Skip to main content

Selectively Bred Rodents as Models of Depression and Anxiety

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 12)

Abstract

Stress related diseases such as depression and anxiety have a high degree of co morbidity, and represent one of the greatest therapeutic challenges for the twenty-first century. The present chapter will summarize existing rodent models for research in psychiatry, mimicking depression- and anxiety-related diseases. In particular we will highlight the use of selective breeding of rodents for extremes in stress-related behavior. We will summarize major behavioral, neuroendocrine and neuronal parameters, and pharmacological interventions, assessed in great detail in two rat model systems: The Flinders Sensitive and Flinders Resistant Line rats (FSL/FRL model), and rats selectively bred for high (HAB) or low (LAB) anxiety related behavior (HAB/LAB model). Selectively bred rodents also provide an excellent tool in order to study gene and environment interactions. Although it is generally accepted that genes and environmental factors determine the etiology of mental disorders, precise information is limited: How rigid is the genetic disposition? How do genetic, prenatal and postnatal influences interact to shape adult disease? Does the genetic predisposition determine the vulnerability to prenatal and postnatal or adult stressors? In combination with modern neurobiological methods, these models are important to elucidate the etiology and pathophysiology of anxiety and affective disorders, and to assist in the development of new treatment paradigms.

Keywords

  • Animal models
  • Selective breeding
  • Depression
  • Anxiety

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7854_2011_192
  • Chapter length: 49 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27859-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abe H, Hidaka N, Kawagoe C, Odagiri K, Watanabe Y, Ikeda T, Ishizuka Y, Hashiguchi H, Takeda R, Nishimori T, Ishida Y (2007) Prenatal psychological stress causes higher emotionality, depression-like behavior, and elevated activity in the hypothalamo-pituitary-adrenal axis. Neurosci Res 59(2):145–151

    PubMed  CAS  CrossRef  Google Scholar 

  • Abildgaard A, Solskov L, Volke V, Harvey BH, Lund S, Wegener G (2010) A high-fat diet exacerbates depressive-like behavior in the flinders sensitive line (FSL) rat, a genetic model of depression. Psychoneuroendocrinology. doi: 10.1016/j.psyneuen.2010.09.004

  • Adrien J (2002) Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 6(5):341–351

    PubMed  Google Scholar 

  • Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 24(6):1069–1078

    PubMed  CAS  CrossRef  Google Scholar 

  • Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J (2005) Cost of disorders of the brain in Europe. Eur J Neurol 12(Suppl 1):1–27

    PubMed  CrossRef  Google Scholar 

  • Arango V, Underwood MD, Gubbi AV, Mann JJ (1995) Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res 688(1–2):121–133

    PubMed  CAS  CrossRef  Google Scholar 

  • Arora RC, Tong C, Jackman HL (1983) Serotonin uptake and imipramine binding in blood platelets and brain of Fawn-hooded and Sprague-Dawley rats. Life Sci 33(5):437–442

    PubMed  CAS  CrossRef  Google Scholar 

  • Asberg M, Bertilsson L, Martensson B (1984) CSF monoamine metabolites in melancholia. Acta Psychiatrica Scandinavica 69(3):201–219

    PubMed  CAS  CrossRef  Google Scholar 

  • Aulakh CS, Wozniak KM, Hill JL, Devane CL, Tolliver TJ, Murphy DL (1988) Differential neuroendocrine responses to the 5-HT agonist m-chlorophenylpiperazine in Fawn-hooded rats relative to Wistar and Sprague-Dawley rats. Neuroendocrinology 48(4):401–406

    PubMed  CAS  CrossRef  Google Scholar 

  • Aulakh CS, Hill JL, Murphy DL (1993) Attenuation of hypercortisolemia in Fawn-hooded rats by antidepressant drugs. Eur J Pharmacol 240(1):85–88

    PubMed  CAS  CrossRef  Google Scholar 

  • Aulakh CS, Tolliver T, Wozniak KM, Hill JL, Murphy DL (1994) Functional and biochemical evidence for altered serotonergic function in the Fawn-hooded rat strain. Pharmacol Biochem Behav 49(3):615–620

    PubMed  CAS  CrossRef  Google Scholar 

  • Aydemir C, Yalcin ES, Aksaray S, Kisa C, Yildirim SG, Uzbay T, Goka E (2006) Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women. Prog Neuropsychopharmacol Biol Psychiatry 30(7):1256–1260

    PubMed  CAS  CrossRef  Google Scholar 

  • Ayensu WK, Pucilowski O, Mason GA, Overstreet DH, Rezvani AH, Janowsky DS (1995) Effects of chronic mild stress on serum complement activity, saccharin preference, and corticosterone levels in flinders lines of rats. Physiol Behav 57(1):165–169

    PubMed  CAS  CrossRef  Google Scholar 

  • Bale TL (2006) Stress sensitivity and the development of affective disorders. Horm Behav 50(4):529–533

    PubMed  CAS  CrossRef  Google Scholar 

  • Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, Nemeroff CB, Reyes TM, Simerly RB, Susser ES, Nestler EJ (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68(4):314–319

    PubMed  CrossRef  Google Scholar 

  • Barefoot JC, Schroll M (1996) Symptoms of depression, acute myocardial infarction, and total mortality in a community sample. Circulation 93(11):1976–1980

    PubMed  CAS  Google Scholar 

  • Barrot M, Wallace DL, Bolanos CA, Graham DL, Perrotti LI, Neve RL, Chambliss H, Yin JC, Nestler EJ (2005) Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens. Proc Natl Acad Sci USA 102(23):8357–8362

    PubMed  CAS  CrossRef  Google Scholar 

  • Beiderbeck DI, Neumann ID, Veenema AH (2007) Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety. Eur J Neurosci 26(12):3597–3605

    PubMed  CrossRef  Google Scholar 

  • Benca RM (1996) Sleep in psychiatric disorders. Neurol Clin 14(4):739–764

    PubMed  CAS  CrossRef  Google Scholar 

  • Benca RM, Obermeyer WH, Thisted RA, Gillin JC (1992) Sleep and psychiatric disorders. A meta-anal Arch Gen Psychiatry 49(8):651–668 discussion 669–670

    CAS  CrossRef  Google Scholar 

  • Benca RM, Overstreet DE, Gilliland MA, Russell D, Bergmann BM, Obermeyer WH (1996) Increased basal REM sleep but no difference in dark induction or light suppression of REM sleep in flinders rats with cholinergic supersensitivity. Neuropsychopharmacology 15(1):45–51

    PubMed  CAS  CrossRef  Google Scholar 

  • Bendotti C, Samanin R (1987) The role of putative 5-HT(1A) and 5-HT(1B) receptors in the control of feeding in rats. Life Sci 41(5):635–642

    PubMed  CAS  CrossRef  Google Scholar 

  • Bignami G (1965) Selection for high rates and low rates of avoidance conditioning in the rat. Anim Behav 13(2–3):221–227

    PubMed  CAS  CrossRef  Google Scholar 

  • Bjornebekk A, Mathe AA, Brene S (2005) The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol 8(3):357–368

    PubMed  CAS  CrossRef  Google Scholar 

  • Bjornebekk A, Mathe AA, Brene S (2006) Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls. Neuropsychopharmacology 31(2):256–264

    PubMed  CAS  CrossRef  Google Scholar 

  • Bjornebekk A, Mathe AA, Gruber SH, Brene S (2007) Social isolation increases number of newly proliferated cells in hippocampus in female flinders sensitive line rats. Hippocampus 17(12):1193–1200

    PubMed  CrossRef  Google Scholar 

  • Bjornebekk A, Mathe AA, Brene S (2010) The antidepressant effects of running and escitalopram are associated with levels of hippocampal NPY and Y1 receptor but not cell proliferation in a rat model of depression. Hippocampus 20(7):820–828

    PubMed  CAS  Google Scholar 

  • Blizard DA, Adams N (2002) The maudsley reactive and nonreactive strains: a new perspective. Behav Genet 32(5):277–299

    PubMed  CrossRef  Google Scholar 

  • Blume A, Bosch OJ, Miklos S, Torner L, Wales L, Waldherr M, Neumann ID (2008) Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur J Neurosci 27(8):1947–1956

    PubMed  CrossRef  Google Scholar 

  • Bosch OJ, Neumann ID (2008) Brain vasopressin is an important regulator of maternal behavior independent of dams’ trait anxiety. Proc Natl Acad Sci USA 105(44):17139–17144

    PubMed  CAS  CrossRef  Google Scholar 

  • Bosch OJ, Neumann ID (2010) Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci 31(5):883–891

    PubMed  CrossRef  Google Scholar 

  • Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25(29):6807–6815

    PubMed  CAS  CrossRef  Google Scholar 

  • Bosch OJ, Kromer SA, Neumann ID (2006) Prenatal stress: opposite effects on anxiety and hypothalamic expression of vasopressin and corticotropin-releasing hormone in rats selectively bred for high and low anxiety. Eur J Neurosci 23(2):541–551

    PubMed  CrossRef  Google Scholar 

  • Bosch OJ, Musch W, Bredewold R, Slattery DA, Neumann ID (2007) Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: implications for postpartum mood disorder. Psychoneuroendocrinology 32(3):267–278

    PubMed  CAS  CrossRef  Google Scholar 

  • Bosch OJ, Pfortsch J, Beiderbeck DI, Landgraf R, Neumann ID (2010) Maternal behaviour is associated with vasopressin release in the medial preoptic area and bed nucleus of the stria terminalis in the rat. J Neuroendocrinol 22(5):420–429

