Skip to main content

Effects of Environmental Enrichment Exposure on Synaptic Transmission and Plasticity in the Hippocampus

  • Chapter
  • First Online:
Neurogenesis and Neural Plasticity

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 15))

Abstract

Exposure to an enriched environment (EE) is beneficial to the structure and function of the brain. The added sensory, social, and spatial complexity of the EE also improves cognitive functions such as memory in both healthy brains and damaged or diseased brains, yet the underlying neural mechanisms of these cognitive improvements are poorly understood. In particular, studies that have examined the effects of EE on cellular function in the hippocampus, a structure critical for memory storage, have produced somewhat confusing results. Experiments performed in ex vivo hippocampal slices have reported a variety of EE effects on synaptic transmission and plasticity in both CA1 and the dentate gyrus. However, together with data from in vivo recordings made during and after the EE treatment, the overall results suggest an evolution of changes in neuronal function in the hippocampus, whereby there is an early transient increase in cell activity and plasticity that gives rise to more subtle long-term enhancements in cellular and network function that may contribute to enhanced hippocampus-dependent cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WC, Logan B, Greenwood JM, Dragunow M (2002) Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 22(21):9626–9634

    PubMed  CAS  Google Scholar 

  • Abraham WC, Mason-Parker SE, Irvine GI, Logan B, Gill AI (2006) Induction and activity-dependent reversal of persistent LTP and LTD in lateral perforant path synapses in vivo. Neurobiol Learn Mem 86(1):82–90

    Article  PubMed  CAS  Google Scholar 

  • Abraham WC, Robins A (2005) Memory retention—the synaptic stability versus plasticity dilemma. Trends Neurosci 28(2):73–78

    Article  PubMed  CAS  Google Scholar 

  • Alme MN, Wibrand K, Dagestad G, Brahmham C (2007) Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast 2007:26496

    Article  PubMed  Google Scholar 

  • Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW (2011) Posttraining ablation of adult-generated Neurons degrades previously acquired memories. J Neurosci 31(42):15113–15127

    Article  PubMed  CAS  Google Scholar 

  • Artola A, Frijtag JCv, Fermont PCJ, Gispen WH, Schrama LH, Kamal A, Spruijt BM (2006) Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur J Neurosci 23(1):261–272

    Google Scholar 

  • Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L (2011) Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 17:1092–1103

    Article  Google Scholar 

  • Begenisic T, Spolidoro M, Braschi C, Baroncelli L, Milanese M, Pietra G, Fabbri ME, Bonanno G, Cioni G, Maffei L, Sale A (2011) Environmental enrichment decreases gabaergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of down syndrome. Front Cell Neurosci 5:29

    Article  PubMed  CAS  Google Scholar 

  • Bennett EL, Diamond MC, Krech D, Rosenzweig MR (1964) Chemical and anatomical plasticity of the brain. Science 146(3644):610–619

    Article  PubMed  CAS  Google Scholar 

  • Bouet V, Freret T, Dutar P, Billard J-M, Boulouard M (2011) Continuous enriched environment improves learning and memory in adult NMRI mice through theta burst-related-LTP independent mechanisms but is not efficient in advanced aged animals. Mech Ageing Dev 132(5):240–248

    Article  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3):271–284

    Article  PubMed  CAS  Google Scholar 

  • Castro CA, Silbert LH, McNaughton BL, Barnes CA (1989) Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature 342(6249):545–548

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Brandwein C, Gass P (2011) Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice. Neurosci Biobehav Rev 35:599–611

    Article  PubMed  CAS  Google Scholar 

  • Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ (2010) Running enhances spatial pattern separation in mice. Proc Nat Acad Sci 107(5):2367–2372

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Yang Y, Yang J, Zhang J, Han H, Wenpei M, Li H, Mao R, Xu L, Hao W, Cao J (2006) Enriched environment experience overcomes the memory deficits and depressive-like behavior induced by early life stress. Neurosci Lett 404:208–212

