodent models of Parkinson’s disease. In: Iversen LL, Iversen SD, Dunnett SB, Björklund A (eds) Dopamine handbook. Oxford University Press, New York, pp 454–477

    Google Scholar 

  • Dunnett SB, Bjorklund A, Schmidt RH, Stenevi U, Iversen SD (1983) Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand Suppl 522:39–47

    PubMed  CAS  Google Scholar 

  • Dunnett SB, Whishaw IQ, Rogers DC, Jones GH (1987) Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Res 415:63–78

    PubMed  CAS  Google Scholar 

  • Dunnett SB, Rogers DC, Richards SJ (1989) Nigrostriatal reconstruction after 6-OHDA lesions in rats: combination of dopamine-rich nigral grafts and nigrostriatal “bridge” grafts. Exp Brain Res 75:523–535

    PubMed  CAS  Google Scholar 

  • Dyson SC, Barker RA (2011) Cell-based therapies for Parkinson’s disease. Expert Rev Neurother 11:831–844

    PubMed  CAS  Google Scholar 

  • Ekdahl CT, Claasen J-H, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632–13637

    PubMed  CAS  Google Scholar 

  • Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    PubMed  CAS  Google Scholar 

  • El-Akabawy G, Medina LM, Jeffries A, Price J, Modo M (2011) Purmorphamine increases DARPP-32 differentiation in human striatal neural stem cells through the Hedgehog pathway. Stem Cells Dev 20:1873–1887

    PubMed  CAS  Google Scholar 

  • England TJ, Gibson CL, Bath PMW (2009) Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: a systematic review. Brain Res Rev 62:71–82

    PubMed  CAS  Google Scholar 

  • England TJ, Abaei M, Auer DP, Lowe J, Jones DRE, Sare G, Walker M, Bath PMW (2012) Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke 43:405–411

    PubMed  CAS  Google Scholar 

  • Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Föcking M, Küstermann E, Kolossov E, Hescheler J, Hossmann K-A, Trapp T (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785

    PubMed  Google Scholar 

  • Erlandsson A, Lin C-HA, Yu F, Morshead CM (2011) Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol 230:48–57

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  • Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 97:14686–14691

    PubMed  CAS  Google Scholar 

  • Floel A, Warnecke T, Duning T, Lating Y, Uhlenbrock J, Schneider A, Vogt G, Laage R, Koch W, Knecht S, Schäbitz W-R (2011) Granulocyte-colony stimulating factor (G-CSF) in stroke patients with concomitant vascular disease—a randomized controlled trial. PloS One 6:e19767

    PubMed  CAS  Google Scholar 

  • Fong SP, Tsang KS, Chan ABW, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85:1851–1862

    PubMed  CAS  Google Scholar 

  • Francardo V, Recchia A, Popovic N, Andersson D, Nissbrandt H, Cenci MA (2011) Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness toL-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol Dis 42:327–340

    PubMed  CAS  Google Scholar 

  • Freed WJ, Perlow MJ, Karoum F, Seiger A, Olson L, Hoffer BJ, Wyatt RJ (1980) Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann Neurol 8:510–519

    PubMed  CAS  Google Scholar 

  • Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 97:13877–13882

    PubMed  CAS  Google Scholar 

  • Freund TF, Bolam JP, Bjorklund A, Stenevi U, Dunnett SB, Powell JF, Smith AD (1985) Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J Neurosci 5:603–616

    PubMed  CAS  Google Scholar 

  • Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, Brooks DJ, Dunnett SB (1997) The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 79:711–721

    PubMed  CAS  Google Scholar 

  • Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 101:10177–10182

    PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    PubMed  CAS  Google Scholar 

  • Gao Q, Li Y, Chopp M (2005) Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor. Neuroscience 136:123–134

    PubMed  CAS  Google Scholar 

  • Garcia J, Carlsson T, Dobrossy M, Nikkhah G, Winkler C (2011) Impact of dopamine to serotonin cell ratio in transplants on behavioral recovery and L-DOPA-induced dyskinesia. Neurobiol Dis 43:576–587

    PubMed  CAS  Google Scholar 

  • Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, Brugieres P, Mangin JF, Boisse MF, Palfi S, Cesaro P, Samson Y, Hantraye P, Peschanski M, Remy P (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 127:65–72

    PubMed  Google Scholar 

  • Gil JMAC, Leist M, Popovic N, Brundin P, Petersén A (2004) Asialoerythropoietin is not effective in the R6/2 line of Huntington’s disease mice. BMC Neurosci 5:17

    PubMed  Google Scholar 

  • Gil JMAC, Mohapel P, Araújo IM, Popovic N, Li J-Y, Brundin P, Petersén A (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20:744–751

    PubMed  CAS  Google Scholar 

  • Gil-Mohapel J, Simpson JM, Ghilan M, Christie BR (2011) Neurogenesis in Huntington’s disease: can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res 1406:84–105

