Skip to main content

Neural and Behavioral Endophenotypes in ADHD

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 11))

Abstract

In recent years, descriptive symptom-based approaches of attention deficit hyperactivity disorder (ADHD) have been increasingly replaced by more sophisticated endophenotype-based strategies, better suited to investigate its pathophysiological basis, which is inherently heterogeneous. Measurements derived from neuroimaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) constitute endophenotypes of growing interest, capable of providing unprecedented windows on neurochemical and neuroanatomical components of psychiatric conditions. This chapter reviews the current state of knowledge regarding putative neural and behavioral endophenotypes of ADHD, across the lifespan. To this end, recent evidence drawn from molecular and structural neuroimaging studies are discussed in the light of widely accepted neuropsychological and pharmacological models of ADHD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aalto S, Hirvonen J, Kaasinen V, Hagelberg N, Kajander J, Nagren K, Seppala T, Rinne JO, Scheinin H, Hietala J (2009) The effects of d-amphetamine on extrastriatal dopamine D2/D3 receptors: a randomized, double-blind, placebo-controlled PET study with [11C]FLB 457 in healthy subjects. Eur J Nucl Med Mol Imaging 36:475–483

    PubMed  CAS  Google Scholar 

  • Ackermann H, Graber S, Hertrich I, Daum I (1999) Cerebellar contributions to the perception of temporal cues within the speech and nonspeech domain. Brain Lang 67:228–241

    PubMed  CAS  Google Scholar 

  • Advokat C (2010) What are the cognitive effects of stimulant medications? Emphasis on adults with attention-deficit/hyperactivity disorder (ADHD). Neurosci Biobehav Rev 34:1256–1266

    PubMed  CAS  Google Scholar 

  • Ahrendts J, Rusch N, Wilke M, Philipsen A, Eickhoff SB, Glauche V, Perlov E, Ebert D, Hennig J, van Elst LT (2011) Visual cortex abnormalities in adults with ADHD: a structural MRI study. World J Biol Psychiatry 12:260–270

    PubMed  Google Scholar 

  • Almasy L, Blangero J (2001) Endophenotypes as quantitative risk factors for psychiatric disease: rationale and study design. Am J Med Genet 105:42–44

    PubMed  CAS  Google Scholar 

  • Almeida Montes LG, Ricardo-Garcell J, Martinez Garcia RB, Barajas De La Torre LB, Prado Alcantara H, Fernandez-Bouzas A, Avila Acosta D (2010) Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder. J Psychiatry Neurosci 35:238–246

    PubMed  Google Scholar 

  • Amico F, Stauber J, Koutsouleris N, Frodl T (2011) Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: a voxel-based morphometry study. Psychiatry Res 191:31–35

    PubMed  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55:362–368

    PubMed  CAS  Google Scholar 

  • Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61

    PubMed  CAS  Google Scholar 

  • Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94

    PubMed  CAS  Google Scholar 

  • Barkley RA (1998) Attention deficit/hyperactivity disorder: A handbook for diagnosis and treatment (2nd ed.). The Guildford Press, The Guildford Press, New York

    Google Scholar 

  • Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57:1215–1220

    PubMed  Google Scholar 

  • Biederman J, Faraone SV, Keenan K, Knee D, Tsuang MT (1990) Family-genetic and psychosocial risk factors in DSM-III attention deficit disorder. J Am Acad Child Adolesc Psychiatry 29:526–533

    PubMed  CAS  Google Scholar 

  • Biederman J, Mick E, Faraone SV (2000) Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. Am J Psychiatry 157:816–818

    PubMed  CAS  Google Scholar 

  • Biederman J, Monuteaux MC, Mick E, Spencer T, Wilens TE, Silva JM, Snyder LE, Faraone SV (2006) Young adult outcome of attention deficit hyperactivity disorder: a controlled 10-year follow-up study. Psychol Med 36:167–179

    PubMed  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    PubMed  CAS  Google Scholar 

  • Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B, Fink GR, Konrad K (2007) Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J Child Psychol Psychiatry 48:1251–1258

