Skip to main content

Behavioral and Pharmacogenetics of Aggressive Behavior

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 12)

Abstract

Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of a specific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to “phasic” effects of pharmacological agents versus “trait”-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene-environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT (e.g., MAOA) determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsal raphe nucleus by GABA, glutamate and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides (arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly [e.g., BDNF, neuronal nitric oxide (nNOS), αCaMKII, Neuropeptide Y]. The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior.

Keywords

  • Aggression
  • Serotonin
  • Trait
  • State
  • Neuropeptides
  • GABA

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7854_2011_191
  • Chapter length: 66 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27859-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abbadie C, Honore P, Fournie-Zaluski MC, Roques BP, Besson JM (1994) Effects of opioids and non-opioids on c-fos-like immunoreactivity induced in rat lumbar spinal cord neurons by noxious heat stimulation. Eur J Pharmacol 258:215–227

    PubMed  CAS  CrossRef  Google Scholar 

  • Abellan MT, Jolas T, Aghajanian GK, Artigas F (2000) Dual control of dorsal raphe serotonergic neurons by GABAB receptors. Electrophysiological and microdialysis studies. Synapse 36:21–34

    PubMed  CAS  CrossRef  Google Scholar 

  • Adell A, Celada P, Abellan MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Rev 39:154–180

    PubMed  CAS  CrossRef  Google Scholar 

  • Adell A, Celada P, Artigas F (2001) The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. J Neurochem 79:172–182

    PubMed  CAS  CrossRef  Google Scholar 

  • Aghajanian GK, Wang RY (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res 122:229–242

    PubMed  CAS  CrossRef  Google Scholar 

  • Albers HE, Bamshad M (1998) Role of vasopressin and oxytocin in the control of social behavior in Syrian hamsters (Mesocricetus auratus). Prog Brain Res 119:395–408

    PubMed  CAS  CrossRef  Google Scholar 

  • Alenina N, Kikic D, Todiras M, Mosienko V, Qadri F, Plehm R, Boye P, Vilianovitch L, Sohr R, Tenner K, Hortnagl H, Bader M (2009) Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci USA 106:10332–10337

    PubMed  CAS  CrossRef  Google Scholar 

  • Alia-Klein N, Goldstein RZ, Kriplani A, Logan J, Tomasi D, Williams B, Telang F, Shumay E, Biegon A, Craig IW, Henn F, Wang GJ, Volkow ND, Fowler JS (2008) Brain monoamine oxidase a activity predicts trait aggression. J Neurosci 28:5099–5104

    PubMed  CAS  CrossRef  Google Scholar 

  • Alleva E, Cirulli F, Bianchi M, Bondiolotti GP, Chiarotti F, De Acetis L, Panerai AE (1998) Behavioural characterization of interleukin-6 overexpressing or deficient mice during agonistic encounters. Eur J Neurosci 10:3664–3672

    PubMed  CAS  CrossRef  Google Scholar 

  • Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371

    PubMed  CAS  CrossRef  Google Scholar 

  • Amat J, Tamblyn JP, Paul ED, Bland ST, Amat P, Foster AC, Watkins LR, Maier SF (2004) Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala. Neuroscience 129:509–519

    PubMed  CAS  CrossRef  Google Scholar 

  • Arnone M, Dantzer R (1980) Effects of diazepam on extinction induced aggression in pigs. Pharmacol Biochem Behav 13:27–30

    PubMed  CAS  CrossRef  Google Scholar 

  • Ase AR, Reader TA, Hen R, Riad M, Descarries L (2000) Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT1A or 5-HT1B receptor knockout mice. J Neurochem 75:2415–2426

    PubMed  CAS  CrossRef  Google Scholar 

  • Assal F, Alarcon M, Solomon EC, Masterman D, Geschwind DH, Cummings JL (2004) Association of the serotonin transporter and receptor gene polymorphisms in neuropsychiatric symptoms in Alzheimer disease. Arch Neurol 61:1249–1253

    PubMed  CrossRef  Google Scholar 

  • Baca-Garcia E, Vaquero C, Diaz-Sastre C, García-Resa E, Saiz-Ruiz J, Fernández-Piqueras J, de Leon J (2004) Lack of association between the serotonin transporter promoter gene polymorphism and impulsivity or aggressive behavior among suicide attempters and healthy volunteers. Psychiatry Res 126:99–106

    PubMed  CAS  CrossRef  Google Scholar 

  • Bannai M, Fish EW, Faccidomo S, Miczek KA (2007) Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology 193:295–304

    PubMed  CAS  CrossRef  Google Scholar 

  • Barkan T, Peled A, Modai I, Weizman A, Rehavi M (2006) Characterization of the serotonin transporter in lymphocytes and platelets of schizophrenia patients treated with atypical or typical antipsychotics compared to healthy individuals. Eur Neuropsychopharmacol 16:429–436

    PubMed  CAS  CrossRef  Google Scholar 

  • Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC, Gainetdinov RR, Caron MG (2008) Role of GSK3β in behavioral abnormalities induced by serotonin deficiency. Proc Nat Acad Sci USA 105:1333–1338