    PubMed  CAS  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB (1992) Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain. Exp Neurol 116:105–121

    PubMed  CAS  Google Scholar 

  • Grabowski M, Johansson BB, Brundin P (1996) Fetal neocortical grafts placed in brain infarcts do not improve paw-reaching deficits in adult spontaneously hypertensive rats. Acta Neurochir Suppl 66:68–72

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Hirsch EC, Agid YA (1987) Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity. Proc Natl Acad Sci U S A 84:303–307

    PubMed  CAS  Google Scholar 

  • Grote HE, Bull ND, Howard ML, van Dellen A, Blakemore C, Bartlett PF, Hannan AJ (2005) Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur J Neurosci 22:2081–2088

    PubMed  Google Scholar 

  • Hadani M, Freeman T, Munsiff A, Young W, Flamm E (1992) Fetal cortical cells survive in focal cerebral infarct after permanent occlusion of the middle cerebral artery in adult rats. J Neurotrauma 9:107–112

    PubMed  CAS  Google Scholar 

  • Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926

    PubMed  CAS  Google Scholar 

  • Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S, Schwartz S, Scott D, Nauert GM, Soety E, Sossi V, Holt DA, Sanberg PR, Stoessl AJ, Freeman TB (2002) Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 58:687–695

    PubMed  CAS  Google Scholar 

  • Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M (2009) Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 29:1409–1420

    PubMed  CAS  Google Scholar 

  • Hedlund E, Pruszak J, Lardaro T, Ludwig W, Viñuela A, Kim K-S, Isacson O (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells (Dayton, Ohio) 26:1526–1536

    Google Scholar 

  • Hermann DM, Zechariah A (2009) Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab 29:1620–1643

    PubMed  CAS  Google Scholar 

  • Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, Weiss S, Corbett D (2007) Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 146:31–40

    PubMed  CAS  Google Scholar 

  • Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neurosci 7:726–735

    PubMed  Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807

    PubMed  Google Scholar 

  • Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells (Dayton, Ohio) 29:274–285

    Google Scholar 

  • Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, Yu Z, Sun FY (2008) Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 39:2837–2844

    PubMed  CAS  Google Scholar 

  • Huisman E, Uylings HB, Hoogland PV (2004) A 100 % increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19:687–692

    PubMed  Google Scholar 

  • Isacson O, Brundin P, Kelly PA, Gage FH, Björklund A (1984) Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Nature 311:458–460

    PubMed  CAS  Google Scholar 

  • Isacson O, Brundin P, Gage FH, Björklund A (1985) Neural grafting in a rat model of Huntington’s disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 16:799–817

    PubMed  CAS  Google Scholar 

  • Isacson O, Dawbarn D, Brundin P, Gage FH, Emson PC, Björklund A (1987) Neural grafting in a rat model of Huntington’s disease: striosomal-like organization of striatal grafts as revealed by acetylcholinesterase histochemistry, immunocytochemistry and receptor autoradiography. Neuroscience 22:481–497

    PubMed  CAS  Google Scholar 

  • Jain M, Armstrong RJE, Tyers P, Barker RA, Rosser AE (2003) GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp Neurol 182:113–123

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27:8–30

    PubMed  CAS  Google Scholar 

  • Jensen MB, Yan H, Krishnaney-Davison R, Al Sawaf A, Zhang S-C (2011) Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis. doi:10.1016/j.jstrokecerebrovasdis.2011.09.008

    PubMed  Google Scholar 

  • Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199

    PubMed  CAS  Google Scholar 

  • Jiang M, Lv L, Ji H, Yang X, Zhu W, Cai L, Gu X, Chai C, Huang S, Sun J, Dong Q (2011) Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem 354:67–75

    PubMed  CAS  Google Scholar 

  • Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715

    PubMed  CAS  Google Scholar 

  • Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, Crippen D, Logvinova A, Ross CA, Greenberg DA, Ellerby LM (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 102:18189–18194

    PubMed  CAS  Google Scholar 

  • Jin K, Mao X, Xie L, Greenberg RB, Peng B, Moore A, Greenberg MB, Greenberg DA (2010a) Delayed transplantation of human neural precursor cells improves outcome from focal cerebral ischemia in aged rats. Aging Cell 9:1076–1083

    PubMed  CAS  Google Scholar 

  • Jin K, Wang X, Xie L, Mao XO, Greenberg DA (2010b) Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci U S A 107:7993–7998

    PubMed  CAS  Google Scholar 

  • Jin K, Xie L, Mao X, Greenberg MB, Moore A, Peng B, Greenberg RB, Greenberg DA (2011) Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Res 1374:56–62

    PubMed  CAS  Google Scholar 

  • Jones L, Hughes A (2011) Pathogenic mechanisms in Huntington’s disease. Int Rev Neurobiol 98:373–418