    PubMed  Google Scholar 

  • Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Anney R, Franke B, Gill M, Ebstein R, Buitelaar J, Sham P, Campbell D, Knight J, Andreou P, Altink M, Arnold R, Boer F, Buschgens C, Butler L, Christiansen H, Feldman L, Fleischman K, Fliers E, Howe-Forbes R, Goldfarb A, Heise A, Gabriels I, Korn-Lubetzki I, Johansson L, Marco R, Medad S, Minderaa R, Mulas F, Muller U, Mulligan A, Rabin K, Rommelse N, Sethna V, Sorohan J, Uebel H, Psychogiou L, Weeks A, Barrett R, Craig I, Banaschewski T, Sonuga-Barke E, Eisenberg J, Kuntsi J, Manor I, McGuffin P, Miranda A, Oades RD, Plomin R, Roeyers H, Rothenberger A, Sergeant J, Steinhausen HC, Taylor E, Thompson M, Faraone SV, Asherson P (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953

    PubMed  CAS  Google Scholar 

  • Burd L, Klug MG, Coumbe MJ, Kerbeshian J (2003) Children and adolescents with attention deficit-hyperactivity disorder: 1. Prevalence and cost of care. J Child Neurol 18:555–561

    PubMed  Google Scholar 

  • Bush G, Valera EM, Seidman LJ (2005) Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 57:1273–1284

    PubMed  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    PubMed  CAS  Google Scholar 

  • Carmona S, Vilarroya O, Bielsa A, Tremols V, Soliva JC, Rovira M, Tomas J, Raheb C, Gispert JD, Batlle S, Bulbena A (2005) Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett 389:88–93

    PubMed  CAS  Google Scholar 

  • Casey BJ, Epstein JN, Buhle J, Liston C, Davidson MC, Tonev ST, Spicer J, Niogi S, Millner AJ, Reiss A, Garrett A, Hinshaw SP, Greenhill LL, Shafritz KM, Vitolo A, Kotler LA, Jarrett MA, Glover G (2007) Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. Am J Psychiatry 164:1729–1736

    PubMed  CAS  Google Scholar 

  • Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL (2002) Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Jama 288:1740–1748

    PubMed  Google Scholar 

  • Castellanos FX, Sonuga Barke EJ, Milham MP, Tannock R (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 10:117–123

    PubMed  Google Scholar 

  • Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628

    PubMed  CAS  Google Scholar 

  • Castells X, Ramos-Quiroga JA, Bosch R, Nogueira M, Casas M (2011a) Amphetamines for Attention Deficit Hyperactivity Disorder (ADHD) in adults. Cochrane Database Syst Rev: CD007813

    Google Scholar 

  • Castells X, Ramos-Quiroga JA, Rigau D, Bosch R, Nogueira M, Vidal X, Casas M (2011b) Efficacy of methylphenidate for adults with attention-deficit hyperactivity disorder: a meta-regression analysis. CNS Drugs 25:157–169

    PubMed  CAS  Google Scholar 

  • Chamberlain SR, Robbins TW, Winder-Rhodes S, Muller U, Sahakian BJ, Blackwell AD, Barnett JH (2010) Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol Psychiatry 64(2):137–144

    Google Scholar 

  • Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD (2003) Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 30: 306–311

    Google Scholar 

  • Chudasama Y, Nathwani F, Robbins TW (2005) D-Amphetamine remediates attentional performance in rats with dorsal prefrontal lesions. Behav Brain Res 158:97–107

    PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW (2004) Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 174:86–98

    CAS  Google Scholar 

  • Clark L, Blackwell AD, Aron AR, Turner DC, Dowson J, Robbins TW, Sahakian BJ (2007) Association between response inhibition and working memory in adult ADHD: a link to right frontal cortex pathology? Biol Psychiatry 61:1395–1401

    PubMed  Google Scholar 

  • Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron JC, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696

    PubMed  CAS  Google Scholar 

  • Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cogn Neurosci 10:332–354

    PubMed  CAS  Google Scholar 

  • Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56:993–998

    PubMed  CAS  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143

    PubMed  CAS  Google Scholar 

  • Cropley VL, Innis RB, Nathan PJ, Brown AK, Sangare JL, Lerner A, Ryu YH, Sprague KE, Pike VW, Fujita M (2008) Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans. Synapse 62:399–408

    PubMed  CAS  Google Scholar 

  • Del Campo N, Acosta-Cabronero J, Suckling J, Chamberlain SR, Dowson J, Robbins TW, Sahakian BJ, Muller U (submitted) Distributed neuroanatomical abnormalities and attentional deficits in adult ADHD. Biol Psychiatry