    PubMed  CAS  CrossRef  Google Scholar 

  • Beck AT, Ward CH, Mendelsohn M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    PubMed  CAS  CrossRef  Google Scholar 

  • Behzadi G, Kalen P, Parvopassu F, Wiklund L (1990) Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective d-[3H] aspartate labelling of possible excitatory amino acid inputs. Neuroscience 37:77–100

    PubMed  CAS  CrossRef  Google Scholar 

  • Belin MF, Nanopoulos D, Didier M, Aguera M, Steinbusch H, Verhofstad A, Maitre M, Pujol JF (1983) Immunohistochemical evidence for the presence of gamma-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Res 275:329–339

    PubMed  CAS  CrossRef  Google Scholar 

  • Bell R, Hobson H (1994) 5-HT1A receptor influences on rodent social and agonistic behavior: a review and empirical study. Neurosci Biobehav Rev 18:325–338

    PubMed  CAS  CrossRef  Google Scholar 

  • Belozertseva IV, Bespalov AY (1999) Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggress Behav 25:381–396

    CAS  CrossRef  Google Scholar 

  • Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494–10501

    PubMed  CAS  Google Scholar 

  • Bennett AJ, Lesch KP, Heils A, Long JC, Lorenz JG, Shoaf SE, Champoux M, Suomi SJ, Linnoila MV, Higley JD (2002) Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 7:118–122

    PubMed  CAS  CrossRef  Google Scholar 

  • Berkowitz L (1993) Aggression. Its causes, consequences and control. Mc Graw Hill, New York

    Google Scholar 

  • Bernstein IS, Rose RM, Gordon TP (1974) Behavioral and environmental events influencing primate testosterone levels. J Hum Evol 3:517–525

    CrossRef  Google Scholar 

  • Berton O, McClung CA, DiLeone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    PubMed  CAS  CrossRef  Google Scholar 

  • Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T, Zhou Z, Wedenoja J, Maroteaux L, Diaz S, Belmer A, Hodgkinson CA, Dell’osso L, Suvisaari J, Coccaro E, Rose RJ, Peltonen L, Virkkunen M, Goldman D (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468:1061–1066

    PubMed  CAS  CrossRef  Google Scholar 

  • Bjork JM, Moeller FG, Dougherty DM, Swann AC, Machado MA, Hanis CL (2002) Serotonin 2a receptor T102C polymorphism and impaired impulse control. Am J Med Genet 114:336–339

    PubMed  CrossRef  Google Scholar 

  • Blader JC (2006) Pharmacotherapy and postdischarge outcomes of child inpatients admitted for aggressive behavior. J Clin Psychopharmacol 26:419–425

    PubMed  CrossRef  Google Scholar 

  • Blanchard DC, Rodgers RJ, Hendrie CA, Hori K (1988) ‘Taming’ of wild rats (Rattus rattus) by 5HT1A agonists buspirone and gepirone. Pharmacol Biochem Behav 31:269–278

    PubMed  CAS  CrossRef  Google Scholar 

  • Blanchard RJ, Blanchard CD (1977) Aggressive behavior in the rat. Behav Biol 21:197–224

    PubMed  CAS  CrossRef  Google Scholar 

  • Blanchard RJ, Hori K, Blanchard DC, Hall J (1987) Ethanol effects on aggression of rats selected for different levels of aggressiveness. Pharmacol Biochem Behav 27:641–644

    PubMed  CAS  CrossRef  Google Scholar 

  • Blanchard RJ, Wall PM, Blanchard DC (2003) Problems in the study of rodent aggression. Horm Behav 44:161–170

    CrossRef  PubMed  Google Scholar 

  • Blier P, de Montigny C (1998) Possible serotonergic mechanisms underlying the antidepressant and anti-obsessive-compulsive disorder responses. Biol Psychiatry 44:313–323

    CAS  CrossRef  PubMed  Google Scholar 

  • Boles SM, Miotto K (2003) Substance abuse and violence—a review of the literature. Aggress Violent Behav 8:155–174

    CrossRef  Google Scholar 

  • Bond AJ (2005) Antidepressant treatments and human aggression. Eur J Pharmacol 526:218–225

    PubMed  CAS  CrossRef  Google Scholar 

  • Bonson KR, Johnson RG, Fiorella D, Rabin RA, Winter JC (1994) Serotonergic control of androgen-induced dominance. Pharmacol Biochem Behav 49:313–322

    PubMed  CAS  CrossRef  Google Scholar 

  • Bonvento G, Scatton B, Claustre Y, Rouquier L (1992) Effect of local injection of 8-OH-DPAT into the dorsal or median raphe nuclei on extracellular levels of serotonin in serotonergic projection areas in the rat brain. Neurosci Lett 137:101–104

    PubMed  CAS  CrossRef  Google Scholar 

  • Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25:6807–6815

    PubMed  CAS  CrossRef  Google Scholar 

  • Bouwknecht JA, Hijzen TH, van der GJ, Maes RA, Hen R, Olivier B (2001a) Absence of 5-HT1B receptors is associated with impaired impulse control in male 5-HT1B knockout mice. Biol Psychiatry 49:557–568