    Article  PubMed  CAS  Google Scholar 

  • Diamond MC, Ingham CA, Johnson RE, Bennett EL, Rosenzweig MR (1976) Effects of environment on morphology of rat cerebral cortex and hippocampus. J Neurobiol 7(1):75–85

    Article  PubMed  CAS  Google Scholar 

  • Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krech D, Bennett EL (1966) Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol 128(1):117–126

    Article  PubMed  CAS  Google Scholar 

  • Duffy SN, Craddock KJ, Abel T, Nguyen PV (2001) Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn Mem (Cold Spring Harbor, NY) 8(1):26–34

    Google Scholar 

  • Eckert MJ, Abraham WC (2010) Physiological effects of enriched environment exposure and LTP induction in the hippocampus in vivo do not transfer faithfully to in vitro slices. Learn Mem 17(10):480–484

    Article  PubMed  Google Scholar 

  • Eckert MJ, Bilkey DK, Abraham WC (2010) Altered plasticity in hippocampal CA1, but not dentate gyrus, following long-term environmental enrichment. J Neurophysiol 103(6):3320–3329

    Article  PubMed  Google Scholar 

  • Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009) Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci 3:50

    PubMed  Google Scholar 

  • Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N (1992) Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett 138:153–156

    Article  PubMed  CAS  Google Scholar 

  • Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague–dawley rats in vivo. Neuroscience 124(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32(5):911–926

    Article  PubMed  CAS  Google Scholar 

  • Fiala BA, Joyce JN, Greenough WT (1978) Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Exp Neurol 59(3):372–383

    Article  PubMed  CAS  Google Scholar 

  • Foster TC, Dumas TC (2001) Mechanism for increased hippocampal synaptic strength following differential experience. J Neurophysiol 85(4):1377–1383

    PubMed  CAS  Google Scholar 

  • Foster TC, Fugger HN, Cunningham SG (2000) Receptor blockade reveals a correspondence between hippocampal-dependent behavior and experience-dependent synaptic enhancement. Brain Res 871(1):39–43

    Article  PubMed  CAS  Google Scholar 

  • Foster TC, Gagne J, Massicotte G (1996) Mechanism of altered synaptic strength due to experience: relation to long-term potentiation. Brain Res 736(1–2):243–250

    Article  PubMed  CAS  Google Scholar 

  • Globus A, Rosenzweig MR, Bennett EL, Diamond MC (1973) Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol 82(2):175–181

    Article  PubMed  CAS  Google Scholar 

  • Green EJ, Greenough WT (1986) Altered synaptic transmission in dentate gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro. J Neurophysiol 55(4):739–750

    PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Hendriksen H, Meulendijks D, Douma TN, Diewertje BI, Breuer ME, Koen GC, Olivier B, Oosting RS (2012) Environmental enrichment has antidepressant-like action without improving learning and memory deficits in olfactory bulbectomized rats. Neuropharmacology 62:270–277

    Article  PubMed  CAS  Google Scholar 

  • Huang FL, Huang K-P, Boucheron C (2007) Long-term enrichment enhances the cognitive behavior of the aging neurogranin null mice without affecting their hippocampal LTP. Learn Mem 14(8):512–519

    Article  PubMed  CAS  Google Scholar 

  • Irvine GI, Abraham WC (2005) Enriched environment exposure alters the input-output dynamics of synaptic transmission in area CA1 of freely moving rats. Neurosci Lett 391(1–2):32–37

    Article  PubMed  CAS  Google Scholar 

  • Irvine GI, Logan B, Eckert M, Abraham WC (2006) Enriched environment exposure regulates excitability, synaptic transmission, and LTP in the dentate gyrus of freely moving rats. Hippocampus 16(2):149–160