    Google Scholar 

  • Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW (2011) The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 69:e145–e157

    PubMed  Google Scholar 

  • Depue BE, Burgess GC, Bidwell LC, Willcutt EG, Banich MT (2010) Behavioral performance predicts grey matter reductions in the right inferior frontal gyrus in young adults with combined type ADHD. Psychiatry Res 182:231–237

    PubMed  Google Scholar 

  • DeVito EE, Blackwell AD, Clark L, Kent L, Dezsery AM, Turner DC, Aitken MR, Sahakian BJ (2009) Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacology (Berl) 202:531–539

    CAS  Google Scholar 

  • Dodds CM, Muller U, Clark L, van Loon A, Cools R, Robbins TW (2008) Methylphenidate has differential effects on blood oxygenation level-dependent signal related to cognitive subprocesses of reversal learning. J Neurosci 28:5976–5982

    PubMed  CAS  Google Scholar 

  • Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133

    Google Scholar 

  • Doyle AE, Willcutt EG, Seidman LJ, Biederman J, Chouinard VA, Silva J, Faraone SV (2005) Attention-deficit/hyperactivity disorder endophenotypes. Biol Psychiatry 57:1324–1335

    PubMed  CAS  Google Scholar 

  • Dresel S, Krause J, Krause KH, LaFougere C, Brinkbaumer K, Kung HF, Hahn K, Tatsch K (2000) Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 27:1518–1524

    Google Scholar 

  • Durston S (2008) Converging methods in studying attention-deficit/hyperactivity disorder: what can we learn from neuroimaging and genetics? Dev Psychopathol 20:1133–1143

    PubMed  Google Scholar 

  • Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW (1997) Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology (Berl) 131:196–206

    CAS  Google Scholar 

  • Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM (1998) DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci 18:5901–5907

    PubMed  CAS  Google Scholar 

  • Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM (1999) High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry 156:1209–1215

    PubMed  CAS  Google Scholar 

  • Faraone SV, Biederman J (2005) What is the prevalence of adult ADHD? Results of a population screen of 966 adults. J Atten Disord 9:384–391

    PubMed  Google Scholar 

  • Faraone SV, Biederman J, Spencer T, Michelson D, Adler L, Reimherr F, Glatt SJ (2005) Efficacy of atomoxetine in adult attention-deficit/hyperactivity disorder: a drug-placebo response curve analysis. Behav Brain Funct 1:16

    PubMed  Google Scholar 

  • Faraone SV, Buitelaar J (2010) Comparing the efficacy of stimulants for ADHD in children and adolescents using meta-analysis. Eur Child Adolesc Psychiatry 19:353–364

    PubMed  Google Scholar 

  • Faraone SV, Glatt SJ (2010) A comparison of the efficacy of medications for adult attention-deficit/hyperactivity disorder using meta-analysis of effect sizes. J Clin Psychiatry 71:754–763

    PubMed  Google Scholar 

  • Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2:104–113

    PubMed  Google Scholar 

  • Finke K, Dodds CM, Bublak P, Regenthal R, Baumann F, Manly T, Muller U (2010) Effects of modafinil and methylphenidate on visual attention capacity: a TVA-based study. Psychopharmacology (Berl)

    Google Scholar 

  • Ford T, Goodman R, Meltzer H (2003) The British Child and Adolescent Mental Health Survey 1999: the prevalence of DSM-IV disorders. J Am Acad Child Adolesc Psychiatry 42:1203–1211

    PubMed  Google Scholar 

  • Forssberg H, Fernell E, Waters S, Waters N, Tedroff J (2006) Altered pattern of brain dopamine synthesis in male adolescents with attention deficit hyperactivity disorder. Behav Brain Funct 2:40

    PubMed  Google Scholar 

  • Franke B, Faraone SV, Asherson P, Buitelaar J, Bau CH, Ramos-Quiroga JA, Mick E, Grevet EH, Johansson S, Haavik J, Lesch KP, Cormand B, Reif A (2011) The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol Psychiatry 34(11):1061–1077

    Google Scholar 

  • Franke B, Neale BM, Faraone SV (2009) Genome-wide association studies in ADHD. Hum Genet 126:13–50