    PubMed  CAS  CrossRef  Google Scholar 

  • Bouwknecht JA, van der GJ, Hijzen TH, Maes RA, Hen R, Olivier B (2001b) Corticosterone responses in 5-HT1B receptor knockout mice to stress or 5-HT1A receptor activation are normal. Psychopharmacology 153:484–490

    PubMed  CAS  CrossRef  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    PubMed  CAS  CrossRef  Google Scholar 

  • Brain P, Benton D (1979) The interpretation of physiological correlates of differential housing in laboratory rats. Life Sci 24:99–115

    PubMed  CAS  CrossRef  Google Scholar 

  • Brain PF (1979) Hormones, drugs and aggression. Eden Press, Montreal

    Google Scholar 

  • Brown GL, Goodwin FK (1986) Cerebrospinal fluid correlates of suicide attempts and aggression. In: Mann JJ (ed) Psychobiology of suicidal behavior (Annals of the New York Academy of Sciences, Vol 487). New York Academy of Sciences, New York, pp 175–220

    Google Scholar 

  • Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1:131–139

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunner D, Buhot MC, Hen R, Hofer M (1999) Anxiety, motor activation, and maternal-infant interactions in 5HT1B knockout mice. Behav Neurosci 113:587–601

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunner D, Hen R (1997) Insights into the neurology of impulsive behavior from serotonin receptor knockout mice. Ann N Y Acad Sci 836:81–105

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993a) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262:578–580

    PubMed  CAS  CrossRef  Google Scholar 

  • Brunner HG, Nelen MR, Vanzandvoort P, Abeling NGGM, Vangennip AH, Wolters EC, Kuiper MA, Ropers HH, Vanoost BA (1993b) X-linked borderline mental-retardation with prominent behavioral disturbance—phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52:1032–1039

    PubMed  CAS  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2008) MAOA and the neurogenetic architecture of human aggression. Trends Neurosci 31:120–129

    PubMed  CAS  CrossRef  Google Scholar 

  • Buckley PF, Ibrahim ZY, Singer B, Orr B, Donenwirth K, Brar PS (1997) Aggression and schizophrenia: efficacy of risperidone. J Am Acad Psychiatry Law 25:173–181

    PubMed  CAS  Google Scholar 

  • Buitelaar JK, van der Gaag RJ, Cohen-Kettenis P, Melman TM (2001) A randomized controlled trial of risperidone in the treatment of aggression in hospitalized adolescents with subaverage cognitive abilities. J Clin Psychiatry 62:239–248

    PubMed  CAS  CrossRef  Google Scholar 

  • Burkhalter JE, Balster RL (1979) The effects of phencyclidine on isolation-induced aggression in mice. Psychol Rep 45:571–576

    PubMed  CAS  CrossRef  Google Scholar 

  • Burt SA, Mikolaiewski AJ (2008) Preliminary evidence that specific candidate genes are associated with adolescent-onset antisocial behavior. Aggress Behav 34:437–445

    PubMed  CAS  CrossRef  Google Scholar 

  • Buss AH (1961) The psychology of aggression. Wiley and Sons, New York

    CrossRef  Google Scholar 

  • Buss AH, Durkee A (1957) An inventory for assessing different kinds of hostility. J Consult Psychol 21:343–349

    PubMed  CAS  CrossRef  Google Scholar 

  • Cadoret RJ, Langbehn D, Caspers K, Troughton EP, Yucuis R, Sandhu HK, Philibert R (2003) Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Compr Psychiat 44:88–101

    PubMed  CrossRef  Google Scholar 

  • Cairns RB, Nakelski JS (1971) On fighting in mice: ontogenetic and experiential determinants. J Comp Physiol Psychol 74:354–364

    PubMed  CAS  CrossRef  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    PubMed  CAS  CrossRef  Google Scholar 

  • Caldwell EE, Miczek KA (2008) Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression. Psychopharmacology 196:407–416

    PubMed  CAS  CrossRef  Google Scholar 

  • Carrillo M, Ricci LA, Coppersmith GA, Melloni RH Jr (2009) The effect of increased serotonergic neurotransmission on aggression: a critical meta-analytical review of preclinical studies. Psychopharmacology 205:349–368

    PubMed  CAS  CrossRef  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC, De Maeyer E (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766

    PubMed  CAS  CrossRef  Google Scholar 

  • Cases O, Vitalis T, Seif I, DeMaeyer E, Sotelo C, Gaspar P (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16:297–307

    PubMed  CAS  CrossRef  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    PubMed  CAS  CrossRef  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    PubMed  CAS  CrossRef  Google Scholar 

  • Ceglia I, Acconcia S, Fracasso C, Colovic M, Caccia S, Invernizzi RW (2004) Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 142:469–478

    PubMed  CAS  CrossRef  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABAA, and glutamate receptors. J Neurosci 21:9917–9929