    PubMed  CAS  CrossRef  Google Scholar 

  • Braw Y, Malkesman O, Dagan M, Bercovich A, Lavi-Avnon Y, Schroeder M, Overstreet DH, Weller A (2006) Anxiety-like behaviors in pre-pubertal rats of the flinders sensitive line (FSL) and Wistar-Kyoto (WKY) animal models of depression. Behav Brain Res 167(2):261–269

    PubMed  CAS  CrossRef  Google Scholar 

  • Breier A, Albus M, Pickar D, Zahn TP, Wolkowitz OM, Paul SM (1987) Controllable and uncontrollable stress in humans: alterations in mood and neuroendocrine and psychophysiological function. Am J Psychiatry 144(11):1419–1425

    PubMed  CAS  Google Scholar 

  • Brene S, Bjornebekk A, Aberg E, Mathe AA, Olson L, Werme M (2007) Running is rewarding and antidepressive. Physiol Behav 92(1–2):136–140

    PubMed  CAS  CrossRef  Google Scholar 

  • Broadhurst PL (1957) Determinants of emotionality in the rat. I. Situational factors. Br J Psychol (London, England : 1953) 48(1):1–12

    Google Scholar 

  • Broadhurst PL (1960) Experiments in psychogenetics: applications of biometrical genetics to the inheritance of behaviour. In: Eysenck HJ (ed) Experiments in personality. Psychogenetics and psychopharmacology, vol 1. Routledge & Kegan Paul, London, pp 1–102

    Google Scholar 

  • Broadhurst PL (1962) A note on further progress in a psychogenetic selection experiment. Psychol Rep 10:65–66

    CrossRef  Google Scholar 

  • Broadhurst PL (1975) The maudsley reactive and nonreactive strains of rats: a survey. Behav Genet 5(4):299–319

    PubMed  CAS  CrossRef  Google Scholar 

  • Brush FR (2003) Selection for differences in avoidance learning: the syracuse strains differ in anxiety, not learning ability. Behav Genet 33(6):677–696

    PubMed  CrossRef  Google Scholar 

  • Brush FR, Froehlich JC, Sakellaris PC (1979) Genetic selection for avoidance behavior in the rat. Behav Genet 9(4):309–316

    PubMed  CAS  CrossRef  Google Scholar 

  • Brush FR, Baron S, Froehlich JC, Ison JR, Pellegrino LJ, Phillips DS, Sakellaris PC, Williams VN (1985) Genetic differences in avoidance learning by rattus norvegicus: escape/avoidance responding, sensitivity to electric shock, discrimination learning, and open-field behavior. J comp Psychol (Washington, DC: 1983) 99(1):60–73

    Google Scholar 

  • Brush FR, Blanchard RJ, Blanchard DC (1989) Social dominance and response to a natural predator by rats selectively bred for differences in shuttle-box avoidance learning. Ethoexperimental Approaches to the study of behavior, pp 411–417

    Google Scholar 

  • Bunck M, Czibere L, Horvath C, Graf C, Frank E, Kessler MS, Murgatroyd C, Muller-Myhsok B, Gonik M, Weber P, Putz B, Muigg P, Panhuysen M, Singewald N, Bettecken T, Deussing JM, Holsboer F, Spengler D, Landgraf R (2009) A hypomorphic vasopressin allele prevents anxiety-related behavior. PLoS One 4(4):e5129

    PubMed  CrossRef  CAS  Google Scholar 

  • Bus BA, Molendijk ML, Penninx BJ, Buitelaar JK, Kenis G, Prickaerts J, Elzinga BM, Voshaar RC (2011) Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 36(2):228–239

    PubMed  CAS  CrossRef  Google Scholar 

  • Bushnell PJ, Levin ED, Overstreet DH (1995) Spatial working and reference memory in rats bred for autonomic sensitivity to cholinergic stimulation: acquisition, accuracy, speed, and effects of cholinergic drugs. Neurobiol Learn Mem 63(2):116–132

    PubMed  CAS  CrossRef  Google Scholar 

  • Caberlotto L, Hurd YL (2001) Neuropeptide Y Y(1) and Y(2) receptor mrna expression in the prefrontal cortex of psychiatric subjects. Relationship of Y(2) subtype to suicidal behavior. Neuropsychopharmacology 25(1):91–97

    PubMed  CAS  CrossRef  Google Scholar 

  • Caberlotto L, Jimenez P, Overstreet DH, Hurd YL, Mathe AA, Fuxe K (1999) Alterations in neuropeptide Y levels and Y1 binding sites in the flinders sensitive line rats, a genetic animal model of depression. Neurosci Lett 265(3):191–194

    PubMed  CAS  CrossRef  Google Scholar 

  • Campbell DT, Fiske DW (1959) Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol Bull 56(2):81–105

    PubMed  CAS  CrossRef  Google Scholar 

  • Carboni L, Becchi S, Piubelli C, Mallei A, Giambelli R, Razzoli M, Mathe AA, Popoli M, Domenici E (2010) Early-life stress and antidepressants modulate peripheral biomarkers in a gene-environment rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry 34(6):1037–1048

    PubMed  CAS  CrossRef  Google Scholar 

  • Carney RM, Rich MW, Freedland KE, Saini J, TeVelde A, Simeone C, Clark K (1988) Major depressive disorder predicts cardiac events in patients with coronary artery disease. Psychosom Med 50(6):627–633

    PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    PubMed  CAS  CrossRef  Google Scholar 

  • Cerbone A, Pellicano MP, Sadile AG (1993) Evidence for and against the naples high- and low-excitability rats as genetic model to study hippocampal functions. Neurosci Biobehav Rev 17(3):295–303

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50(4):260–265

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen F, Madsen TM, Wegener G, Nyengaard JR (2010) Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression. Hippocampus 20(12):1376–1384

    PubMed  CAS  CrossRef  Google Scholar 

  • Clause BT (1998) The Wistar Institute Archives: rats (not mice) and history. http://www.amphilsoc.org/mendel/1998.htm#Clause. Accessed 9th Sept 2010

  • Cloninger CR, Reich T, Wetzel R (1979) Alcoholism and affective disorders: familial associations and genetic models. alcoholism and affective disorders: clinical, genetic and biochemical studies. In: Goodwin DW, Erickson CK (eds) Alcoholism and affective disorders. SP Medical and Scientific Books, New York, pp 57–86

    Google Scholar 

  • Coenen AML, Van Luijtelaar ELJM (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33(6):635–655

    PubMed  CAS  CrossRef  Google Scholar 

  • Costall B, Naylor RJ (1973) The role of telencephalic dopaminergic systems in the mediation of apomorphine stereotyped behaviour. Eur J Pharmacol 24(1):8–24

    PubMed  CAS  CrossRef  Google Scholar 

  • Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:19

    PubMed  CrossRef  CAS  Google Scholar 

  • Crocker AD, Overstreet DH (1991) Dopamine sensitivity in rats selectively bred for increases in cholinergic function. Pharmacol Biochem Behav 38(1):105–108

    PubMed  CAS  CrossRef  Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide in neuronal degeneration. Proc Soc Exp Biol Med 211(1):33–40

    PubMed  CAS  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19(3):269–301

    PubMed  CrossRef  Google Scholar 

  • Deuschle M, Schweiger U, Weber B, Gotthardt U, Körner A, Schmider J, Standhardt H, Lammers CH, Heuser I (1997) Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. J Clin Endocrinol Metab 82(1):234–238

    PubMed  CAS  CrossRef  Google Scholar 

  • Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, Gandevia SC, Gomez-Pinilla F, Greenwood BN, Hillman CH, Kramer AF, Levin BE, Moran TH, Russo-Neustadt AA, Salamone JD, Van Hoomissen JD, Wade CE, York DA, Zigmond MJ (2006) Neurobiology of exercise. Obesity (Silver Spring) 14(3):345–356

    CAS  CrossRef  Google Scholar 

  • Ditzen C, Varadarajulu J, Czibere L, Gonik M, Targosz BS, Hambsch B, Bettecken T, Kessler MS, Frank E, Bunck M, Teplytska L, Erhardt A, Holsboer F, Muller-Myhsok B, Landgraf R, Turck CW (2010) Proteomic-based genotyping in a mouse model of trait anxiety exposes disease-relevant pathways. Mol Psychiatry 15(7):702–711

    PubMed  CAS  CrossRef  Google Scholar 

  • Donner N, Bredewold R, Maloumby R, Neumann ID (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25(6):1804–1814

    PubMed  CrossRef  Google Scholar 

  • Dremencov E, Gispan-Herman I, Rosenstein M, Mendelman A, Overstreet DH, Zohar J, Yadid G (2004) The serotonin-dopamine interaction is critical for fast-onset action of antidepressant treatment: in vivo studies in an animal model of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 28(1):141–147

    CAS  CrossRef  Google Scholar 

  • Dumbrille-Ross A, Tang SW (1981) Absence of high-affinity [3H]imipramine binding in platelets and cerebral cortex of Fawn-hooded rats. Eur J Pharmacol 72(1):137–138

    PubMed  CAS  CrossRef  Google Scholar 

  • Dunn AL, Dishman RK (1991) Exercise and the neurobiology of depression. Exerc Sport Sci Rev 19:41–98