    Article  PubMed  Google Scholar 

  • Juraska JM, Fitch JM, Henderson C, Rivers N (1985) Sex differences in the dendritic branching of dentate granule cells following differential experience. Brain Res 333(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495

    Article  PubMed  CAS  Google Scholar 

  • Kirov SA, Petrak LJ, Fiala JC, Harris KM (2004) Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 127(1):69–80

    Article  PubMed  CAS  Google Scholar 

  • Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VMY, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces a beta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    Article  PubMed  CAS  Google Scholar 

  • Maggi L, Scianni M, Branchi I, D’Andrea I, Lauro C, Limatola C (2011) CX3CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Front Cell Neurosci 5:22

    Article  PubMed  CAS  Google Scholar 

  • Malik R, Chattarji S (2012) Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons. J Neurophysiol 107(5):1366–1378

    Article  PubMed  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Morris RGM (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12(5):609–636

    Article  PubMed  CAS  Google Scholar 

  • McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419–457

    Article  PubMed  CAS  Google Scholar 

  • Moser EI, Krobert KA, Moser MB, Morris RG (1998) Impaired spatial learning after saturation of long-term potentiation. Science 281(5385):2038–2042

    Article  PubMed  CAS  Google Scholar 

  • Moser M-B, Trommald M, Egeland T, Andersen P (1997) Spatial training in a complex environment and isolation alter the spine distribution differently in rat CA1 pyramidal cells. J Comp Neurol 380(3):373–381

    Article  PubMed  CAS  Google Scholar 

  • Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Nat Acad Sci 91(26):12673–12675

    Article  PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7(9):697–709

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson A, Johansson BB (1995) Environment influences functional outcome of cerebral infarction in rats. Stroke 26:644–649

    Article  PubMed  CAS  Google Scholar 

  • Olson AK, Eadie BD, Ernst C, Christie BR (2006) Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16(3):250–260

    Article  PubMed  CAS  Google Scholar 

  • Parsley SL, Pilgram SM, Soto F, Giese KP, Edwards FA (2007) Enriching the environment of alphaCaMKIIT286A mutant mice reveals that LTD occurs in memory processing but must be subsequently reversed by LTP. Learn Mem (Cold Spring Harbor, NY) 14(1–2):75–83

    Google Scholar 

  • Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science (New York, NY) 313(5790):1141–1144

    Google Scholar 

  • Rampon C, Tang Y-P, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3(3):238–244

    Article  PubMed  CAS  Google Scholar 

  • Reisi P, Babri S, Alaei H, Sharifi MR, Mohaddes G, Lashgari R (2008) Effects of treadmill running on short-term pre-synaptic plasticity at dentate gyrus of streptozotocin-induced diabetic rats. Brain Res 1211:30–36

    Article  PubMed  CAS  Google Scholar 

  • Richter SH, Garner JP, Wurbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments. Nat Methods 6(4):257–261

    Article  PubMed  CAS  Google Scholar 

  • Richter SH, Garner JP, Zipser B, Lewejohann L, Sachser N, Touma C, Schindler B, Chourbaji S, Brandwein C, Gass P, van Stipdonk N, van der Harst J, Spruijt B, Voikar V, Wolfer DP, Wurbel H (2011) Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study. PLoS ONE 6(1):e16461

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig MR, Krech D, Bennett EL, Diamond MC (1962) Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol 55:429–437

    Article  PubMed  CAS  Google Scholar 

  • Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–470

    Article  PubMed  CAS  Google Scholar 

  • Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L, De Pasquale R, Maffei L (2007) Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci 10(6):679–681

    Article  PubMed  CAS  Google Scholar 

  • Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia ADR, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci 103(46):17501–17506

    Article  PubMed  CAS  Google Scholar 

  • Schrijver NCA, Pallier PN, Brown VJ, Würbel H (2004) Double dissociation of social and environmental stimulation on spatial learning and reversal learning in rats. Behav Brain Res 152(2):307–314