    PubMed  CAS  Google Scholar 

  • Centenaro LA, Vieira K, Zimmermann N, Miczek KA, Lucion AB, de Almeida RM (2008) Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology 201:237–248

    PubMed  CAS  CrossRef  Google Scholar 

  • Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15:6340–6350

    PubMed  CAS  Google Scholar 

  • Chan JP, Unger TJ, Byrnes J, Rios M (2006) Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience 142:49–58

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen C, Rainnie DG, Greene RW, Tonegawa S (1994) Abnormal fear response and aggressive behavior in mutant mice deficient for α-calcium-calmodulin kinase II. Science 265:291–294

    CrossRef  Google Scholar 

  • Chen GL, Novak MA, Meyer JS, Kelly BJ, Vallender EJ, Miller GM (2010) The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in Rhesus monkeys: a retrospective analysis. Horm Behav 57:184–191

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen ZY, Jing DQ, Bath KG, Ieraci A, Khan T, Siao CJ, Herrera DG, Toth M, Yang C, McEwen BS, Hempstead BL, Lee FS (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314:140–143

    PubMed  CAS  CrossRef  Google Scholar 

  • Cherek DR, Heistad GT (1971) Fixed-interval induced aggression. Psychon Sci 25:7–8

    Google Scholar 

  • Cherek DR, Lane SD (1999) Laboratory and psychometric measurements of impulsivity among violent and nonviolent female parolees. Biol Psychiatry 46:273–280

    PubMed  CAS  CrossRef  Google Scholar 

  • Chermack ST, Giancola PR (1997) The relation between alcohol and aggression: an integrated biopsychosocial conceptualization. Clin Psychol Rev 17:621–649

    PubMed  CAS  CrossRef  Google Scholar 

  • Chiavegatto S, Dawson VL, Mamounas LA, Koliatsos VE, Dawson TM, Nelson RJ (2001) Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci USA 98:1277–1281

    PubMed  CAS  CrossRef  Google Scholar 

  • Cichon S, Winge I, Mattheisen M, Georgi A, Karpushova A, Freudenberg J, Freudenberg-Hua Y, Babadjanova G, Van Den Bogaert A, Abramova LI, Kapiletti S, Knappskog PM, McKinney J, Maier W, Abou Jamra R, Schulze TG, Schumacher J, Propping P, Rietschel M, Haavik J, Nothen MM (2008) Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5 ‘-region are associated with bipolar affective disorder. Hum Mol Genet 17:87–97

    PubMed  CAS  CrossRef  Google Scholar 

  • Clotfelter ED, O’Hare EP, McNitt MM, Carpenter RE, Summers CH (2007) Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol Biochem Behav 87:222–231

    PubMed  CAS  CrossRef  Google Scholar 

  • Coccaro EF, Kavoussi RJ (1997) Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry 54:1081–1088

    PubMed  CAS  CrossRef  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Hauger RL, Cooper TB, Ferris CF (1998) Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry 55:708–714

    PubMed  CAS  CrossRef  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Sheline YI, Berman ME, Csernansky JG (1997) Impulsive aggression in personality disorder correlates with platelet 5- HT2A receptor binding. Neuropsychopharmacology 16:211–216

    PubMed  CAS  CrossRef  Google Scholar 

  • Coccaro EF, Lee R, Kavoussi RJ (2010) Aggression, suicidality, and intermittent explosive disorder: serotonergic correlates in personality disorder and healthy control subjects. Neuropsychopharmacology 35:435–444

    PubMed  CAS  CrossRef  Google Scholar 

  • Cole HF, Wolf HH (1970) Laboratory evaluation of aggressive behavior of the grasshopper mouse (Onychomys). J Pharm Sci 59:969–971

    PubMed  CAS  CrossRef  Google Scholar 

  • Colmers WF, Williams JT (1988) Pertussis toxin pretreatment discriminates between pre- and postsynaptic actions of baclofen in rat dorsal raphe nucleus in vitro. Neurosci Lett 93:300–306

    PubMed  CAS  CrossRef  Google Scholar 

  • Cologer-Clifford A, Simon NG, Lu SF, Smoluk SA (1997) Serotonin agonist-induced decreases in intermale aggression are dependent on brain region and receptor subtype. Pharmacol Biochem Behav 58:425–430

    PubMed  CAS  CrossRef  Google Scholar 

  • Connor DF, Steingard RJ (1996) A clinical approach to the pharmacotherapy of aggression in children and adolescents. In: Understanding aggressive behavior in children. Ann N Y Acad Sci 794:290–307

    PubMed  CAS  CrossRef  Google Scholar 

  • Crabbe JC, Phillips TJ, Feller DJ, Hen R, Wenger CD, Lessov CN, Schafer GL (1996) Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 14:98–101

    PubMed  CAS  CrossRef  Google Scholar 

  • Crawley JN, Schleidt WM, Contrera JF (1975) Does social environment decrease propensity to fight in male mice? Behav Biol 15:73–83