    PubMed  CAS  CrossRef  Google Scholar 

  • Egede LE, Nietert PJ, Zheng D (2005) Depression and all-cause and coronary heart disease mortality among adults with and without diabetes. Diabetes Care 28(6):1339–1345

    PubMed  CrossRef  Google Scholar 

  • Einat H, Belmaker RH, Zangen A, Overstreet DH, Yadid G (2002) Chronic inositol treatment reduces depression-like immobility of flinders sensitive line rats in the forced swim test. DepressAnxiety 15(3):148–151

    CAS  Google Scholar 

  • El Khoury A, Gruber SH, Mork A, Mathe AA (2006) Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry 30(3):535–540

    PubMed  CAS  CrossRef  Google Scholar 

  • Elfving B, Plougmann PH, Muller HK, Mathe AA, Rosenberg R, Wegener G (2010a) Inverse correlation of brain and blood BDNF levels in a genetic rat model of depression. Int J Neuropsychopharmacol 13(5):563–572

    PubMed  CAS  CrossRef  Google Scholar 

  • Elfving B, Plougmann PH, Wegener G (2010b) Differential brain, but not serum VEGF levels in a genetic rat model of depression. Neurosci Lett 474(1):13–16

    PubMed  CAS  CrossRef  Google Scholar 

  • Ellenbroek BA, Cools AR (2000) Animal models for the negative symptoms of schizophrenia. Behav Pharmacol 11(3–4):223–233

    PubMed  CAS  CrossRef  Google Scholar 

  • Ellenbroek BA, Cools AR (2002) Apomorphine susceptibility and animal models for psychopathology: genes and environment. Behav Genet 32(5):349–361

    PubMed  CrossRef  Google Scholar 

  • Elzinga BM, Molendijk ML, Oude Voshaar RC, Bus BA, Prickaerts J, Spinhoven P, Penninx BJ (2011) The impact of childhood abuse and recent stress on serum brain-derived neurotrophic factor and the moderating role of BDNF val(66)met. Psychopharmacology (Berl) 214(1):319–328

    CAS  CrossRef  Google Scholar 

  • Engelmann M, Wotjak CT, Neumann I, Ludwig M, Landgraf R (1996) Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci Biobehav Rev 20(3):341–358

    PubMed  CAS  CrossRef  Google Scholar 

  • Frank E, Landgraf R (2008) The vasopressin system––from antidiuresis to psychopathology. Eur J Pharmacol 583(2–3):226–242

    PubMed  CAS  CrossRef  Google Scholar 

  • Frank E, Salchner P, Aldag JM, Salome N, Singewald N, Landgraf R, Wigger A (2006) Genetic predisposition to anxiety-related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat. Behav Neurosci 120(1):60–71

    PubMed  CrossRef  Google Scholar 

  • Frasure-Smith N, Lesperance F, Talajic M (1993) Depression following myocardial infarction: impact on 6-month survival. J Am Med Assoc 270(15):1819–1825

    CAS  CrossRef  Google Scholar 

  • Fujioka T, Fujioka A, Tan N, Chowdhury GMI, Mouri H, Sakata Y, Nakamura S (2001) Mild prenatal stress enhances learning performance in the non-adopted rat offspring. Neuroscience 103(2):301–307

    PubMed  CAS  CrossRef  Google Scholar 

  • Fumagalli F, Molteni R, Racagni G, Riva MA (2007) Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol 81(4):197–217

    PubMed  CrossRef  Google Scholar 

  • Gass P, Hellweg R (2010) Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker for affective disorders? Int J Neuropsychopharmacol 13(1):1–4

    PubMed  CAS  CrossRef  Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress, Raven Press, New York, pp 787–798

    Google Scholar 

  • Gómez F, Lahmame A, De Kloet ER, Armario A (1996) Hypothalamic-pituitary-adrenal response to chronic stress in five inbred rat strains: differential responses are mainly located at the adrenocortical level. Neuroendocrinology 63(4):327–337

    PubMed  CrossRef  Google Scholar 

  • Gutman DA, Coyer MJ, Boss-Williams KA, Owens MJ, Nemeroff CB, Weiss JM (2008) Behavioral effects of the CRF1 receptor antagonist R121919 in rats selectively bred for high and low activity in the swim test. Psychoneuroendocrinology 33(8):1093–1101

    PubMed  CAS  CrossRef  Google Scholar 

  • Hambsch B, Chen BG, Brenndorfer J, Meyer M, Avrabos C, Maccarrone G, Liu RH, Eder M, Turck CW, Landgraf R (2010) Methylglyoxal-mediated anxiolysis involves increased protein modification and elevated expression of glyoxalase 1 in the brain. J Neurochem 113(5):1240–1251

    PubMed  CAS  Google Scholar 

  • Haug TT, Mykletun A, Dahl AA (2004) The association between anxiety, depression, and somatic symptoms in a large population: the HUNT-II study. Psychosom Med 66(6):845–851

    PubMed  CrossRef  Google Scholar 

  • Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38(4):213–224

    PubMed  CAS  CrossRef  Google Scholar 

  • Hemingway H, Marmot M (1999) Psychosocial factors in the aetiology and prognosis of coronary heart disease: systematic review of prospective cohort studies. Br Med J 318(7196):1460–1467

    CAS  CrossRef  Google Scholar 

  • Henn FA, Vollmayr B (2005) Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 29(4–5):799–804

    PubMed  CrossRef  Google Scholar 

  • Henniger MS, Ohl F, Holter SM, Weissenbacher P, Toschi N, Lorscher P, Wigger A, Spanagel R, Landgraf R (2000) Unconditioned anxiety and social behaviour in two rat lines selectively bred for high and low anxiety-related behaviour. Behav Brain Res 111(1–2):153–163

    PubMed  CAS  CrossRef  Google Scholar 

  • Hinojosa FR, Spricigo L Jr, Izídio GS, Brüske GR, Lopes DM, Ramos A (2006) Evaluation of two genetic animal models in behavioral tests of anxiety and depression. Behav Brain Res 168(1):127–136

    PubMed  CrossRef  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23(5):477–501

    PubMed  CAS  CrossRef  Google Scholar 

  • Hou C, Jia F, Liu Y, Li L (2006) CSF serotonin, 5-hydroxyindolacetic acid and neuropeptide y levels in severe major depressive disorder. Brain Res 1095(1):154–158

    CrossRef  CAS  Google Scholar 

  • Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM (2001) Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in long evans rats and reversal with antidepressant treatment. Psychopharmacology (Berl) 158(4):366–373

    CAS  CrossRef  Google Scholar 

  • Husum H, Vasquez PA, Mathe AA (2001) Changed concentrations of tachykinins and neuropeptide Y in brain of a rat model of depression: lithium treatment normalizes tachykinins. Neuropsychopharmacology 24(2):183–191

    PubMed  CAS  CrossRef  Google Scholar 

  • Husum H, Van Kammen D, Termeer E, Bolwig G, Mathe A (2003) Topiramate normalizes hippocampal NPY-LI in flinders sensitive line ‘depressed’ rats and upregulates NPY, galanin, and CRH-LI in the hypothalamus: implications for mood-stabilizing and weight loss-inducing effects. Neuropsychopharmacology 28(7):1292–1299

    PubMed  CAS  CrossRef  Google Scholar 

  • Husum H, Aznar S, Hoyer-Hansen S, Larsen MH, Mikkelsen JD, Moller A, Mathe AA, Wortwein G (2006) Exacerbated loss of cell survival, neuropeptide Y-immunoreactive (IR) cells, and serotonin-IR fiber lengths in the dorsal hippocampus of the aged flinders sensitive line “depressed” rat: implications for the pathophysiology of depression? J Neurosci Res 84(6):1292–1302

    PubMed  CAS  CrossRef  Google Scholar 

  • Husum H, Wortwein G, Andersson W, Bolwig TG, Mathe AA (2008) Gene-environment interaction affects substance p and neurokinin a in the entorhinal cortex and periaqueductal grey in a genetic animal model of depression: implications for the pathophysiology of depression. Int J Neuropsychopharmacol 11(1):93–101

    PubMed  CAS  CrossRef  Google Scholar 

  • Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111(2):163–169

    PubMed  CAS  Google Scholar 

  • Ising M, Kunzel HE, Binder EB, Nickel T, Modell S, Holsboer F (2005) The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog Neuropsychopharmacol Biol Psychiatry 29(6):1085–1093

    PubMed  CAS  CrossRef  Google Scholar 

  • Izídio GS, Ramos A (2007) Positive association between ethanol consumption and anxiety-related behaviors in two selected rat lines. Alcohol 41(7):517–524

    PubMed  CrossRef  CAS  Google Scholar 

  • Janowsky DS, Risch C, Parker D, Huey L, Judd L (1980) Increased vulnerability to cholinergic stimulation in affective-disorder patients [proceedings]. Psychopharmacol Bull 16(4):29–31

    PubMed  CAS  Google Scholar 

  • Janowsky DS, Overstreet DH, Nurnberger JI Jr (1994) Is cholinergic sensitivity a genetic marker for the affective disorders? Am J Med Genet 54(4):335–344

    PubMed  CAS  CrossRef  Google Scholar 

  • Jimenez Vasquez PA, Salmi P, Ahlenius S, Mathe AA (2000a) Neuropeptide y in brains of the flinders sensitive line rat, a model of depression. Effects of electroconvulsive stimuli and d-amphetamine on peptide concentrations and locomotion. Behav Brain Res 111(1–2):115–123