    PubMed  CAS  Google Scholar 

  • Frodl T, Skokauskas N (2011) Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand 124(6):497

    Google Scholar 

  • Froehlich TE, McGough JJ, Stein MA (2010) Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs 24:99–117

    PubMed  CAS  Google Scholar 

  • Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M (1997) Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Mol Psychiatry 2:311–313

    PubMed  CAS  Google Scholar 

  • Gizer IR, Ficks C, Waldman ID (2009) Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126:51–90

    PubMed  CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    PubMed  Google Scholar 

  • Greenhill LL, Biederman J, Boellner SW, Rugino TA, Sangal RB, Earl CQ, Jiang JG, Swanson JM (2006) A randomized, double-blind, placebo-controlled study of modafinil film-coated tablets in children and adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 45:503–511

    PubMed  Google Scholar 

  • Gupta R, Kar BR, Srinivasan N (2011) Cognitive-motivational deficits in ADHD: development of a classification system. Child Neuropsychol 17:67–81

    PubMed  Google Scholar 

  • Hesse S, Ballaschke O, Barthel H, Sabri O (2009) Dopamine transporter imaging in adult patients with attention-deficit/hyperactivity disorder. Psychiatry Res 171:120–128

    Google Scholar 

  • Hesslinger B, Tebartz van Elst L, Mochan F, Ebert D (2003) A psychopathological study into the relationship between attention deficit hyperactivity disorder in adult patients and recurrent brief depression. Acta Psychiatr Scand 107:385–389

    PubMed  CAS  Google Scholar 

  • Ilgin N, Senol S, Gucuyener K, Gokcora N, Sener S (2001) Is increased D2 receptor availability associated with response to stimulant medication in ADHD. Dev Med Child Neurol 43:755–760

    PubMed  CAS  Google Scholar 

  • Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L (2005) Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 57:229–238

    PubMed  CAS  Google Scholar 

  • Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, Diener HC (1995) Localization of a cerebellar timing process using PET. Neurology 45:1540–1545

    PubMed  CAS  Google Scholar 

  • Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O, Faraone SV, Greenhill LL, Howes MJ, Secnik K, Spencer T, Ustun TB, Walters EE, Zaslavsky AM (2006) The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 163:716–723

    PubMed  Google Scholar 

  • Kim CH, Hahn MK, Joung Y, Anderson SL, Steele AH, Mazei-Robinson MS, Gizer I, Teicher MH, Cohen BM, Robertson D, Waldman ID, Blakely RD, Kim KS (2006) A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc Natl Acad Sci USA 103:19164–19169

    PubMed  CAS  Google Scholar 

  • Koelega HS (1993) Stimulant drugs and vigilance performance: a review. Psychopharmacology (Berl) 111:1–16

    CAS  Google Scholar 

  • Konrad K, Eickhoff SB (2010) Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp 31:904–916

    PubMed  Google Scholar 

  • Krause J (2008) SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder. Expert Rev Neurother 8:611–625

    PubMed  CAS  Google Scholar 

  • Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K (2000) Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285:107–110

    Google Scholar 

  • Kuczenski R, Segal DS (1975) Differential effects of D- and L-amphetamine and methylphenidate on rat striatal dopamine biosynthesis. Eur J Pharmacol 30:244–251

    PubMed  CAS  Google Scholar 

  • Kuntsi J, McLoughlin G, Asherson P (2006a) Attention deficit hyperactivity disorder. Neuromolecular Med 8:461–484

    PubMed  CAS  Google Scholar 

  • Kuntsi J, Neale BM, Chen W, Faraone SV, Asherson P (2006b) The IMAGE project: methodological issues for the molecular genetic analysis of ADHD. Behav Brain Funct 2:27

    PubMed  Google Scholar 

  • la Fougere C (2006) Value of 99mTc-TRODAT-1 SPECT to predict clinical response to methylphenidate treatment in adults with attention deficit hyperactivity disorder. Nucl Medicine commun 27:733–734

    Google Scholar 

  • LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL (1996) Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1:121–124

    PubMed  CAS  Google Scholar 

  • Larisch R, Sitte W, Antke C, Nikolaus S, Franz M, Tress W, Muller HW (2006) Striatal dopamine transporter density in drug naive patients with attention-deficit/hyperactivity disorder. Nucl Med Commun 27:267–270