    PubMed  CAS  CrossRef  Google Scholar 

  • Cutler MG, Rodgers RJ, Jackson JE (1997) Behavioural effects in mice of subchronic buspirone, ondansetron, and tianeptine. I. Social interactions. Pharmacol Biochem Behav 56:287–293

    PubMed  CAS  CrossRef  Google Scholar 

  • Czobor P, Volavka J, Meibach RC (1995) Effect of risperidone on hostility in schizophrenia. J Clin Psychopharmacol 15:243–249

    PubMed  CAS  CrossRef  Google Scholar 

  • D’Adamo P, Welzl H, Papadimitriou S, Raffaele dB, Tiveron C, Tatangelo L, Pozzi L, Chapman PF, Knevett SG, Ramsay MF, Valtorta F, Leoni C, Menegon A, Wolfer DP, Lipp HP, Toniolo D (2002) Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum Mol Genet 11:2567–2580

    PubMed  CrossRef  Google Scholar 

  • D’Anna KL, Stevenson SA, Gammie SC (2005) Urocortin 1 and 3 impair maternal defense behavior in mice. Behav Neurosci 119:1061–1071

    PubMed  CrossRef  Google Scholar 

  • DaVanzo JP, Daugherty M, Ruckart R, Kang L (1966) Pharmacological and biochemical studies in isolation-induced fighting mice. Psychopharmacologia 9:210–219

    CAS  CrossRef  Google Scholar 

  • Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation–a possible prelude to violence. Science 289:591–594

    PubMed  CAS  CrossRef  Google Scholar 

  • de Almeida RM, Rosa MM, Santos DM, Saft DM, Benini Q, Miczek KA (2006) 5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology 185:441–450

    PubMed  CAS  CrossRef  Google Scholar 

  • de Almeida RMM, Faccidomo S, Fish E, Miczek KA (2001a) Inhibition of alcohol-heightened aggression by action at post-synaptic 5-HT1b receptors in male mice. Aggress Behav 3:234–235

    Google Scholar 

  • de Almeida RMM, Giovenardi M, da Silva SP, de Oliveira VP, Stein DJ (2005) Maternal aggression in Wistar rats: effect of 5-HT2A/2C receptor agonist and antagonist microinjected into the dorsal periaqueductal gray matter and medial septum. Braz J Med Biol Res 38:597–602

    PubMed  CrossRef  Google Scholar 

  • de Almeida RMM, Lucion A (1994) Effects of intracerebroventricular administration of 5-HT receptor agonists on the maternal aggression of rats. Eur J Neurosci 264:445–448

    Google Scholar 

  • de Almeida RMM, Lucion AB (1997) 8-OH-DPAT in the median raphe, dorsal periaqueductal gray and corticomedial amygdala nucleus decreases, but the medial septal area it can increase maternal aggressive behavior in rats. Psychopharmacology 134:392–400

    PubMed  CrossRef  Google Scholar 

  • de Almeida RMM, Miczek KA (2002) Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline—a 5-HT1B receptor agonist. Neuropsychopharmacology 27:171–181

    PubMed  CrossRef  Google Scholar 

  • de Almeida RMM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (2001b) Zolmitriptan–a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology 157:131–141

    PubMed  CrossRef  Google Scholar 

  • de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

    PubMed  CrossRef  CAS  Google Scholar 

  • de Boer SF, Lesourd M, Mocaer E, Koolhaas JM (1999) Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: a comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. J Pharmacol Exp Ther 288:1125–1133

    PubMed  Google Scholar 

  • de Boer SF, Lesourd M, Mocaer E, Koolhaas JM (2000) Somatodendritic 5-HT1A autoreceptors mediate the anti-aggressive actions of 5-HT1A receptor agonists in rats: An ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 23:20–33

    PubMed  CrossRef  Google Scholar 

  • De Deyn PP, Rabheru K, Rasmussen A, Bocksberger JP, Dautzenberg PL, Eriksson S, Lawlor BA (1999) A randomized trial of risperidone, placebo, and haloperidol for behavioral symptoms of dementia. Neurology 53:946–955

    PubMed  Google Scholar 

  • De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJH, Laird JMA, Belmonte C, Cervero F, Hunt SP (1998) Altered nocieption, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    PubMed  CrossRef  Google Scholar 

  • De Groote L, Olivier B, Westenberg HG (2003) Role of 5-HT1B receptors in the regulation of extracellular serotonin and dopamine in the dorsal striatum of mice. Eur J Pharmacol 476:71–77

    PubMed  CrossRef  CAS  Google Scholar 

  • DeBold JF, Miczek KA (1981) Sexual dimorphism in the hormonal control of aggressive behavior of rats. Pharmacol Biochem Behav 14:89–93

    PubMed  CrossRef  Google Scholar 

  • Dekeyne A, Brocco M, Adhumeau A, Gobert A, Millan MJ (2000) The selective serotonin 5-HT1A receptor ligand, S15535, displays anxiolytic-like effects in the social interaction and Vogel models and suppresses dialysate levels of 5-HT in the dorsal hippocampus of freely-moving rats. A comparison with other anxiolytic agents. Psychopharmacology 152:55–66