    PubMed  CAS  CrossRef  Google Scholar 

  • Jimenez-Vasquez PA, Overstreet DH, Mathe AA (2000b) Neuropeptide Y in male and female brains of flinders sensitive line, a rat model of depression. Effects of electroconvulsive stimuli. J Psychiatr Res 34(6):405–412

    PubMed  CAS  CrossRef  Google Scholar 

  • Jimenez-Vasquez PA, Mathe AA, Thomas JD, Riley EP, Ehlers CL (2001) Early maternal separation alters neuropeptide Y concentrations in selected brain regions in adult rats. Brain Res Dev Brain Res 131(1–2):149–152

    PubMed  CAS  CrossRef  Google Scholar 

  • Jimenez-Vasquez PA, Diaz-Cabiale Z, Caberlotto L, Bellido I, Overstreet D, Fuxe K, Mathe AA (2007) Electroconvulsive stimuli selectively affect behavior and neuropeptide Y (NPY) and NPY Y(1) receptor gene expressions in hippocampus and hypothalamus of flinders sensitive line rat model of depression. Eur Neuropsychopharmacol 17(4):298–308

    PubMed  CAS  CrossRef  Google Scholar 

  • Jindal RD, Thase ME, Fasiczka AL, Friedman ES, Buysse DJ, Frank E, Kupfer DJ (2002) Electroencephalographic sleep profiles in single-episode and recurrent unipolar forms of major depression: II. Comparison during remission. Biol Psychiatry 51(3):230–236

    PubMed  CrossRef  Google Scholar 

  • Jochum T, Boettger MK, Wigger A, Beiderbeck D, Neumann ID, Landgraf R, Sauer H, Bar KJ (2007) Decreased sensitivity to thermal pain in rats bred for high anxiety-related behaviour is attenuated by citalopram or diazepam treatment. Behav Brain Res 183(1):18–24

    PubMed  CAS  CrossRef  Google Scholar 

  • Kanemaru K, Nishi K, Hasegawa S, Diksic M (2009) Chronic citalopram treatment elevates serotonin synthesis in flinders sensitive and flinders resistant lines of rats, with no significant effect on Sprague-Dawley rats. Neurochem Int 54(5–6):363–371

    PubMed  CAS  CrossRef  Google Scholar 

  • Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109(2):143–148

    PubMed  CAS  CrossRef  Google Scholar 

  • Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet bdnf release unrelated to platelet reactivity. Biol Psychiatry 57(9):1068–1072

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck ME, Holsboer F (2001) Hyperactivity of crh neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 22(5):835–844

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck ME, Welt T, Post A, Muller MB, Toschi N, Wigger A, Landgraf R, Holsboer F, Engelmann M (2001a) Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology 24(4):337–349

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck ME, Welt T, Wigger A, Renner U, Engelmann M, Holsboer F, Landgraf R (2001b) The anxiolytic effect of the CRH(1) receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 13(2):373–380

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck ME, Wigger A, Welt T, Muller MB, Gesing A, Reul JM, Holsboer F, Landgraf R, Neumann ID (2002) Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology 26(1):94–105

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck ME, Welt T, Muller MB, Landgraf R, Holsboer F (2003a) The high-affinity non-peptide crh1 receptor antagonist R121919 attenuates stress-induced alterations in plasma oxytocin, prolactin, and testosterone secretion in rats. Pharmacopsychiatry 36(1):27–31

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck ME, Welt T, Muller MB, Uhr M, Ohl F, Wigger A, Toschi N, Holsboer F, Landgraf R (2003b) Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacology 28(2):235–243

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck ME, Sartori SB, Welt T, Muller MB, Ohl F, Holsboer F, Landgraf R, Singewald N (2005) Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: effects of chronic paroxetine treatment. J Neurochem 92(5):1170–1179

    PubMed  CAS  CrossRef  Google Scholar 

  • Keller J, Flores B, Gomez RG, Solvason HB, Kenna H, Williams GH, Schatzberg AF (2006) Cortisol circadian rhythm alterations in psychotic major depression. Biol Psychiatry 60(3):275–281

    PubMed  CAS  CrossRef  Google Scholar 

  • Kessler MS, Murgatroyd C, Bunck M, Czibere L, Frank E, Jacob W, Horvath C, Muigg P, Holsboer F, Singewald N, Spengler D, Landgraf R (2007) Diabetes insipidus and, partially, low anxiety-related behaviour are linked to a SNP-associated vasopressin deficit in lab mice. Eur J Neurosci 26(10):2857–2864

    PubMed  CrossRef  Google Scholar 

  • Kessler MS, Bosch OJ, Bunck M, Landgraf R, Neumann ID (2011) Maternal care differs in mice bred for high vs. low trait anxiety: impact of brain vasopressin and cross-fostering. Soc Neurosci 6(2):156–168

    PubMed  CrossRef  Google Scholar 

  • Knol MJ, Twisk JWR, Beekman ATF, Heine RJ, Snoek FJ, Pouwer F (2006) Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49(5):837–845

    PubMed  CAS  CrossRef  Google Scholar 

  • Kovacevic T, Skelin I, Diksic M (2010) Chronic fluoxetine treatment has a larger effect on the density of a serotonin transporter in the flinders sensitive line (FSL) rat model of depression than in normal rats. Synapse 64(3):231–240

    PubMed  CAS  CrossRef  Google Scholar 

  • Kromer SA, Kessler MS, Milfay D, Birg IN, Bunck M, Czibere L, Panhuysen M, Putz B, Deussing JM, Holsboer F, Landgraf R, Turck CW (2005) Identification of glyoxalase-i as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 25(17):4375–4384

    PubMed  CrossRef  CAS  Google Scholar 

  • Lahmame A, Del Arco C, Pazos A, Yritia M, Armario A (1997) Are wistar-kyoto rats a genetic animal model of depression resistant to antidepressants? Eur J Pharmacol 337(2–3):115–123

    PubMed  CAS  CrossRef  Google Scholar 

  • Lahmanie A, Armario A (1996) Differential responsiveness of inbred strains of rats to antidepressants in the forced swimming test: are wistar kyoto rats an animal model of subsensitivity to antidepressants? Psychopharmacology 123(2):191–198

    CrossRef  Google Scholar 

  • Lancel M, Muller-Preuss P, Wigger A, Landgraf R, Holsboer F (2002) The CRH1 receptor antagonist R121919 attenuates stress-elicited sleep disturbances in rats, particularly in those with high innate anxiety. J Psychiatr Res 36(4):197–208

    PubMed  CrossRef  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25(3–4):150–176

    PubMed  CAS  CrossRef  Google Scholar 

  • Landgraf R, Wigger A (2002) High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behav Genet 32(5):301–314

    PubMed  CrossRef  Google Scholar 

  • Landgraf R, Wigger A, Holsboer F, Neumann ID (1999) Hyper-reactive hypothalamo-pituitary-adrenocortical axis in rats bred for high anxiety-related behaviour. J Neuroendocrinol 11(6):405–407

    PubMed  CAS  CrossRef  Google Scholar 

  • Landgraf R, Kessler MS, Bunck M, Murgatroyd C, Spengler D, Zimbelmann M, Nussbaumer M, Czibere L, Turck CW, Singewald N, Rujescu D, Frank E (2007) Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on vasopressin and glyoxalase-I. Neurosci Biobehav Rev 31(1):89–102

    Google Scholar 

  • Lecrubier Y (2006) Physical components of depression and psychomotor retardation. J Clin Psychiatry 67(Suppl 6):23–26

    PubMed  Google Scholar 

  • Leonard SK, Dwyer JM, Sukoff Rizzo SJ, Platt B, Logue SF, Neal SJ, Malberg JE, Beyer CE, Schechter LE, Rosenzweig-Lipson S, Ring RH (2008) Pharmacology of neuropeptide s in mice: therapeutic relevance to anxiety disorders. Psychopharmacology (Berl) 197(4):601–611

    CAS  CrossRef  Google Scholar 

  • Lesch KP (1991) 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 15:723–733

    PubMed  CAS  CrossRef  Google Scholar 

  • Li TK, Lumeng L (1977) Alcohol metabolism of inbred strains of rats with alcohol preference and nonpreference. Alcohol Aldehyde Metab Sys 3:625–633

    CAS  Google Scholar 

  • Li TK, Lumeng L, Doolittle DP (1993) Selective breeding for alcohol preference and associated responses. Behav Genet 23(2):163–170

    PubMed  CAS  CrossRef  Google Scholar 

  • Liebenberg N, Harvey BH, Brand L, Brink CB (2010) Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression. Behav Pharmacol 21(5–6):540–547

    PubMed  CAS  CrossRef  Google Scholar 

  • Liebsch G, Linthorst AC, Neumann ID, Reul JM, Holsboer F, Landgraf R (1998a) Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology 19(5):381–396

    PubMed  CAS  CrossRef  Google Scholar 

  • Liebsch G, Montkowski A, Holsboer F, Landgraf R (1998b) Behavioral profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res 94(2):301–310

    PubMed  CAS  CrossRef  Google Scholar 

  • Lindsay JR, Baker HJ (2006) Historical foundations. In: Suckow MA, Weisbroth SH (eds) The laboratory rat. Elsevier Academic Press, Burlington, pp 1–52