    PubMed  CAS  Google Scholar 

  • Jönsson ME, Ono Y, Björklund A, Thompson LH (2009) Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp Neurol 219:341–354

    PubMed  Google Scholar 

  • Jungnickel J, Kalve I, Reimers L, Nobre A, Wesemann M, Ratzka A, Halfer N, Lindemann C, Schwabe K, Tollner K, Gernert M, Grothe C (2011) Topology of intrastriatal dopaminergic grafts determines functional and emotional outcome in neurotoxin-lesioned rats. Behav Brain Res 216:129–135

    PubMed  CAS  Google Scholar 

  • Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 69:717–728

    PubMed  Google Scholar 

  • Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30:1487–1493

    PubMed  Google Scholar 

  • Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22:56–67

    PubMed  CAS  Google Scholar 

  • Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101:11839–11844

    PubMed  CAS  Google Scholar 

  • Kelly CM, Precious SV, Scherf C, Penketh R, Amso NN, Battersby A, Allen ND, Dunnett SB, Rosser AE (2009) Neonatal desensitization allows long-term survival of neural xenotransplants without immunosuppression. Nat Methods 6:271–273

    PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    PubMed  CAS  Google Scholar 

  • Kim HJ (2011) Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta 1812:1–11

    PubMed  CAS  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    PubMed  CAS  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    PubMed  CAS  Google Scholar 

  • Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Inden M, Minamino H, Abe M, Takata K, Taniguchi T (2010) The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra. Glia 58:1686–1700

    PubMed  Google Scholar 

  • Klein A, Metz GA, Papazoglou A, Nikkhah G (2007) Differential effects on forelimb grasping behavior induced by fetal dopaminergic grafts in hemiparkinsonian rats. Neurobiol Dis 27:24–35

    PubMed  CAS  Google Scholar 

  • Klein A, Sacrey L-AR, Whishaw IQ, Dunnett SB (2012) The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neurosci Biobehav Rev 36:1030–1042

    PubMed  Google Scholar 

  • Kohl Z, Kandasamy M, Winner B, Aigner R, Gross C, Couillard-Despres S, Bogdahn U, Aigner L, Winkler J (2007) Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington’s disease. Brain Res 1155:24–33

    PubMed  CAS  Google Scholar 

  • Kohl Z, Winner B, Ubhi K, Rockenstein E, Mante M, Munch M, Barlow C, Carter T, Masliah E, Winkler J (2012) Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci 35:10–19

    PubMed  Google Scholar 

  • Komitova M, Mattsson B, Johansson BB, Eriksson PS (2005) Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36:1278–1282

    PubMed  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    PubMed  CAS  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    PubMed  Google Scholar 

  • Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS (1998) Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol 149:97–108

    PubMed  CAS  Google Scholar 

  • Kordower JH, Freeman TB, Chen EY, Mufson EJ, Sanberg PR, Hauser RA, Snow B, Olanow CW (1998) Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov Disord 13:383–393

    PubMed  CAS  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  • Lane EL, Björklund A, Dunnett SB, Winkler C (2010) Neural grafting in Parkinson’s disease unraveling the mechanisms underlying graft-induced dyskinesia. Prog Brain Res 184:295–309

    PubMed  Google Scholar 

  • Lapidot T, Kollet O (2010) The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology 2010(1):1–6

    PubMed  Google Scholar 

  • Lazarini F, Lledo PM (2011) Is adult neurogenesis essential for olfaction? Trends Neurosci 34:20–30

    PubMed  CAS  Google Scholar 

  • Lazic SE, Grote HE, Blakemore C, Hannan AJ, van Dellen A, Phillips W, Barker RA (2006) Neurogenesis in the R6/1 transgenic mouse model of Huntington’s disease: effects of environmental enrichment. Eur J Neurosci 23:1829–1838

    PubMed  Google Scholar 

  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679

    PubMed  CAS  Google Scholar 

  • Lees JS, Sena ES, Egan KJ, Antonic A, Koblar SA, Howells DW, Macleod MR (2012) Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke. doi:10.1111/j.1747-4949.2012.00797.x

    Google Scholar 

  • Li Y, Chopp M (2009) Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett 456:120–123

    PubMed  CAS  Google Scholar 

  • Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523

    PubMed  CAS  Google Scholar 

  • Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, Gao Q, Shen LH, Zhang J, Lu M, Chopp M (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417

    PubMed  Google Scholar 

  • Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, Xu Y, Huang L, Ma C, An Y, Zhao RC, Wang R, Qin C (2010) Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis. Brain Res 1334:65–72

    PubMed  CAS  Google Scholar 

  • Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22:6639–6649

    PubMed  CAS  Google Scholar 

  • Lindgren HS, Dunnett SB (2012) Cognitive dysfunction and depression in Parkinson’s disease: what can be learned from rodent models? Eur J Neurosci 35:1894–1907

    PubMed  Google Scholar 

  • Lindvall O (1997) Neural transplantation: a hope for patients with Parkinson’s disease. Neuroreport 8:iii–x