    PubMed  CAS  CrossRef  Google Scholar 

  • Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, Zufall F, Mombaerts P (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74

    PubMed  CrossRef  CAS  Google Scholar 

  • Deltheil T, Guiard BP, Guilloux JP, Nicolas L, Delomenie C, Reperant C, Le Maitre E, Leroux-Nicollet I, Benmansour S, Coudore F, David DJ, Gardier AM (2008) Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: studies in adult mice hippocampus. Pharmacol Biochem Behav 90:174–183

    PubMed  CAS  CrossRef  Google Scholar 

  • Delville Y, Mansour KM, Ferris CF (1996) Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiol Behav 59:813–816

    PubMed  CAS  CrossRef  Google Scholar 

  • Demas GE, Kriegsfeld LJ, Blackshaw S, Huang P, Gammie SC, Nelson RJ, Snyder SH (1999) Elimination of aggressive behavior in male mice lacking endothelial nitric oxide synthase. J Neurosci 19:1–5

    Google Scholar 

  • Denney RM, Koch H, Craig IW (1999) Association between monoamine oxidase A activity in human male shin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum Genet 105:542–551

    PubMed  CAS  CrossRef  Google Scholar 

  • DeVries AC, Young WS, Nelson RJ (1997) Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. J Neuroendocrinol 9:363–368

    PubMed  CAS  CrossRef  Google Scholar 

  • Dompert WU, Glaser T, Traber J (1985) 3H-TVX Q 7821: identification of 5-HT1 binding sites as target for a novel putative anxiolytic. Naunyn Schmiedebergs Arch Pharmacol 328:467–470

    PubMed  CAS  CrossRef  Google Scholar 

  • Duysen EG, Stribley JA, Fry DL, Hinrichs SH, Lockridge O (2002) Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res Dev Brain Res 137:43–54

    PubMed  CAS  CrossRef  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    PubMed  CAS  CrossRef  Google Scholar 

  • Eibl-Eibesfeldt I (1950) Beiträge zur Biologie der Haus- und der Ährenmaus nebst einigen Beobachtungen an anderen Nagern. Z Tierpsychol 7:558–587

    CrossRef  Google Scholar 

  • Elkabir DR, Wyatt ME, Vellucci SV, Herbert J (1990) The effects of separate or combined infusions of corticotrophin-releasing factor and vasopressin either intraventricularly or into the amygdala on aggressive and investigative behaviour in the rat. Regul Pept 28:199–214

    PubMed  CAS  CrossRef  Google Scholar 

  • Emeson RB, Morabito MV (2005) Food fight: the NPY-serotonin link between aggression and feeding behavior. Sci STKE 2005:pe12

    Google Scholar 

  • Faccidomo S, Bannai M, Miczek KA (2008) Escalated aggression after alcohol drinking in male mice: dorsal raphe and prefrontal cortex serotonin and 5-HT1B receptors. Neuropsychopharmacology 33:2888–2899

    PubMed  CAS  CrossRef  Google Scholar 

  • Faccidomo S, Quadros IM, Takahashi A, Fish EW, Miczek KA (2012) Infralimbic and dorsal raphé microinjection of the 5-HT1B receptor agonist CP–93,129: attenuation of aggressive behavior in CFW male mice. Psychopharmacology. doi: 10.1007/s00213-011-2629-1 (published online 12 January 2012)

  • Fairbanks LA, Fontenot MB, Phillips-Conroy JE, Jolly CJ, Kaplan JR, Mann JJ (1999) CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain Behav Evol 53:305–312

    PubMed  CAS  CrossRef  Google Scholar 

  • Fairbanks LA, Melega WP, Jorgensen MJ, Kaplan JR, McGuire MT (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24:370–378

    PubMed  CAS  CrossRef  Google Scholar 

  • Farrokhi C, Blanchard DC, Griebel G, Yang M, Gonzales C, Markham C, Blanchard RJ (2004) Effects of the CRF1 antagonist SSR125543A on aggressive behaviors in hamsters. Pharmacol Biochem Behav 77:465–469

    PubMed  CAS  CrossRef  Google Scholar 

  • Fava M (1997) Psychopharmacologic treatment of pathologic aggression. Psychiatr Clin North Am 20:427–451

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferrari PF, Parmigiani S, Rodgers RJ, Palanza P (1997) Differential effects of chlordiazepoxide on aggressive behavior in male mice: the influence of social factors. Psychopharmacology 134:258–265

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferrari PF, Van Erp AMM, Tornatzky W, Miczek KA (2003) Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 17:371–378

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferris CF, Lu SF, Messenger T, Guillon CD, Heindel N, Miller M, Koppel G, Robert BF, Simon NG (2006) Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol Biochem Behav 83:169–174

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17:4331–4340

    PubMed  CAS  Google Scholar 

  • Ferris CF, Pilapil CG, Hayden-Hixson D, Wiley RG, Koh ET (1992) Functionally and anatomically distinct populations of vasopressinergic magnocellular neurons in the female golden hamster. J Neuroendocrinol 4:193–205