    CrossRef  Google Scholar 

  • López-Rubalcava C, Lucki I (2000) Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22(2):191–199

    PubMed  CrossRef  Google Scholar 

  • Lucassen PJ, Bosch OJ, Jousma E, Kromer SA, Andrew R, Seckl JR, Neumann ID (2009) Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: Possible key role of placental 11beta-hydroxysteroid dehydrogenase type 2. Eur J Neurosci 29(1):97–103

    PubMed  CAS  CrossRef  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445

    PubMed  CAS  CrossRef  Google Scholar 

  • Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27(1–2):119–127

    PubMed  CAS  CrossRef  Google Scholar 

  • Maier SF (1991) Stressor controllability, cognition and fear. In: Madden J (ed) Neurobiology, learning, emotion and affect. Raven Press, New York, pp 155–193

    Google Scholar 

  • Mantella RC, Vollmer RR, Li X, Amico JA (2003) Female oxytocin-deficient mice display enhanced anxiety-related behavior. Endocrinology 144(6):2291–2296

    PubMed  CAS  CrossRef  Google Scholar 

  • Marescaux C, Micheletti G, Vergnes M (1984) A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 25(3):326–331

    PubMed  CAS  CrossRef  Google Scholar 

  • Marescaux C, Vergnes M, Depaulis A (1992) Genetic absence epilepsy in rats from strasbourg––a review. J Neural Transmis Suppl 35:37–69

    CAS  Google Scholar 

  • Mathe AA, Jimenez PA, Theodorsson E, Stenfors C (1998) Neuropeptide y, neurokinin a and neurotensin in brain regions of fawn hooded “depressed”, Wistar, and Sprague Dawley rats. Effects of electroconvulsive stimuli. Prog Neuropsychopharmacol Biol Psychiatry 22(3):529–546

    PubMed  CAS  CrossRef  Google Scholar 

  • Mathe AA, Husum H, El Khoury A, Jimenez-Vasquez P, Gruber SH, Wortwein G, Nikisch G, Baumann P, Agren H, Andersson W, Sodergren A, Angelucci F (2007) Search for biological correlates of depression and mechanisms of action of antidepressant treatment modalities. Do neuropeptides play a role? Physiol Behav 92(1–2):226–231

    Google Scholar 

  • Matthews K, Baldo BA, Markou A, Lown O, Overstreet DH, Koob GF (1996) Rewarding electrical brain stimulation: similar thresholds for flinders sensitive line hypercholinergic and flinders resistant line hypocholinergic rats. Physiol Behav 59(6):1155–1162

    PubMed  CAS  CrossRef  Google Scholar 

  • Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660

    PubMed  CAS  CrossRef  Google Scholar 

  • Maynard TM, Sikich L, Lieberman JA, LaMantia AS (2001) Neural development, cell–cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull 27(3):457–476

    PubMed  CAS  CrossRef  Google Scholar 

  • McCaslin PP, Oh S (1995) Nitric oxide and glutamate receptors. CNS neurotransmitters and neuromodulators: glutamate. CRC Press, New York, pp 159–179

    Google Scholar 

  • Merikangas KR, Gelernter CS (1990) Comorbidity for alcoholism and depression. Psychiatric Clin N Am 13(4):613–632

    CAS  Google Scholar 

  • Mikuni M, Kusumi I, Kagaya A, Kuroda Y, Mori H, Takahashi K (1991) Increased 5-HT-2 receptor function as measured by serotonin-stimulated phosphoinositide hydrolysis in platelets of depressed patients. Prog Neuro-Psychopharmacol Biol Psychiatry 15(1):49–61

    CAS  CrossRef  Google Scholar 

  • Muigg P, Hoelzl U, Palfrader K, Neumann I, Wigger A, Landgraf R, Singewald N (2007) Altered brain activation pattern associated with drug-induced attenuation of enhanced depression-like behavior in rats bred for high anxiety. Biol Psychiatry 61(6):782–796

    PubMed  CAS  CrossRef  Google Scholar 

  • Muigg P, Hetzenauer A, Hauer G, Hauschild M, Gaburro S, Frank E, Landgraf R, Singewald N (2008) Impaired extinction of learned fear in rats selectively bred for high anxiety–evidence of altered neuronal processing in prefrontal-amygdala pathways. Eur J Neurosci 28(11):2299–2309

    PubMed  CrossRef  Google Scholar 

  • Murgatroyd C, Wigger A, Frank E, Singewald N, Bunck M, Holsboer F, Landgraf R, Spengler D (2004) Impaired repression at a vasopressin promoter polymorphism underlies overexpression of vasopressin in a rat model of trait anxiety. J Neurosci 24(35):7762–7770

    PubMed  CAS  CrossRef  Google Scholar 

  • Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12(12):1559–1566

    PubMed  CAS  CrossRef  Google Scholar 

  • Murphy JM, Stewart RB, Bell RL, Badia-Elder NE, Carr LG, McBride WJ, Lumeng L, Li TK (2002) Phenotypic and genotypic characterization of the Indiana University rat lines selectively bred for high and low alcohol preference. Behav Genet 32(5):363–388

    PubMed  CrossRef  Google Scholar 

  • Musazzi L, Mallei A, Tardito D, Gruber SH, El Khoury A, Racagni G, Mathe AA, Popoli M (2010) Early-life stress and antidepressant treatment involve synaptic signaling and erk kinases in a gene-environment model of depression. J Psychiatr Res 44(8):511–520

    PubMed  CrossRef  Google Scholar 

  • Mørk A, Pehrson A, Tottrup Brennum L, Moller Nielsen S, Zhong H, Lassen AB, Miller S, Westrich L, Boyle NJ, Sanchez C, Weide Fischer C, Liebenberg N, Wegener G, Bundgaard C, Hogg S, Bang-Andersen B, Bryan Stensbol T (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther. doi:10.1124/jpet.111.189068

  • Nagano M, Ozawa H, Suzuki H (2008) Prenatal dexamethasone exposure affects anxiety-like behaviour and neuroendocrine systems in an age-dependent manner. Neurosci Res 60(4):364–371

    PubMed  CAS  CrossRef  Google Scholar 

  • Naumenko EV, Popova NK, Nikulina EM, Dygalo NN, Shishkina GT, Borodin PM, Markel AL (1989) Behavior, adrenocortical activity, and brain monoamines in Norway rats selected for reduced aggressiveness towards man. Pharmacol Biochem Behav 33(1):85–91

    PubMed  CAS  CrossRef  Google Scholar 

  • Nemeroff CB (2004) Early-life adversity, CRF dysregulation, and vulnerability to mood and anxiety disorders. Psychopharmacol Bull 38(Suppl 1):14–20

    PubMed  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20(6):858–865

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID (2009) The advantage of social living: brain neuropeptides mediate the beneficial consequences of sex and motherhood. Front Neuroendocrinol 30(4):483–496

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID, Wigger A, Liebsch G, Holsboer F, Landgraf R (1998) Increased basal activity of the hypothalamo-pituitary-adrenal axis during pregnancy in rats bred for high anxiety-related behaviour. Psychoneuroendocrinology 23(5):449–463

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID, Torner L, Wigger A (2000) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95(2):567–575

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID, Kromer SA, Bosch OJ (2005a) Effects of psycho-social stress during pregnancy on neuroendocrine and behavioural parameters in lactation depend on the genetically determined stress vulnerability. Psychoneuroendocrinology 30(8):791–806

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID, Wigger A, Kromer S, Frank E, Landgraf R, Bosch OJ (2005b) Differential effects of periodic maternal separation on adult stress coping in a rat model of extremes in trait anxiety. Neuroscience 132(3):867–877

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID, Veenema AH, Beiderbeck DI (2010) Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 4:12

    PubMed  Google Scholar 

  • Nikisch G, Mathe AA (2008) CSF monoamine metabolites and neuropeptides in depressed patients before and after electroconvulsive therapy. Eur Psychiatry 23(5):356–359

    PubMed  CrossRef  Google Scholar 

  • Nikisch G, Agren H, Eap CB, Czernik A, Baumann P, Mathe AA (2005) Neuropeptide y and corticotropin-releasing hormone in CSF mark response to antidepressive treatment with citalopram. Int J Neuropsychopharmacol 8(3):403–410

    PubMed  CAS  CrossRef  Google Scholar 

  • Nishi K, Kanemaru K, Diksic M (2009) A genetic rat model of depression, flinders sensitive line, has a lower density of 5-HT(1A) receptors, but a higher density of 5-HT(1B) receptors, compared to control rats. Neurochem Int 54(5–6):299–307

    PubMed  CAS  CrossRef  Google Scholar 

  • O’Connor TG, Heron J, Golding J, Beveridge M, Glover V (2002) Maternal antenatal anxiety and children’s behavioural/emotional problems at 4 years. Report from the Avon longitudinal study of parents and children. Br J Psychiatry 180(JUNE):502–508

    PubMed  CrossRef  Google Scholar 

  • Ohl F, Toschi N, Wigger A, Henniger MS, Landgraf R (2001) Dimensions of emotionality in a rat model of innate anxiety. Behav Neurosci 115(2):429–436

    PubMed  CAS  CrossRef  Google Scholar 

  • Ohl F, Roedel A, Storch C, Holsboer F, Landgraf R (2002) Cognitive performance in rats differing in their inborn anxiety. Behav Neurosci 116(3):464–471