    Google Scholar 

  • Lindvall O (2010) Clinical experiences with dopamine neuron replacement in Parkinson’s disease: what is the future? In: Iversen LL, Iversen SD, Dunnett SB, Bjorklund A (eds) Dopamine handbook. Oxford University Press, New York , pp 478–488

    Google Scholar 

  • Liu Z, Li Y, Qu R, Shen L, Gao Q, Zhang X, Lu M, Savant-Bhonsale S, Borneman J, Chopp M (2007) Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Res 1149:172–180

    PubMed  CAS  Google Scholar 

  • Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6:207–213

    PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90:2074–2077

    PubMed  CAS  Google Scholar 

  • Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci 27:4424–4434

    PubMed  CAS  Google Scholar 

  • Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X, Zhang S-C (2012) Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10:455–464

    PubMed  CAS  Google Scholar 

  • Madrazo I, Franco-Bourland RE, Castrejon H, Cuevas C, Ostrosky-Solis F (1995) Fetal striatal homotransplantation for Huntington’s disease: first two case reports. Neurol Res 17:312–315

    PubMed  CAS  Google Scholar 

  • Mampalam TJ, Gonzalez MF, Weinstein P, Sharp FR (1988) Neuronal changes in fetal cortex transplanted to ischemic adult rat cortex. J Neurosurg 69:904–912

    PubMed  CAS  Google Scholar 

  • Mao L, Lau YS, Petroske E, Wang JQ (2001) Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Dev Brain Res 131:57–65

    CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    PubMed  CAS  Google Scholar 

  • Marxreiter F, Nuber S, Kandasamy M, Klucken J, Aigner R, Burgmayer R, Couillard-Despres S, Riess O, Winkler J, Winner B (2009) Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29:879–890

    PubMed  Google Scholar 

  • Mattsson B, Sørensen JC, Zimmer J, Johansson BB (1997) Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke 28:1225–1231, discussion 1231–1232

    Google Scholar 

  • Mazzocchi-Jones D, Döbrössy M, Dunnett SB (2009) Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington’s disease. Eur J Neurosci 30:2134–2142

    PubMed  Google Scholar 

  • Mazzocchi-Jones D, Döbrössy M, Dunnett SB (2011) Environmental enrichment facilitates long-term potentiation in embryonic striatal grafts. Neurorehabil Neural Repair 25:548–557

    PubMed  Google Scholar 

  • McGeer PL, Kimura H, McGeer EG (1984) Transplantation of newborn brain tissue into adult kainic-acid-lesioned neostriatum. In: Sladek JR, Gash DM (eds) Neural transplants: development and function. Plenum Publishing Corporation, New York, pp 361–371

    Google Scholar 

  • Mendez I, Sadi D, Hong M (1996) Reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants. J Neurosci 16:7216–7227

    PubMed  CAS  Google Scholar 

  • Meredith GE, Farrell T, Kellaghan P, Tan Y, Zahm DS, Totterdell S (1999) Immunocytochemical characterization of catecholaminergic neurons in the rat striatum following dopamine-depleting lesions. Eur J Neurosci 11:3585–3596

    PubMed  CAS  Google Scholar 

  • Metz GA, Piecharka DM, Klein A, Whishaw IQ (2004) Preserved ipsilateral-to-lesion motor map organization in the unilateral 6-OHDA-treated rat model of Parkinson’s disease. Brain Res 1026:126–135

    PubMed  CAS  Google Scholar 

  • Ming G, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    PubMed  CAS  Google Scholar 

  • Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG (2007) Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med 2:69–74

    PubMed  Google Scholar 

  • Minnerup J, Kim JB, Schmidt A, Diederich K, Bauer H, Schilling M, Strecker J-K, Ringelstein EB, Sommer C, Schöler HR, Schäbitz W-R (2011) Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke. Stroke 42:1757–1763

    PubMed  Google Scholar 

  • Montoya CP, Astell S, Dunnett SB (1990) Effects of nigral and striatal grafts on skilled forelimb use in the rat. Prog Brain Res 82:459–466

    PubMed  CAS  Google Scholar 

  • Mundinano IC, Caballero MC, Ordonez C, Hernandez M, DiCaudo C, Marcilla I, Erro ME, Tunon MT, Luquin MR (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122:61–74

    PubMed  CAS  Google Scholar 

  • Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102:18171–18176

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    PubMed  CAS  Google Scholar 

  • National Sentinel Stroke Audit Phase II (2008) http://old.rcplondon.ac.uk/clinical-standards/ceeu/Current-work/stroke/Documents/stroke-audit-report-2008.pdf. Accessed 20 June 2012

  • Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J, DeCesare S, Elder EM, Zhang PJ, Jacobs A, McGrogan M, Lee VM-Y, Trojanowski JQ (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 160:1201–1206