    PubMed  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    PubMed  CAS  Google Scholar 

  • Laruelle M, Iyer RN, al-Tikriti MS, Zea-Ponce Y, Malison R, Zoghbi SS, Baldwin RM, Kung HF, Charney DS, Hoffer PB, Innis RB, Bradberry CW (1997) Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 25:1–14

    PubMed  CAS  Google Scholar 

  • Liston C, Cohen MM, Teslovich T, Levenson D, Casey BJ (2011) Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatry 69:1168–1177

    PubMed  Google Scholar 

  • Ludolph AG, Kassubek J, Schmeck K, Glaser C, Wunderlich A, Buck AK, Reske SN, Fegert JM, Mottaghy FM (2008) Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: a 3,4-dihdroxy-6-[18F]fluorophenyl-l-alanine PET study. Neuroimage 41:718–727

    PubMed  Google Scholar 

  • Luman M, Oosterlaan J, Sergeant JA (2005) The impact of reinforcement contingencies on AD/HD: a review and theoretical appraisal. Clin Psychol Rev 25:183–213

    PubMed  Google Scholar 

  • Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF 3rd, Sharp WS, Giedd JN, Rapoport JL (2007) Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry 164:647–655

    PubMed  Google Scholar 

  • Madras BK, Fischman AJ, Meltzer PC (2006) Methods for diagnosing and monitoring treatment ADHD by assessing the dopamine transporter level. In: Office UP (ed), US

    Google Scholar 

  • Madras BK, Miller GM, Fischman AJ (2002) The dopamine transporter: relevance to attention deficit hyperactivity disorder (ADHD). Behav Brain Res 130:57–63

    PubMed  CAS  Google Scholar 

  • Makris N, Biederman J, Valera EM, Bush G, Kaiser J, Kennedy DN, Caviness VS, Faraone SV, Seidman LJ (2007) Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex 17:1364–1375

    PubMed  Google Scholar 

  • Makris N, Seidman LJ, Valera EM, Biederman J, Monuteaux MC, Kennedy DN, Caviness VS Jr, Bush G, Crum K, Brown AB, Faraone SV (2010) Anterior cingulate volumetric alterations in treatment-naive adults with ADHD: a pilot study. J Atten Disord 13:407–413

    PubMed  Google Scholar 

  • Mannuzza S, Klein RG, Bonagura N, Malloy P, Giampino TL, Addalli KA (1991) Hyperactive boys almost grown up. V. Replication of psychiatric status. Arch Gen Psychiatry 48:77–83

    PubMed  CAS  Google Scholar 

  • Maquet P, Lejeune H, Pouthas V, Bonnet M, Casini L, Macar F, Timsit-Berthier M, Vidal F, Ferrara A, Degueldre C, Quaglia L, Delfiore G, Luxen A, Woods R, Mazziotta JC, Comar D (1996) Brain activation induced by estimation of duration:a PET study. Neuroimage 3:119–126

    PubMed  CAS  Google Scholar 

  • Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang DR, Huang Y, Cooper T, Kegeles L, Zarahn E, Abi-Dargham A, Haber SN, Laruelle M (2003) Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23:285–300

    PubMed  CAS  Google Scholar 

  • Mattay VS, Berman KF, Ostrem JL, Esposito G, Van Horn JD, Bigelow LB, Weinberger DR (1996) Dextroamphetamine enhances “neural network-specific” physiological signals: a positron-emission tomography rCBF study. J Neurosci 16:4816–4822

    PubMed  CAS  Google Scholar 

  • Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, Coppola R, Berman KF, Goldberg TE, Weinberger DR (2000) Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 12:268–275

    PubMed  CAS  Google Scholar 

  • Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100:6186–6191

    PubMed  CAS  Google Scholar 

  • Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang DR, Huang Y, Simpson N, Ngo K, Van Heertum R, Laruelle M (2001) Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 21:1034–1057

    PubMed  CAS  Google Scholar 

  • McGough JJ, Smalley SL, McCracken JT, Yang M, Del’Homme M, Lynn DE, Loo S (2005) Psychiatric comorbidity in adult attention deficit hyperactivity disorder: findings from multiplex families. Am J Psychiatry 162:1621–1627