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferris CF, Potegal M (1988) Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav 44:235–239

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferris CF, Stolberg T, Delville Y (1999) Serotonin regulation of aggressive behavior in male golden hamsters (Mesocricetus auratus). Behav Neurosci 113:804–815

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG (2008) Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111

    PubMed  CrossRef  CAS  Google Scholar 

  • Fischer HS, Zernig G, Schuligoi R, Miczek KA, Hauser KF, Gerard C, Saria A (2000) Alterations within the endogenous opioid system in mice with targeted deletion of the neutral endopeptidase (“enkephalinase”) gene. Regul Pept 96:53–58

    PubMed  CAS  CrossRef  Google Scholar 

  • Fish EW, Faccidomo S, DeBold JF, Miczek KA (2001) Alcohol, allopregnanolone and aggression in mice. Psychopharmacology 153:473–483

    PubMed  CAS  CrossRef  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146:391–399

    PubMed  CAS  CrossRef  Google Scholar 

  • Foley DL, Eaves LJ, Wormley B, Silberg JL, Maes HH, Kuhn J, Riley B (2004) Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Arch Gen Psychiat 61:738–744

    PubMed  CAS  CrossRef  Google Scholar 

  • Forster GL, Pringle RB, Mouw NJ, Vuong SM, Watt MJ, Burke AR, Lowry CA, Summers CH, Renner KJ (2008) Corticotropin-releasing factor in the dorsal raphe nucleus increases medial prefrontal cortical serotonin via type 2 receptors and median raphe nucleus activity. Eur J Neurosci 28:299–310

    PubMed  CrossRef  Google Scholar 

  • Frazzetto G, Di Lorenzo G, Carola V, Proietti L, Sokolowska E, Siracusano A, Gross C, Troisi A (2007) Early trauma and increased risk for physical aggression during adulthood: the moderating role of MAOA genotype. PLoS ONE 2:e486

    PubMed  CrossRef  CAS  Google Scholar 

  • Fresan A, Camarena B, Apiquian R, Aguilar A, Urraca N, Nicolini H (2007) Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior. Neuropsychobiology 55:171–175

    PubMed  CAS  CrossRef  Google Scholar 

  • Fuller RW (1996) The influence of fluoxetine on aggressive behavior. Neuropsychopharmacology 14:77–81

    PubMed  CAS  CrossRef  Google Scholar 

  • Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. II. Reversal by picrotoxin. Eur J Pharmacol 39:357–364

    PubMed  CAS  CrossRef  Google Scholar 

  • Gammie SC, Bethea ED, Stevenson SA (2007) Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice. BMC Neurosci 8:17

    PubMed  CrossRef  CAS  Google Scholar 

  • Gammie SC, Hasen NS, Stevenson SA, Bale TL, D’Anna KL (2005) Elevated stress sensitivity in corticotropin-releasing factor receptor 2 deficient mice decreases maternal, but not intermale aggression. Behav Brain Res 160:169–177

    PubMed  CAS  CrossRef  Google Scholar 

  • Gammie SC, Negron A, Newman SM, Rhodes JS (2004) Corticotropin-releasing factor inhibits maternal aggression in mice. Behav Neurosci 118:805–814

    PubMed  CAS  CrossRef  Google Scholar 

  • Gammie SC, Nelson RJ (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19:8027–8035

    PubMed  CAS  Google Scholar 

  • Gammie SC, Stevenson SA (2006) Intermale aggression in corticotropin-releasing factor receptor 1 deficient mice. Behav Brain Res 171:63–69

    PubMed  CAS  CrossRef  Google Scholar 

  • Garattini S, Giacalone E, Valzelli L (1967) Isolation, aggressiveness and brain 5-hydroxytryptamine turnover. J Pharm Pharmacol 19:338–339

    PubMed  CAS  CrossRef  Google Scholar 

  • Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20:4217–4225

    PubMed  CAS  Google Scholar 

  • Giancola PR, Levinson CA, Corman MD, Godlaski AJ, Morris DH, Phillips JP, Holt JC (2009) Men and women, alcohol and aggression. Exp Clin Psychopharmacol 17:154–164

    PubMed  CrossRef  Google Scholar 

  • Giménez-Llort L, Fernández-Teruel A, Escorihuela RM, Fredholm BB, Tobeña A, Pekny M, Johansson B (2002) Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur J Neurosci 16:547–550

    PubMed  CrossRef  Google Scholar 

  • Gobert A, Rivet JM, Audinot V, Newman-Tancredi A, Cistarelli L, Millan MJ (1998) Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto- and heteroreceptor-mediated control of release. Neuroscience 84:413–429

    PubMed  CAS  CrossRef  Google Scholar 

  • Godlaski AJ, Giancola PR (2009) Executive functioning, irritability, and alcohol-related aggression. Psychol Addict Behav 23:391–403