    PubMed  Google Scholar 

  • Nikkhah G, Rosenthal C, Falkenstein G, Samii M (1998) Dopaminergic graft-induced long-term recovery of complex sensorimotor behaviors in a rat model of Parkinson’s disease. Zentralbl Neurochir 59:97–103

    PubMed  CAS  Google Scholar 

  • Nishino H, Koide K, Aihara N, Kumazaki M, Sakurai T, Nagai H (1993) Striatal grafts in the ischemic striatum improve pallidal GABA release and passive avoidance. Brain Res Bull 32:517–520

    PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Barkus C, Vijiaratnam N, Clement O, Hannan AJ (2009) Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington’s disease transgenic mice. Am J Geriatr Psychiatry 17:196–209

    PubMed  Google Scholar 

  • Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T, Boy J, Kuhn M, Nguyen HP, Teismann P, Schulz JB, Neumann M, Pichler BJ, Reischl G, Holzmann C, Schmitt I, Bornemann A, Kuhn W, Zimmermann F, Servadio A, Riess O (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28:2471–2484

    PubMed  CAS  Google Scholar 

  • O’Keeffe FE, Scott SA, Tyers P, O’Keeffe GW, Dalley JW, Zufferey R, Caldwell MA (2008) Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain 131:630–641

    PubMed  Google Scholar 

  • O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A 106:8754–8759

    PubMed  Google Scholar 

  • Ohtani N, Goto T, Waeber C, Bhide PG (2003) Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23:2840–2850

    PubMed  CAS  Google Scholar 

  • Oki K, Tatarishvili J, Woods J, Koch P, Wattananit S, Mine Y, Monni E, Prietro DT, Ahlenius H, Ladewig J, Brüstle O, Lindvall O, Kokaia Z (2012) Human induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells (Dayton, Ohio) 30:1120–1133

    Google Scholar 

  • Palfi S, Leventhal L, Chu Y, Ma SY, Emborg M, Bakay R, Déglon N, Hantraye P, Aebischer P, Kordower JH (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22:4942–4954

    PubMed  CAS  Google Scholar 

  • Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ (2006) Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in huntington’s disease transgenic mice. Neuroscience 141:569–584

    PubMed  CAS  Google Scholar 

  • Pang TYC, Du X, Zajac MS, Howard ML, Hannan AJ (2009) Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington’s disease. Hum Mol Genet 18:753–766

    PubMed  CAS  Google Scholar 

  • Park JH, Enikolopov G (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol 222:267–276

    PubMed  CAS  Google Scholar 

  • Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    PubMed  CAS  Google Scholar 

  • Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross CA, Duan W (2008) The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol 210:154–163

    PubMed  CAS  Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647

    PubMed  CAS  Google Scholar 

  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    PubMed  CAS  Google Scholar 

  • Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348

    PubMed  CAS  Google Scholar 

  • Philpott LM, Kopyov OV, Lee AJ, Jacques S, Duma CM, Caine S, Yang M, Eagle KS (1997) Neuropsychological functioning following fetal striatal transplantation in Huntington’s chorea: three case presentations. Cell Transplant 6:203–212

    PubMed  CAS  Google Scholar 

  • Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140

    PubMed  CAS  Google Scholar 

  • Porritt MJ, Batchelor PE, Hughes AJ, Kalnins R, Donnan GA, Howells DW (2000) New dopaminergic neurons in Parkinson’s disease striatum. Lancet 356:44–45

    PubMed  CAS  Google Scholar 

  • Price J, Williams BP (2001) Neural stem cells. Curr Opin Neurobiol 11:564–567

    PubMed  CAS  Google Scholar 

  • Pritzel M, Isacson O, Brundin P, Wiklund L, Björklund A (1986) Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats. Exp Brain Res 65:112–126

    PubMed  CAS  Google Scholar 

  • Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, Chen X, Chopp M (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27:355–363

    PubMed  Google Scholar 

  • Quinn L, Busse M, Khalil H, Richardson S, Rosser A, Morris H (2010) Client and therapist views on exercise programmes for early-mid stage Parkinson’s disease and Huntington’s disease. Disabil Rehabil 32:917–928

    PubMed  Google Scholar 

  • Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, Polkey CE, Clough C, Brooks DJ, Barker RA, Piccini P (2008) Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J Neurol Neurosurg Psychiatry 79:948–951

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, N.Y.) 255:1707–1710

    Google Scholar 

  • Roberts TJ, Price J, Williams SCR, Modo M (2006) Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience 139:1187–1199

    PubMed  CAS  Google Scholar 

  • Roberts TJ, Price J, Williams SCR, Modo M (2007) Pharmacological MRI of stem cell transplants in the 3-nitropropionic acid-damaged striatum. Neuroscience 144:100–109

    PubMed  CAS  Google Scholar 

  • Rojin A, Verfaillie CM (2012) Adult stem cells for neuronal differentation and cell therapy. Prog Brain Res 201 (in press)