    PubMed  Google Scholar 

  • Mehta MA, Goodyer IM, Sahakian BJ (2004) Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry 45:293–305

    PubMed  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20:RC65

    PubMed  CAS  Google Scholar 

  • Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33:1477–1502

    PubMed  CAS  Google Scholar 

  • Molina BS, Hinshaw SP, Swanson JM, Arnold LE, Vitiello B, Jensen PS, Epstein JN, Hoza B, Hechtman L, Abikoff HB, Elliott GR, Greenhill LL, Newcorn JH, Wells KC, Wigal T, Gibbons RD, Hur K, Houck PR (2009) The MTA at 8 years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J Am Acad Child Adolesc Psychiatry 48:484–500

    PubMed  Google Scholar 

  • Montgomery AJ, Asselin MC, Farde L, Grasby PM (2007) Measurement of methylphenidate-induced change in extrastriatal dopamine concentration using [11C]FLB 457 PET. J Cereb Blood Flow Metab 27:369–377

    PubMed  CAS  Google Scholar 

  • Murphy K, Barkley RA (1996) Attention deficit hyperactivity disorder adults: comorbidities and adaptive impairments. Compr Psychiatry 37:393–401

    PubMed  CAS  Google Scholar 

  • Nakao T, Radua J, Rubia K, Mataix-Cols D (2011) Gray matter volume abnormalities in ADHD: Voxel-Based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry

    Google Scholar 

  • Naylor H, Halliday R, Callaway E (1985) The effect of methylphenidate on information processing. Psychopharmacology (Berl) 86:90–95

    CAS  Google Scholar 

  • Nigg JT (2005) Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the state of the field and salient challenges for the coming decade. Biol Psychiatry 57:1424–1435

    PubMed  Google Scholar 

  • Paloyelis Y, Mehta MA, Kuntsi J, Asherson P (2007) Functional MRI in ADHD: a systematic literature review. Expert Rev Neurother 7:1337–1356

    PubMed  Google Scholar 

  • Pennington BF, Ozonoff S (1996) Executive functions and developmental psychopathology. J Child Psychol Psychiatry 37:51–87

    PubMed  CAS  Google Scholar 

  • Perlov E, Philipsen A, Tebartz van Elst L, Ebert D, Henning J, Maier S, Bubl E, Hesslinger B (2008) Hippocampus and amygdala morphology in adults with attention-deficit hyperactivity disorder. J Psychiatry Neurosci 33:509–515

    PubMed  Google Scholar 

  • Pietrzak RH, Mollica CM, Maruff P, Snyder PJ (2006) Cognitive effects of immediate-release methylphenidate in children with attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 30:1225–1245

    PubMed  CAS  Google Scholar 

  • Plomp E, Van Engeland H, Durston S (2009) Understanding genes, environment and their interaction in attention-deficit hyperactivity disorder: is there a role for neuroimaging? Neuroscience 164:230–240

    PubMed  CAS  Google Scholar 

  • Rapoport JL, Buchsbaum MS, Weingartner H, Zahn TP, Ludlow C, Mikkelsen EJ (1980) Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men. Arch Gen Psychiatry 37:933–943

    PubMed  CAS  Google Scholar 

  • Rapoport JL, Buchsbaum MS, Zahn TP, Weingartner H, Ludlow C, Mikkelsen EJ (1978) Dextroamphetamine: cognitive and behavioral effects in normal prepubertal boys. Science 199:560–563

    PubMed  CAS  Google Scholar 

  • Rhodes SM, Coghill DR, Matthews K (2006) Acute neuropsychological effects of methylphenidate in stimulant drug-naive boys with ADHD II–broader executive and non-executive domains. J Child Psychol Psychiatry 47:1184–1194

    PubMed  Google Scholar 

  • Riccardi P, Li R, Ansari MS, Zald D, Park S, Dawant B, Anderson S, Doop M, Woodward N, Schoenberg E, Schmidt D, Baldwin R, Kessler R (2006a) Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology 31:1016–1026

    PubMed  CAS  Google Scholar 

  • Riccardi P, Zald D, Li R, Park S, Ansari MS, Dawant B, Anderson S, Woodward N, Schmidt D, Baldwin R, Kessler R (2006b) Sex differences in amphetamine-induced displacement of [(18)F]fallypride in striatal and extrastriatal regions:a PET study. Am J Psychiatry 163:1639–1641