    PubMed  CrossRef  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    PubMed  CAS  CrossRef  Google Scholar 

  • Oliveira RM, Guimaraes FS, Deakin JF (2008) Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz J Med Biol Res 41(4):333–341

    PubMed  CAS  CrossRef  Google Scholar 

  • Olsson A, Regnell G, Traskman-Bendz L, Ekman R, Westrin A (2004) Cerebrospinal neuropeptide Y and substance P in suicide attempters during long-term antidepressant treatment. Eur Neuropsychopharmacol 14(6):479–485

    PubMed  CAS  CrossRef  Google Scholar 

  • Overmier JB, Seligman ME (1967) Effects of inescapable shock upon subsequent escape and avoidance responding. J Comp Physiol Psychol 63(1):28–33

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH (1986) Selective breeding for increased cholinergic function: development of a new animal model of depression. Biol Psychiatry 21(1):49–58

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH (1993) The flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 17(1):51–68

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH (2002) Behavioral characteristics of rat lines selected for differential hypothermic responses to cholinergic or serotonergic agonists. Behav Genet 32(5):335–348

    PubMed  CrossRef  Google Scholar 

  • Overstreet DH, Griebel G (2004) Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. Eur J Pharmacol 497(1):49–53

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Russell RW (1982) Selective breeding for diisopropyl fluorophosphate-sensitivity: behavioural effects of cholinergic agonists and antagonists. Psychopharmacology (Berl) 78(2):150–155

    CAS  CrossRef  Google Scholar 

  • Overstreet DH, Russell RW (1984) Selective breeding for differences in cholinergic function: sex differences in the genetic regulation of sensitivity to the anticholinesterase, DFP. Behav Neural Biol 40(2):227–238

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Russell RW, Helps SC, Messenger M (1979) Selective breeding for sensitivity to the anticholinesterase DFP. Psychopharmacology (Berl) 65(1):15–20

    CAS  CrossRef  Google Scholar 

  • Overstreet DH, Janowsky DS, Gillin JC, Shiromani PJ, Sutin EL (1986) Stress-induced immobility in rats with cholinergic supersensitivity. Biol Psychiatry 21(7):657–664

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Double K, Schiller GD (1989) Antidepressant effects of rolipram in a genetic animal model of depression: Cholinergic supersensitivity and weight gain. Pharmacol Biochem Behav 34(4):691–696

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Rezvani AH, Janowsky DS (1990) Impaired active avoidance responding in rats selectively bred for increased cholinergic function. Physiol Behav 47(4):787–788

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Russell RW, Hay DA, Crocker AD (1992) Selective breeding for increased cholinergic function: biometrical genetic analysis of muscarinic responses. Neuropsychopharmacology 7(3):197–204

    PubMed  CAS  Google Scholar 

  • Overstreet DH, Rezvani AH, Pucilowski O, Gause L, Janowsky DS (1994) Rapid selection for serotonin-1A sensitivity in rats. Psychiatr Genet 4(1):57–62

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Pucilowski O, Rezvani AH, Janowsky DS (1995) Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of flinders sensitive line rats as an animal model of depression. Psychopharmacology (Berl) 121(1):27–37

    CAS  CrossRef  Google Scholar 

  • Overstreet DH, Pucilowski O, Retton MC, Delagrange P, Guardiola-Lemaitre B (1998) Effects of melatonin receptor ligands on swim test immobility. Neuroreport 9(2):249–253

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Hlavka J, Feighner JP, Nicolau G, Freed JS (2004a) Antidepressant-like effects of a novel pentapeptide, nemifitide, in an animal model of depression. Psychopharmacology (Berl) 175(3):303–309

    CAS  CrossRef  Google Scholar 

  • Overstreet DH, Keeney A, Hogg S (2004b) Antidepressant effects of citalopram and CRF receptor antagonist CP-154,526 in a rat model of depression. Eur J Pharmacol 492(2–3):195–201

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Friedman E, Mathe AA, Yadid G (2005) The flinders sensitive line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 29(4–5):739–759

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Stemmelin J, Griebel G (2008) Confirmation of antidepressant potential of the selective beta3 adrenoceptor agonist amibegron in an animal model of depression. Pharmacol Biochem Behav 89(4):623–626

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Fredericks K, Knapp D, Breese G, McMichael J (2010a) Nerve growth factor (NGF) has novel antidepressant-like properties in rats. Pharmacol Biochem Behav 94(4):553–560

    PubMed  CAS  CrossRef  Google Scholar 

  • Overstreet DH, Naimoli VM, Griebel G (2010b) Saredutant, an NK2 receptor antagonist, has both antidepressant-like effects and synergizes with desipramine in an animal model of depression. Pharmacol Biochem Behav 96(2):206–210

    PubMed  CAS  CrossRef  Google Scholar 

  • Owens MJ, Overstreet DH, Knight DL, Rezvani AH, Ritchie JC, Bissette G, Janowsky DS, Nemeroff CB (1991) Alterations in the hypothalamic-pituitary-adrenal axis in a proposed animal model of depression with genetic muscarinic supersensitivity. Neuropsychopharmacology 4(2):87–93

    PubMed  CAS  Google Scholar 

  • Paré WP (1992) Learning behavior, escape behavior, and depression in an ulcer susceptible rat strain. Integr Physiol Behav Sci 27(2):130–141

    PubMed  CrossRef  Google Scholar 

  • Paré WP (1994) Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav 55(3):433–439

    PubMed  CrossRef  Google Scholar 

  • Pare WP, Redei E (1993) Depressive behavior and stress ulcer in Wistar Kyoto rats. J Physiol Paris 87(4):229–238

    PubMed  CAS  CrossRef  Google Scholar 

  • Pawlak CR, Ho YJ, Schwarting RKW (2008) Animal models of human psychopathology based on individual differences in novelty-seeking and anxiety. Neurosci Biobehav Rev 32(8):1544–1568

    PubMed  CrossRef  Google Scholar 

  • Petersen A, Wortwein G, Gruber SH, Mathe AA (2008) Escitalopram reduces increased hippocampal cytogenesis in a genetic rat depression model. Neurosci Lett 436(3):305–308

    CAS  CrossRef  PubMed  Google Scholar 

  • Petersen A, Wortwein G, Gruber SH, El-Khoury A, Mathe AA (2009) Nortriptyline mediates behavioral effects without affecting hippocampal cytogenesis in a genetic rat depression model. Neurosci Lett 451(2):148–151

    CAS  CrossRef  PubMed  Google Scholar 

  • Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88–109

    PubMed  CAS  CrossRef  Google Scholar 

  • Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 35(4):193–215

    PubMed  CAS  CrossRef  Google Scholar 

  • Pucilowski O, Overstreet DH (1993) Effect of chronic antidepressant treatment on responses to apomorphine in selectively bred rat strains. Brain Res Bull 32(5):471–475

    CAS  CrossRef  PubMed  Google Scholar 

  • Pucilowski O, Overstreet DH, Rezvani AH, Janowsky DS (1993) Chronic mild stress-induced anhedonia: greater effect in a genetic rat model of depression. Physiol Behav 54(6):1215–1220

    PubMed  CAS  CrossRef  Google Scholar 

  • Ramos A, Mormede P (1998) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22(1):33–57

    PubMed  CAS  CrossRef  Google Scholar 

  • Ramos A, Mellerin Y, Mormède P, Chaouloff F (1998) A genetic and multifactorial analysis of anxiety-related behaviours in lewis and SHR intercrosses. Behav Brain Res 96(1–2):195–205

    PubMed  CAS  CrossRef  Google Scholar 

  • Ramos A, Kangerski AL, Basso PF, Da Silva Santos JE, Assreuy J, Vendruscolo LF, Takahashi RN (2002) Evaluation of lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav Brain Res 129(1–2):113–123

    PubMed  CrossRef  Google Scholar 

  • Ramos A, Correia EC, Izídio GS, Brüske GR (2003) Genetic selection of two new rat lines displaying different levels of anxiety-related behaviors. Behav Genet 33(6):657–668

    PubMed  CrossRef  Google Scholar 

  • Ransford CP (1982) A role for amines in the antidepressant effect of exercise: a review. Med Sci Sports Exerc 14(1):1–10

    PubMed  CAS  CrossRef  Google Scholar 

  • Reber SO, Birkeneder L, Veenema AH, Obermeier F, Falk W, Straub RH, Neumann ID (2007) Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: implications and mechanisms. Endocrinology 148(2):670–682

    PubMed  CAS  CrossRef  Google Scholar 

  • Reber SO, Obermeier F, Straub RH, Veenema AH, Neumann ID (2008) Aggravation of DSS-induced colitis after chronic subordinate colony (CSC) housing is partially mediated by adrenal mechanisms. Stress 11(3):225–234

    PubMed  CrossRef  Google Scholar 

  • Reddy PL, Khanna S, Subhash MN, Channabasavanna SM, Sridhara Rama Rao BS (1992) CSF amine metabolites in depression. Biol Psychiatry 31(2):112–118

    PubMed  CAS  CrossRef  Google Scholar 

  • Redei E, Pare WP, Aird F, Kluczynski J (1994) Strain differences in hypothalamic-pituitary-adrenal activity and stress ulcer. Am J Physiol 266(2 Pt 2):R353–R360

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Overstreet DH, Janowsky DS (1990) Genetic serotonin deficiency and alcohol preference in the fawn hooded rats. Alcohol Alcohol 25(5):573–575