    Google Scholar 

  • Rosenzweig MR, Krech D, Bennett EL, Diamond MC (1962) Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Psychol 55:429–437

    CAS  Google Scholar 

  • Ross BD, Hoang TQ, Blüml S, Dubowitz D, Kopyov OV, Jacques DB, Lin A, Seymour K, Tan J (1999) In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR Biomed 12:221–236

    PubMed  CAS  Google Scholar 

  • Rössler R, Boddeke E, Copray S (2010) Differentiation of non-mesencephalic neural stem cells towards dopaminergic neurons. Neuroscience 170:417–428

    PubMed  Google Scholar 

  • Rutherford A, Garcia-Munoz M, Dunnett SB, Arbuthnott GW (1987) Electrophysiological demonstration of host cortical inputs to striatal grafts. Neurosci Lett 83:275–281

    PubMed  CAS  Google Scholar 

  • Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    PubMed  CAS  Google Scholar 

  • Samuels BA, Hen R (2011) Neurogenesis and affective disorders. Eur J Neurosci 33:1152–1159

    PubMed  Google Scholar 

  • Sanberg PR, Eve DJ, Metcalf C, Borlongan, CV (2012) Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res 201 (in press)

    Google Scholar 

  • Sánchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RD (2001) In vitro generation and transplantation of precursor-derived human dopamine neurons. J Neurosci Res 65:284–288

    PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    PubMed  CAS  Google Scholar 

  • Sass KJ, Buchanan CP, Westerveld M, Marek KL, Farhi A, Robbins RJ, Naftolin F, Vollmer TL, Leranth C, Roth RH et al (1995) General cognitive ability following unilateral and bilateral fetal ventral mesencephalic tissue transplantation for treatment of Parkinson’s disease. Arch Neurol 52:680–686

    PubMed  CAS  Google Scholar 

  • Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis (Basel, Switzerland) 20:101–107

    Google Scholar 

  • Schäbitz WR, Laage R, Vogt G, Koch W, Kollmar R, Schwab S, Schneider D, Hamann GF, Rosenkranz M, Veltkamp R, Fiebach JB, Hacke W, Grotta JC, Fisher M, Schneider A (2010) AXIS: a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke 41:2545–2551

    PubMed  Google Scholar 

  • Schmidt RH, Ingvar M, Lindvall O, Stenevi U, Björklund A (1982) Functional activity of substantia nigra grafts reinnervating the striatum: neurotransmitter metabolism and [14C]2-deoxy-d-glucose autoradiography. J Neurochem 38:737–748

    PubMed  CAS  Google Scholar 

  • Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137:393–399

    PubMed  CAS  Google Scholar 

  • Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38:2150–2156

    PubMed  Google Scholar 

  • Shin E, Palmer MJ, Li M, Fricker RA (2011) GABAergic neurons from mouse embryonic stem cells possess functional properties of striatal neurons in vitro, and develop into striatal neurons in vivo in a mouse model of Huntington’s disease. Stem Cell Rev 38:513–531

    Google Scholar 

  • Silveira-Moriyama L, Holton JL, Kingsbury A, Ayling H, Petrie A, Sterlacci W, Poewe W, Maier H, Lees AJ, Revesz T (2009) Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neurosci Lett 453:77–80

    PubMed  CAS  Google Scholar 

  • Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G (2009) Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A 106:4906–4911

    PubMed  CAS  Google Scholar 

  • Simpson JM, Gil-Mohapel J, Pouladi MA, Ghilan M, Xie Y, Hayden MR, Christie BR (2011) Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis 41:249–260

    PubMed  CAS  Google Scholar 

  • Sinden JD, Vishnubhatla I, Muir K (2012) Prospects for stem cell-derived therapy in stroke. Prog Brain Res 201 (in press)

    Google Scholar 

  • Sirén A-L, Fasshauer T, Bartels C, Ehrenreich H (2009) Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurother 6:108–127

    Google Scholar 

  • Sirinathsinghji DJ, Dunnett SB, Isacson O, Clarke DJ, Kendrick K, Björklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions–II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24:803–811

    PubMed  CAS  Google Scholar 

  • Siviy SM, Walsh JP, Radisavljevic Z, Cohen RW, Buchwald NA, Levine MS (1993) Evidence for enhanced synaptic excitation in transplanted neostriatal neurons. Exp Neurol 123:222–234

    PubMed  CAS  Google Scholar 

  • Smidt MP, Burbach JPH (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8:21–32

    PubMed  CAS  Google Scholar 

  • Smith AD, Zigmond MJ (2003) Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol 184:31–39

    PubMed  CAS  Google Scholar 

  • Smith GA, Heuer A, Dunnett SB, Lane EL (2012) Unilateral nigrostriatal 6-hydroxydopamine lesions in mice II: predicting l-DOPA-induced dyskinesia. Behav Brain Res 226:281–292