    Article  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatr 20(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Sharp PE, Barnes CA, McNaughton BL (1987) Effects of aging on environmental modulation of hippocampal evoked responses. Behav Neurosci 101(2):170–178

    Article  PubMed  CAS  Google Scholar 

  • Sharp PE, McNaughton BL, Barnes CA (1985) Enhancement of hippocampal field potentials in rats exposed to a novel, complex environment. Brain Res 339(2):361–365

    Article  PubMed  CAS  Google Scholar 

  • Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats—behavioural and neurochemical aspects. Behav Brain Res 222:246–264

    Article  PubMed  CAS  Google Scholar 

  • Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 85:2423–2431

    PubMed  CAS  Google Scholar 

  • Sutherland R, Gibb R, Kolb B (2010) The hippocampus makes a significant contribution to experience-dependent neocortical plasticity. Behav Brain Res 214(1):121–124

    Article  PubMed  Google Scholar 

  • Swanson L, Kohler C (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci 6(10):3010–3023

    PubMed  CAS  Google Scholar 

  • Teather LA, Magnusson JE, Chow CM, Wurtman RJ (2002) Environmental conditions influence hippocampus-dependent behaviours and brain levels of amyloid precursor protein in rats. Eur J Neurosci 16(12):2405–2415

    Article  PubMed  Google Scholar 

  • Turner AM, Greenough WT (1985) Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res 329(1–2):195–203

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22(5):221–227

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435

    Article  PubMed  CAS  Google Scholar 

  • Valero J, Espana J, Parra-Damas A, Martin E, Rodriguez-Alvarez J, Saura CA (2011) Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APPsw, ind transgenic mice. PLoS ONE 6(2):e16832

    Article  PubMed  CAS  Google Scholar 

  • van der Staay FJ, Arndt SS, Nordquist RE (2010) The standarization-generalization dilemma: a way out. Genes Brain Behav 9:849–855

    Article  PubMed  Google Scholar 

  • Van Hoesen G (1982) The parahippocampal gyrus: new observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350

    Article  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999a) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci 96(23):13427–13431

    Article  PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999b) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270

    Article  PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of enviromental enrichment. Nat Rev Neurosci 1(3):191–198

    Article  PubMed  Google Scholar 

  • Volkmar FR, Greenough WT (1972) Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science (New York, NY) 176(42):1445–1447

    Google Scholar 

  • Walsh RN, Budtz-Olsen OE, Penny JE, Cummins RA (1969) The effects of environmental complexity on the histology of the rat hippocampus. J Comp Neurol 137(3):361–366

    Article  PubMed  CAS  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    PubMed  CAS  Google Scholar 

  • Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp H-P, Wurbel H (2004) Cage enrichment and mouse behaviour. Nature 432:821–822

    Article  PubMed  CAS  Google Scholar 

  • Yeh CM, Huang CC, Hsu KS (2012) Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-brain-derived neurotrophic factor (BDNF) to mature BDNF. J Physiol 590:991–1010

    PubMed  CAS  Google Scholar 

  • Young D, Lawlor PA, Leone P, Dragunow M, During MJ (1999) Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 5(4):448–453

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Zhang J, Sun H, Zhang L, Liu H, Zeng X, Yang Y, Yao Z (2011) An enriched environment reverses the synaptic plasticity deficit induced by chronic cerebral hypoperfusion. Neurosci Lett 502(2):71–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work presented from the Abraham laboratory was supported in part by grants from the Royal Society of New Zealand Marsden fund and a James Cook Fellowship to W.C.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eckert, M.J., Abraham, W.C. (2012). Effects of Environmental Enrichment Exposure on Synaptic Transmission and Plasticity in the Hippocampus. In: Belzung, C., Wigmore, P. (eds) Neurogenesis and Neural Plasticity. Current Topics in Behavioral Neurosciences, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2012_215

Download citation

Publish with us

Policies and ethics