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Overstreet DH, Janowsky DS (1991) Drug-induced reductions in ethanol intake in alcohol preferring and fawn-hooded rats. Alcohol Alcohol Suppl 1:433–437

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Overstreet DH, Yang Y, Clark E Jr (1999) Attenuation of alcohol intake by extract of hypericum perforatum (St. John’s Wort) in two different strains of alcohol-preferring rats. Alcohol Alcohol 34(5):699–705

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Parsian A, Overstreet DH (2002) The fawn-hooded (fh/wjd) rat: a genetic animal model of comorbid depression and alcoholism. Psychiatr Genet 12(1):1–16

    PubMed  CrossRef  Google Scholar 

  • Rezvani AH, Overstreet DH, Cleves M, Parsian A (2007) Further genetic characterization of the fawn-hooded (Fh/Wjd) rat, an animal model of comorbid depression and alcoholism. Psychiatric Genet 17(2):77–83

    CrossRef  Google Scholar 

  • Risch SC, Kalin NH, Janowsky DS (1981) Cholinergic challenges in affective illness: behavioral and neuroendocrine correlates. J Clin Psychopharmacol 1(4):186–192

    PubMed  CAS  CrossRef  Google Scholar 

  • Rittenhouse PA, López-Rubalcava C, Stanwood GD, Lucki I (2002) Amplified behavioral and endocrine responses to forced swim stress in the Wistar-Kyoto rat. Psychoneuroendocrinology 27(3):303–318

    PubMed  CrossRef  Google Scholar 

  • Robinson MJ, Edwards SE, Iyengar S, Bymaster F, Clark M, Katon W (2009) Depression and pain. Front Biosci 14:5031–5051

    PubMed  CAS  CrossRef  Google Scholar 

  • Roy A, Pickar D, Linnoila M (1985) Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatry Res 15(4):281–292

    PubMed  CAS  CrossRef  Google Scholar 

  • Rugulies R (2002) Depression as a predictor for coronary heart disease: a review and meta-analysis. Am J Prevent Med 23(1):51–61

    CrossRef  Google Scholar 

  • Russell RW, Overstreet DH (1987) Mechanisms underlying sensitivity to organophosphorus anticholinesterase compounds. Prog Neurobiol 28(2):97–129

    PubMed  CAS  CrossRef  Google Scholar 

  • Russell RW, Overstreet DH, Messenger M, Helps SC (1982) Selective breeding for sensitivity to DFP: generalization of effects beyond criterion variables. Pharmacol Biochem Behav 17(5):885–891

    PubMed  CAS  CrossRef  Google Scholar 

  • Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21(5):679–682

    PubMed  CAS  CrossRef  Google Scholar 

  • Ryan B, Musazzi L, Mallei A, Tardito D, Gruber SH, El Khoury A, Anwyl R, Racagni G, Mathe AA, Rowan MJ, Popoli M (2009) Remodelling by early-life stress of nmda receptor-dependent synaptic plasticity in a gene-environment rat model of depression. Int J Neuropsychopharmacol 12(4):553–559

    Google Scholar 

  • Sadile AG, Gironi Carnevale UA, Vitullo E, Cioffi LA, Welzl H, Bättig K (1988) Maze learning of the naples high- and low-excitability rat lines. Adv Biosci 70:177–180

    Google Scholar 

  • Salchner P, Sartori SB, Sinner C, Wigger A, Frank E, Landgraf R, Singewald N (2006) Airjet and FG-7142-induced fos expression differs in rats selectively bred for high and low anxiety-related behavior. Neuropharmacology 50(8):1048–1058

    PubMed  CAS  CrossRef  Google Scholar 

  • Salome N, Salchner P, Viltart O, Sequeira H, Wigger A, Landgraf R, Singewald N (2004) Neurobiological correlates of high (HAB) versus low anxiety-related behavior (LAB): Differential FOS expression in HAB and LAB rats. Biol Psychiatry 55(7):715–723

    PubMed  CrossRef  Google Scholar 

  • Sandnabba NK (1996) Selective breeding for isolation-induced intermale aggression in mice: associated responses and environmental influences. Behav Genet 26(5):477–488

    PubMed  CAS  CrossRef  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    PubMed  CAS  CrossRef  Google Scholar 

  • Sartori S, Hauschild M, Muigg P, Slattery DA, Biederbeck D, Mathe AA, Wegener G, Neumann ID, Singewald N (2009) Modulation of impaired fear extinction by neuropeptides in a psychopathological animal model of trait anxiety In: Society for Neuroscience, Chicago, IL, 2009. Society for Neuroscience, Neuroscience Meeting Planner

    Google Scholar 

  • Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P (2009) Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry 42(6):270–276

    PubMed  CAS  CrossRef  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am J Psychiatry 122(5):509–522

    PubMed  CAS  Google Scholar 

  • Schiller GD, Daws LC, Overstreet DH, Orbach J (1991) Lack of anxiety in an animal model of depression with cholinergic supersensitivity. Brain Res Bull 26(3):433–435

    PubMed  CAS  CrossRef  Google Scholar 

  • Schiller GD, Pucilowski O, Wienicke C, Overstreet DH (1992) Immobility-reducing effects of antidepressants in a genetic animal model of depression. Brain Res Bull 28(5):821–823

    PubMed  CAS  CrossRef  Google Scholar 

  • Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54(1):70–75

    PubMed  CAS  CrossRef  Google Scholar 

  • Shir Y, Zeltser R, Vatine JJ, Carmi G, Belfer I, Zangen A, Overstreet D, Raber P, Seltzer Z (2001) Correlation of intact sensibility and neuropathic pain-related behaviors in eight inbred and outbred rat strains and selection lines. Pain 90(1–2):75–82

    PubMed  CAS  CrossRef  Google Scholar 

  • Shiromani PJ, Klemfuss H, Lucero S, Overstreet DH (1991) Diurnal rhythm of core body temperature is phase advanced in a rodent model of depression. Biol Psychiatry 29(9):923–930

    PubMed  CAS  CrossRef  Google Scholar 

  • Slattery DA, Neumann ID (2010) Chronic icv oxytocin attenuates the pathological high anxiety state of selectively bred Wistar rats. Neuropharmacology 58(1):56–61

    PubMed  CAS  CrossRef  Google Scholar 

  • Slattery DA, Finger BC, Malumby R, Wegener G, Mathe AA, Neumann ID (2008) Neuropeptide s alters affective behaviour in high (HAB) but not low anxiety-related (LAB) rats In: Society for neuroscience, Washington, D.C., 2008, Society for Neuroscience 25(10):1295-303

    Google Scholar 

  • Slattery DA, Neumann I, Cryan JF (2010) Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat. J Psychopharmacol 25(10):1295–1303

    Google Scholar 

  • Solberg LC, Olson SL, Turek FW, Redei E (2001) Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am J Physiol––Regul Integr Comp Physiol 281(3):R786–R794

    Google Scholar 

  • Solskov L, Lofgren B, Pold R, Kristiansen SB, Nielsen TT, Overstreet DH, Schmitz O, Botker HE, Lund S, Wegener G (2010) Evaluation of the relationship between hyperinsulinaemia and myocardial ischaemia/reperfusion injury in a rat model of depression. Clin Sci (Lond) 118(4):259–267

    CrossRef  Google Scholar 

  • Tabb K, Boss-Williams KA, Weiss JM, Weinshenker D (2007) Rats bred for susceptibility to depression-like phenotypes have higher kainic acid-induced seizure mortality than their depression-resistant counterparts. Epilepsy Res 74(2–3):140–146

    PubMed  CAS  CrossRef  Google Scholar 

  • Tazumi T, Hori E, Uwano T, Umeno K, Tanebe K, Tabuchi E, Ono T, Nishijo H (2005) Effects of prenatal maternal stress by repeated cold environment on behavioral and emotional development in the rat offspring. Behav Brain Res 162(1):153–160

    PubMed  CrossRef  Google Scholar 

  • Thase ME, Kupfer DJ, Buysse DJ, Frank E, Simons AD, McEachran AB, Rashid KF, Grochocinski VJ (1995) Electroencephalographic sleep profiles in single-episode and recurrent unipolar forms of major depression: I. Comparison during acute depressive states. Biol Psychiatry 38(8):506–515

    PubMed  CAS  CrossRef  Google Scholar 

  • Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann ID (2001) Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 21(9):3207–3214

    PubMed  CAS  Google Scholar 

  • Torner L, Maloumby R, Nava G, Aranda J, Clapp C, Neumann ID (2004) In vivo release and gene upregulation of brain prolactin in response to physiological stimuli. Eur J Neurosci 19(6):1601–1608

    PubMed  CrossRef  Google Scholar 

  • Touma C, Bunck M, Glasl L, Nussbaumer M, Palme R, Stein H, Wolferstatter M, Zeh R, Zimbelmann M, Holsboer F, Landgraf R (2008) Mice selected for high versus low stress reactivity: a new animal model for affective disorders. Psychoneuroendocrinology 33(6):839–862

    PubMed  CAS  CrossRef  Google Scholar 

  • Tschopp TB, Zucker MB (1972) Hereditary defect in platelet function in rats. Blood 40(2):217–226

    PubMed  CAS  Google Scholar 

  • Van Den Bergh BRH, Mulder EJH, Mennes M, Glover V (2005) Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A Rev Neurosci Biobehav Rev 29(2):237–258