    PubMed  CAS  Google Scholar 

  • Snyder BR, Chiu AM, Prockop DJ, Chan AWS (2010) Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PloS One 5:e9347

    PubMed  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    PubMed  CAS  Google Scholar 

  • Sorensen JC, Grabowski M, Zimmer J, Johansson BB (1996) Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain. Exp Neurol 138:227–235

    PubMed  CAS  Google Scholar 

  • Spires TL, Grote HE, Varshney NK, Cordery PM, van Dellen A, Blakemore C, Hannan AJ (2004) Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 24:2270–2276

    PubMed  CAS  Google Scholar 

  • Sramka M, Rattaj M, Molina H, Vojtassák J, Belan V, Ruzický E (1992) Stereotactic technique and pathophysiological mechanisms of neurotransplantation in Huntington’s chorea. Stereotact Funct Neurosurg 58:79–83

    PubMed  CAS  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science (New York, N.Y.) 322:945–949

    Google Scholar 

  • Steiner B, Winter C, Hosman K, Siebert E, Kempermann G, Petrus DS, Kupsch A (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199:291–300

    PubMed  Google Scholar 

  • Strecker RE, Sharp T, Brundin P, Zetterström T, Ungerstedt U, Björklund A (1987) Autoregulation of dopamine release and metabolism by intrastriatal nigral grafts as revealed by intracerebral dialysis. Neuroscience 22:169–178

    PubMed  CAS  Google Scholar 

  • Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J (2009) The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair 23:895–909

    PubMed  Google Scholar 

  • Strömberg I, Törnqvist N, Johansson S, Bygdeman M, Almqvist PM (2001) Evidence for target-specific outgrowth from subpopulations of grafted human dopamine neurons. Microsc Res Tech 54:287–297

    PubMed  Google Scholar 

  • Studer L, Tabar V, McKay RD (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1:290–295

    PubMed  CAS  Google Scholar 

  • Sullivan FR, Bird ED, Alpay M, Cha JH (2001) Remotivation therapy and Huntington’s disease. J Neurosci Nurs 33:136–142

    PubMed  CAS  Google Scholar 

  • Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148:135–146

    PubMed  CAS  Google Scholar 

  • Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X (2010) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells (Dayton, Ohio) 28:1893–1904

    Google Scholar 

  • Sygnis (2011) Press release. http://www.sygnis.de/e740/e738/. Accessed 15 Dec 2011

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    PubMed  CAS  Google Scholar 

  • Taylor JR, Elsworth JD, Roth RH, Collier TJ, Sladek JR Jr, Redmond DE Jr (1990) Improvements in MPTP-induced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. Prog Brain Res 82:543–559

    PubMed  CAS  Google Scholar 

  • Thompson WG (1890) Successful brain grafting. N Y Med J 51:701–702

    Google Scholar 

  • Thompson LH, Grealish S, Kirik D, Bjorklund A (2009) Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 30:625–638

    PubMed  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92:7844–7848

    PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.) 282:1145–1147

    Google Scholar 

  • Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747

    PubMed  CAS  Google Scholar 

  • Tillerson JL, Cohen AD, Philhower J, Miller GW, Zigmond MJ, Schallert T (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21:4427–4435

    PubMed  CAS  Google Scholar 

  • Toda H, Takahashi J, Mizoguchi A, Koyano K, Hashimoto N (2000) Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro. Exp Neurol 165:66–76

    PubMed  CAS  Google Scholar 

  • Trott CT, Fahn S, Greene P, Dillon S, Winfield H, Winfield L, Kao R, Eidelberg D, Freed CR, Breeze RE, Stern Y (2003) Cognition following bilateral implants of embryonic dopamine neurons in PD: a double blind study. Neurology 60:1938–1943

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    PubMed  CAS  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    PubMed  CAS  Google Scholar 

  • van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ (2000) Delaying the onset of Huntington’s in mice. Nature 404:721–722

    PubMed  Google Scholar 

  • van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ (2008) Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 9:34

    PubMed  Google Scholar 

  • Vierbuchen T, Wernig M (2011) Direct lineage conversions: unnatural but useful? Nat Biotechnol 29:892–907

    PubMed  CAS  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    PubMed  CAS  Google Scholar 

  • Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887

    PubMed  CAS  Google Scholar 

  • Walsh JP, Zhou FC, Hull CD, Fisher RS, Levine MS, Buchwald NA (1988) Physiological and morphological characterization of striatal neurons transplanted into the striatum of adult rats. Synapse (New York, N.Y.) 2:37–44

    Google Scholar 

  • Wang Z, Andrade N, Torp M, Wattananit S, Arvidsson A, Kokaia Z, Jørgensen JR, Lindvall O (2012) Meteorin is a chemokinetic factor in neuroblast migration and promotes stroke-induced striatal neurogenesis. J Cereb Blood Flow Metab 32:387–398