    PubMed  Google Scholar 

  • Richards TL, Deffenbacher JL, Rosen LA, Barkley RA, Rodricks T (2006) Driving anger and driving behavior in adults with ADHD. J Atten Disord 10:54–64

    PubMed  Google Scholar 

  • Robbins TW (2010) From Behavior to Cognition: Functions of Mesostriatal, Mesolimbic and Mesocortical Dopamine Systems. In: Iversen LL, Iversen SD, Dunnett SB, Bjorklund A (eds) Dopamine Handbook. Oxford University Press, New York, pp 203–214

    Google Scholar 

  • Robbins TW, Sahakian BJ (1979) “Paradoxical” effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioural pharmacology. Neuropharmacology 18:931–950

    PubMed  CAS  Google Scholar 

  • Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14:2531–2544

    PubMed  CAS  Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC, Matthews K, Hawtin K, Crowley C, Hopwood A, Wallace C, Deakin JF, Sahakian BJ, Robbins TW (1999) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology (Berl) 146:482–491

    CAS  Google Scholar 

  • Rosa-Neto P, Lou HC, Cumming P, Pryds O, Karrebaek H, Lunding J, Gjedde A (2005) Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. Neuroimage 25:868–876

    PubMed  Google Scholar 

  • Rosa-Neto P, Lou H, Cumming P, Pryds O, Gjedde A (2002) Methylphenidatee-voked potentiation of extracellular dopamine in the brain of adolescents with premature birth: correlation with attentional deficit. Ann N Y Acad Sci 965:434–439

    Google Scholar 

  • Rubia K, Smith A (2004) The neural correlates of cognitive time management: a review. Acta Neurobiol Exp (Wars) 64:329–340

    Google Scholar 

  • Rubia K, Smith A, Taylor E (2007) Performance of children with attention deficit hyperactivity disorder (ADHD) on a test battery of impulsiveness. Child Neuropsychol 13:276–304

    PubMed  Google Scholar 

  • Sahakian BJ, Robbins TW (1977) Are the effects of psychomotor stimulant drugs on hyperactive children really paradoxical? Med Hypotheses 3:154–158

    PubMed  CAS  Google Scholar 

  • Seidman LJ, Valera EM, Makris N (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1263–1272

    PubMed  Google Scholar 

  • Seidman LJ, Valera EM, Makris N, Monuteaux MC, Boriel DL, Kelkar K, Kennedy DN, Caviness VS, Bush G, Aleardi M, Faraone SV, Biederman J (2006) Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry 60:1071–1080

    PubMed  Google Scholar 

  • Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L, Evans A, Giedd J, Rapoport JL (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA 104:19649–19654

    PubMed  CAS  Google Scholar 

  • Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J, Castellanos FX, Rapoport J (2006) Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 63:540–549

    PubMed  Google Scholar 

  • Slifstein M, Kegeles LS, Xu X, Thompson JL, Urban N, Castrillon J, Hackett E, Bae SA, Laruelle M, Abi-Dargham A (2010) Striatal and extrastriatal dopamine release measured with PET and [(18)F] fallypride. Synapse 64:350–362

    PubMed  CAS  Google Scholar 

  • Smith A, Taylor E, Lidzba K, Rubia K (2003) A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage 20:344–350

    PubMed  Google Scholar 

  • Smith ME, Farah MJ (2011) Are prescription stimulants “smart pills”? The epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals. Psychol Bull 137:717–741

    PubMed  Google Scholar 

  • Solanto MV (2001) Attention-deficit/hyperactivity disorder. Oxford University Press, Oxford

    Google Scholar 

  • Sonuga-Barke EJ (2003) The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev 27:593–604

    PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Welcome SE, Henkenius AL, Toga AW, Peterson BS (2003) Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 362:1699–1707

    PubMed  Google Scholar 

  • Spencer TJ, Adler LA, McGough JJ, Muniz R, Jiang H, Pestreich L (2007) Efficacy and safety of dexmethylphenidate extended-release capsules in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 61:1380–1387

    PubMed  CAS  Google Scholar 

  • Spencer TJ, Biederman J, Madras BK, Faraone SV, Dougherty DD, Bonab AA, Fischman AJ (2005) In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter. Biol Psychiatry 57:1293–1300