    CrossRef  Google Scholar 

  • Van Luijtelaar ELJM, Coenen AML (1986) Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 70(3):393–397

    PubMed  CrossRef  Google Scholar 

  • Van Luijtelaar ELJM, Coenen AML (1989) The WAG/RIJ model for generalized absence seizures. Adv Epileptol 17:78–83

    Google Scholar 

  • van Oortmerssen GA, Bakker TC (1981) Artificial selection for short and long attack latencies in wild mus musculus domesticus. Behav Genet 11(2):115–126

    PubMed  CrossRef  Google Scholar 

  • Vedolin GM, Lobato VV, Conti PC, Lauris JR (2009) The impact of stress and anxiety on the pressure pain threshold of myofascial pain patients. J Oral Rehabil 36(5):313–321

    PubMed  CAS  CrossRef  Google Scholar 

  • Veenema AH, Torner L, Blume A, Beiderbeck DI, Neumann ID (2007) Low inborn anxiety correlates with high intermale aggression: link to acth response and neuronal activation of the hypothalamic paraventricular nucleus. Horm Behav 51(1):11–19

    PubMed  CAS  CrossRef  Google Scholar 

  • Vergnes M, Marescaux C, Micheletti G (1982) Spontaneous paroxysmal electroclinical patterns in rat: a model of generalized non-convulsive epilepsy. Neurosci Lett 33(1):97–101

    PubMed  CAS  CrossRef  Google Scholar 

  • Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of mri studies. Am J Psychiatry 161(11):1957–1966

    PubMed  CrossRef  Google Scholar 

  • Viggiano D, Vallone D, Ruocco LA, Sadile AG (2003) Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav Rev 27(7):683–689

    PubMed  CAS  CrossRef  Google Scholar 

  • Vitale G, Filaferro M, Ruggieri V, Pennella S, Frigeri C, Rizzi A, Guerrini R, Calo G (2008) Anxiolytic-like effect of neuropeptide S in the rat defensive burying. Peptides 29(12):2286–2291

    PubMed  CAS  CrossRef  Google Scholar 

  • Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc 8(1):1–7

    PubMed  CAS  CrossRef  Google Scholar 

  • Vollmayr B, Faust H, Lewicka S, Henn FA (2001) Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 6(4):471–474, 358

    Google Scholar 

  • Waldherr M, Neumann ID (2007) Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc Natl Acad Sci USA 104(42):16681–16684

    PubMed  CAS  CrossRef  Google Scholar 

  • Walker MW, Wolinsky TD, Jubian V, Chandrasena G, Zhong H, Huang X, Miller S, Hegde LG, Marsteller DA, Marzabadi MR, Papp M, Overstreet DH, Gerald CP, Craig DA (2009) The novel neuropeptide y y5 receptor antagonist Lu AA33810 [n-[[trans-4-[(4,5-dihydro[1]benzothiepino[5,4-d]thiazol-2-yl)amino]cycloh exyl]methyl]-methanesulfonamide] exerts anxiolytic- and antidepressant-like effects in rat models of stress sensitivity. J Pharmacol Exp Ther 328(3):900–911

    PubMed  CAS  CrossRef  Google Scholar 

  • Wallis E, Overstreet DH, Crocker AD (1988) Selective breeding for increased cholinergic function: increased serotonergic sensitivity. Pharmacol Biochem Behav 31(2):345–350

    PubMed  CAS  CrossRef  Google Scholar 

  • Wegener G, Volke V (2010) Nitric oxide synthase inhibitors as antidepressants. Pharmaceuticals 3(1):273–299

    CAS  CrossRef  Google Scholar 

  • Wegener G, Volke V, Harvey BH, Rosenberg R (2003) Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 959(1):128–134

    PubMed  CAS  CrossRef  Google Scholar 

  • Wegener G, Harvey BH, Bonefeld B, Muller HK, Volke V, Overstreet DH, Elfving B (2010) Increased stress-evoked nitric oxide signalling in the flinders sensitive line (FSL) rat: a genetic animal model of depression. Int J Neuropsychopharmacol 13(4):461–473

    PubMed  CAS  CrossRef  Google Scholar 

  • Weiss JM, Cierpial MA, West CH (1998) Selective breeding of rats for high and low motor activity in a swim test: toward a new animal model of depression. Pharmacol Biochem Behav 61(1):49–66

    PubMed  CAS  CrossRef  Google Scholar 

  • West CH, Weiss JM (1998a) Effects of antidepressant drugs on rats bred for low activity in the swim test. Pharmacol Biochem Behav 61(1):67–79

    PubMed  CAS  CrossRef  Google Scholar 

  • West CHK, Weiss JM (1998b) Effects of antidepressant drugs on rats bred for low activity in the swim test. Pharmacol Biochem Behav 61(1):67–79

    PubMed  CAS  CrossRef  Google Scholar 

  • West CH, Bonsall RW, Emery MS, Weiss JM (1999a) Rats selectively bred for high and low swim-test activity show differential responses to dopaminergic drugs. Psychopharmacology (Berl) 146(3):241–251

    CAS  CrossRef  Google Scholar 

  • West CH, Boss-Williams KA, Weiss JM (1999b) Motor activation by amphetamine infusion into nucleus accumbens core and shell subregions of rats differentially sensitive to dopaminergic drugs. Behav Brain Res 98(1):155–165

    PubMed  CAS  CrossRef  Google Scholar 

  • Widdowson PS, Ordway GA, Halaris AE (1992) Reduced neuropeptide Y concentrations in suicide brain. J Neurochem 59(1):73–80

    PubMed  CAS  CrossRef  Google Scholar 

  • Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66(2):293–302

    PubMed  CAS  CrossRef  Google Scholar 

  • Wigger A, Sanchez MM, Mathys KC, Ebner K, Frank E, Liu D, Kresse A, Neumann ID, Holsboer F, Plotsky PM, Landgraf R (2004) Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacology 29(1):1–14

    PubMed  CAS  CrossRef  Google Scholar 

  • Will CC, Aird F, Redei EE (2003) Selectively bred wistar-kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants. Mol Psychiatry 8(11):925–932

    PubMed  CAS  CrossRef  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83(1):1–16

    CAS  CrossRef  Google Scholar 

  • Wortwein G, Husum H, Andersson W, Bolwig TG, Mathe AA (2006) Effects of maternal separation on neuropeptide y and calcitonin gene-related peptide in “depressed” flinders sensitive line rats: a study of gene-environment interactions. Prog Neuropsychopharmacol Biol Psychiatry 30(4):684–693

    PubMed  CrossRef  CAS  Google Scholar 

  • Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O (2004) Neuropeptide s: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43(4):487–497

    PubMed  CAS  CrossRef  Google Scholar 

  • Yadid G, Overstreet DH, Zangen A (2001) Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression. Brain Res 896(1–2):43–47

    PubMed  CAS  CrossRef  Google Scholar 

  • Young RJ (1979) The effect of regular exercise on cognitive functioning and personality. Br J Sports Med 13(3):110–117

    PubMed  CAS  CrossRef  Google Scholar 

  • Zambello E, Jimenez-Vasquez PA, El Khoury A, Mathe AA, Caberlotto L (2008) Acute stress differentially affects corticotropin-releasing hormone mRNA expression in the central amygdala of the “depressed” flinders sensitive line and the control flinders resistant line rats. Prog Neuropsychopharmacol Biol Psychiatry 32(3):651–661

    Google Scholar 

  • Zangen A, Overstreet DH, Yadid G (1997) High serotonin and 5-hydroxyindoleacetic acid levels in limbic brain regions in a rat model of depression: Normalization by chronic antidepressant treatment. J Neurochem 69(6):2477–2483

    PubMed  CAS  CrossRef  Google Scholar 

  • Zangen A, Overstreet DH, Yadid G (1999) Increased catecholamine levels in specific brain regions of a rat model of depression: normalization by chronic antidepressant treatment. Brain Res 824(2):243–250

    PubMed  CAS  CrossRef  Google Scholar 

  • Zangen A, Nakash R, Overstreet DH, Yadid G (2001) Association between depressive behavior and absence of serotonin-dopamine interaction in the nucleus accumbens. Psychopharmacology (Berl) 155(4):434–439

    CAS  CrossRef  Google Scholar 

  • Zangen A, Nakash R, Roth-Deri I, Overstreet DH, Yadid G (2002) Impaired release of beta-endorphin in response to serotonin in a rat model of depression. Neuroscience 110(3):389–393

    PubMed  CAS  CrossRef  Google Scholar 

  • Zyss T, Gorka Z, Kowalska M, Vetulani J (1997) Preliminary comparison of behavioral and biochemical effects of chronic transcranial magnetic stimulation and electroconvulsive shock in the rat. Biol Psychiatry 42(10):920–924

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

GW was supported by grants from The Danish Medical Research Council (grant 271-08-0768) and the Research Foundation of County Midtjylland. AAM was supported from the Swedish Medical Research Council (grant 10414) and the Karolinska Institutet. IDN was supported by DFG, BMBF and Bayerische Forschungsstiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregers Wegener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wegener, G., Mathe, A.A., Neumann, I.D. (2011). Selectively Bred Rodents as Models of Depression and Anxiety. In: Cryan, J., Reif, A. (eds) Behavioral Neurogenetics. Current Topics in Behavioral Neurosciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_192

Download citation