    PubMed  CAS  Google Scholar 

  • Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861

    PubMed  CAS  Google Scholar 

  • Wictorin K (1992) Anatomy and connectivity of intrastriatal striatal transplants. Prog Neurobiol 38:611–639

    PubMed  CAS  Google Scholar 

  • Wictorin K, Clarke DJ, Bolam JP, Björklund A (1990) Fetal striatal neurons grafted into the ibotenate lesioned adult striatum: efferent projections and synaptic contacts in the host globus pallidus. Neuroscience 37:301–315

    PubMed  CAS  Google Scholar 

  • Wilby MJ, Sinclair SR, Muir EM, Zietlow R, Adcock KH, Horellou P, Rogers JH, Dunnett SB, Fawcett JW (1999) A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra. J Neurosci 19:2301–2312

    PubMed  CAS  Google Scholar 

  • Winkler C, Kirik D, Björklund A, Dunnett SB (2000) Transplantation in the rat model of Parkinson’s disease: ectopic versus homotopic graft placement. Prog Brain Res 127:233–265

    PubMed  CAS  Google Scholar 

  • Winkler C, Kirik D, Bjorklund A (2005) Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 28:86–92

    PubMed  CAS  Google Scholar 

  • Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166

    PubMed  CAS  Google Scholar 

  • Winner B, Geyer M, Couillard-Despres S, Aigner R, Bogdahn U, Aigner L, Kuhn G, Winkler J (2006) Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 197:113–121

    PubMed  CAS  Google Scholar 

  • Winner B, Desplats P, Hagl C, Klucken J, Aigner R, Ploetz S, Laemke J, Karl A, Aigner L, Masliah E, Buerger E, Winkler J (2009) Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 219:543–552

    PubMed  CAS  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung H-K, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    PubMed  CAS  Google Scholar 

  • Wuerthele SM, Freed WJ, Olson L, Morihisa J, Spoor L, Wyatt RJ, Hoffer BJ (1981) Effect of dopamine agonists and antagonists on the electrical activity of substantia nigra neurons transplanted into the lateral ventricle of the rat. Exp Brain Res 44:1–10

    PubMed  CAS  Google Scholar 

  • Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang XL, Sang X, Zhang ZG, Chopp M (2012) Exosome mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells (Dayton, Ohio) 30:1556–1564

    Google Scholar 

  • Xu ZC, Wilson CJ, Emson PC (1991) Synaptic potentials evoked in spiny neurons in rat neostriatal grafts by cortical and thalamic stimulation. J Neurophysiol 65:477–493

    PubMed  CAS  Google Scholar 

  • Yamada M, Onodera M, Mizuno Y, Mochizuki H (2004) Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated adult mice. Neuroscience 124:173–181

    PubMed  CAS  Google Scholar 

  • Yamashita T, Ninomiya M, Hernández Acosta P, García-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636

    PubMed  CAS  Google Scholar 

  • Yan J, Studer L, McKay RD (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 76:307–311

    PubMed  CAS  Google Scholar 

  • Yang D, Zhang Z-J, Oldenburg M, Ayala M, Zhang S-C (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26:55–63

    PubMed  CAS  Google Scholar 

  • Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, Bankiewicz K, Case C, Borlongan CV (2009) Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev 18:1501–1514

    PubMed  CAS  Google Scholar 

  • Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, Feng Y, Gao Q, Chopp M (2007) Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab 27:1684–1691

    PubMed  CAS  Google Scholar 

  • Zetterström T, Brundin P, Gage FH, Sharp T, Isacson O, Dunnett SB, Ungerstedt U, Björklund A (1986) In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Res 362:344–349

    PubMed  Google Scholar 

  • Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, Lapointe M, Chopp M (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol 50:602–611

    PubMed  CAS  Google Scholar 

  • Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, Chopp M (2006) Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience 141:687–695

    PubMed  CAS  Google Scholar 

  • Zhang C, Chopp M, Cui Y, Wang L, Zhang R, Zhang L, Lu M, Szalad A, Doppler E, Hitzl M, Zhang ZG (2010) Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res 88:3275–3281

    PubMed  CAS  Google Scholar 

  • Zhang P, Li J, Liu Y, Chen X, Lu H, Kang Q, Li W, Gao M (2011) Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri-infarct angiogenesis after focal cerebral ischemia. Neuropathology 31:384–391

    PubMed  Google Scholar 

  • Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 100:7925–7930

    PubMed  CAS  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Dunnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trueman, R.C., Klein, A., Lindgren, H.S., Lelos, M.J., Dunnett, S.B. (2012). Repair of the CNS Using Endogenous and Transplanted Neural Stem Cells. In: Belzung, C., Wigmore, P. (eds) Neurogenesis and Neural Plasticity. Current Topics in Behavioral Neurosciences, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2012_223

Download citation

Publish with us

Policies and ethics