    PubMed  CAS  Google Scholar 

  • Strauss J, Lewis JL, Klorman R, Peloquin LJ, Perlmutter RA, Salzman LF (1984) Effects of methylphenidate on young adults’ performance and event-related potentials in a vigilance and a paired-associates learning test. Psychophysiology 21:609–621

    PubMed  CAS  Google Scholar 

  • Swainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW (2000) Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia 38:596–612

    PubMed  CAS  Google Scholar 

  • Swanson J, Baler RD, Volkow ND (2011a) Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress. Neuropsychopharmacology 36:207–226

    PubMed  CAS  Google Scholar 

  • Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, Wigal T, Lerner M, Williams L, LaHoste GJ, Wigal S (1998) Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Mol Psychiatry 3:38–41

    PubMed  CAS  Google Scholar 

  • Swanson JM, Wigal TL, Volkow ND (2011b) Contrast of medical and nonmedical use of stimulant drugs, basis for the distinction, and risk of addiction: comment on Smith and Farah (2011). Psychol Bull 137:742–748

    PubMed  Google Scholar 

  • Turner DC, Blackwell AD, Dowson JH, McLean A, Sahakian BJ (2005) Neurocognitive effects of methylphenidate in adult attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 178:286–295

    CAS  Google Scholar 

  • Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003) Relative lack of cognitive effects of methylphenidate in elderly male volunteers. Psychopharmacology (Berl) 168:455–464

    CAS  Google Scholar 

  • Vaidya CJ, Bunge SA, Dudukovic NM, Zalecki CA, Elliott GR, Gabrieli JD (2005) Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging. Am J Psychiatry 162:1605–1613

    PubMed  Google Scholar 

  • van ‘t Ent D, Lehn H, Derks EM, Hudziak JJ, Van Strien NM, Veltman DJ, De Geus EJ, Todd RD, Boomsma DI (2007) A structural MRI study in monozygotic twins concordant or discordant for attention/hyperactivity problems: evidence for genetic and environmental heterogeneity in the developing brain. Neuroimage 35:1004–1020

    Google Scholar 

  • van Dyck CH, Quinlan DM, Cretella LM, Staley JK, Malison RT, Baldwin RM, Seibyl JP, Innis RB (2002) Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am J Psychiatry 159:309–312

    Google Scholar 

  • Volkow ND (2006) Stimulant medications: how to minimize their reinforcing effects? Am J Psychiatry 163:359–361

    PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Schlyer D, Hitzemann R, Lieberman J, Angrist B, Pappas N, MacGregor R et al (1994) Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 16:255–262

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Newcorn J, Fowler JS, Telang F, Solanto MV, Logan J, Wong C, Ma Y, Swanson JM, Schulz K, Pradhan K (2007a) Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 34:1182–1190

    PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Newcorn J, Telang F, Solanto MV, Fowler JS, Logan J, Ma Y, Schulz K, Pradhan K, Wong C, Swanson JM (2007b) Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64:932–940

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, Telang F, Fowler JS, Zhu W, Logan J, Ma Y, Pradhan K, Wong C, Swanson JM (2009) Evaluating dopamine reward pathway in ADHD: clinical implications. Jama 302:1084–1091

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Newcorn JH, Kollins SH, Wigal TL, Telang F, Fowler JS, Goldstein RZ, Klein N, Logan J, Wong C, Swanson JM (2010) Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry 20(4):717–734

    Google Scholar 

  • Wang J, Jiang T, Cao Q, Wang Y (2007) Characterizing anatomic differences in boys with attention deficit/hyperactivity disorder with the use of deformation based morphometry. AJNR Am J Neuroradiol 28:543–547

    PubMed  CAS  Google Scholar 

  • Wilens TE (2008) Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 28:S46–S53

    PubMed  CAS  Google Scholar 

  • Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57:1336–1346

    PubMed  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–575

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia del Campo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

del Campo, N., Müller, U., Sahakian, B.J. (2012). Neural and Behavioral Endophenotypes in ADHD. In: Carter, C., Dalley, J. (eds) Brain Imaging in Behavioral Neuroscience. Current Topics in Behavioral Neurosciences, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2012_200

Download citation

Publish with us

Policies and ethics