    PubMed  CrossRef  Google Scholar 

  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95:9991–9996

    PubMed  CAS  CrossRef  Google Scholar 

  • Goldman D, Dean M, Brown GL, Bolos AM, Tokola R, Virkkunen M, Linnoila M (1992) D2 dopamine receptor genotype and cerebrospinal fluid homovanillic acid, 5-hydroxyindoleacetic acid and 3-methoxy-4-hydroxyphenylglycol in alcoholics in Finland and the United States. Acta Psychiatr Scand 86:351–357

    PubMed  CAS  CrossRef  Google Scholar 

  • Goodson JL (2008) Nonapeptides and the evolutionary patterning of sociality. Prog Brain Res 170:3–15

    PubMed  CAS  CrossRef  Google Scholar 

  • Gourley SL, DeBold JF, Yin W, Cook J, Miczek KA (2005) Benzodiazepines and heightened aggressive behavior in rats: reduction by GABAA1 receptor antagonists. Psychopharmacology 178:232–240

    PubMed  CAS  CrossRef  Google Scholar 

  • Gowin JL, Swann AC, Moeller FG, Lane SD (2010) Zolmitriptan and human aggression: interaction with alcohol. Psychopharmacology 210:521–531

    PubMed  CAS  CrossRef  Google Scholar 

  • Haller J, Bakos N, Rodriguiz RM, Caron MG, Wetsel WC, Liposits Z (2002) Behavioral responses to social stress in noradrenaline transporter knockout mice: effects on social behavior and depression. Brain Res Bull 58:279–284

    PubMed  CAS  CrossRef  Google Scholar 

  • Haller J, Mikics E, Halasz J, Toth M (2005) Mechanisms differentiating normal from abnormal aggression: glucocorticoids and serotonin. Eur J Pharmacol 526:89–100

    PubMed  CAS  CrossRef  Google Scholar 

  • Haller J, van de Schraaf J, Kruk MR (2001) Deviant forms of aggression in glucocorticoid hyporeactive rats: a model for ‘pathological’ aggression? J Neuroendocrinol 13:102–107

    PubMed  CAS  CrossRef  Google Scholar 

  • Hallikainen T, Saito T, Lachman HM, Volavka J, Pohjalainen T, Ryynanen OP, Kauhanen J, Syvalahti E, Hietala J, Tiihonen J (1999) Association between low activity serotonin transporter promoter genotype and early onset alcoholism with habitual impulsive violent behavior. Mol Psychiatry 4:385–388

    PubMed  CAS  CrossRef  Google Scholar 

  • Haney M, DeBold JF, Miczek KA (1989) Maternal aggression in mice and rats towards male and female conspecifics. Aggress Behav 15:443–453

    CrossRef  Google Scholar 

  • Harmon AC, Huhman KL, Moore TO, Albers HE (2002) Oxytocin inhibits aggression in female Syrian hamsters. J Neuroendocrinol 14:963–969

    PubMed  CAS  CrossRef  Google Scholar 

  • Hassanain M, Bhatt S, Siegel A (2003) Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors. Brain Res 981:201–209

    PubMed  CAS  CrossRef  Google Scholar 

  • Haug M, Wallian L, Brain PF (1990) Effects of 8-OH-DPAT and fluoxetine on activity and attack by female mice towards lactating intruders. Gen Pharmacol 21:845–849

    PubMed  CAS  CrossRef  Google Scholar 

  • Heiligenberg W (1974) Processes governing behavioral states of readiness. Adv Study Behav 5:173–200

    CrossRef  Google Scholar 

  • Heils A, Teufel A, Petri S, Seemann M, Bengel D, Balling U, Riederer P, Lesch KP (1995) Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene. J Neural Transm Gen Sect 102:247–254

    PubMed  CAS  CrossRef  Google Scholar 

  • Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, Lesch KP (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66:2621–2624

    PubMed  CAS  CrossRef  Google Scholar 

  • Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37:233–247

    PubMed  CAS  CrossRef  Google Scholar 

  • Hennig J, Reuter M, Netter P, Burk C, Landt O (2005) Two types of aggression are differentially related to serotonergic activity and the A779C TPH polymorphism. Behav Neurosci 119:16–25

    PubMed  CAS  CrossRef  Google Scholar 

  • Herzog H (2003) Neuropeptide Y and energy homeostasis: insights from Y receptor knockout models. Eur J Pharmacol 480:21–29

    PubMed  CAS  CrossRef  Google Scholar 

  • Hess WR (1954) Das Zwischenhirn. Benno Schwabe & Co., Basel

    Google Scholar 

  • Higley JD, Mehlman PT, Poland RE, Taub DM, Vickers J, Suomi SJ, Linnoila M (1996) CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biol Psychiatry 40:1067–1082

    PubMed  CAS  CrossRef  Google Scholar 

  • Higley JD, Suomi SJ (1986) Parental behavior in primates. In: Sluckin W (ed) Parental behavior in animals and humans. Blackwell Press, Oxford, pp 152–207

    Google Scholar 

  • Higley JD, Suomi SJ, Linnoila M (1991) CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology 103:551–556

    PubMed  CAS  CrossRef  Google Scholar 

  • Hjorth S, Sharp T (1991) Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci 48:1779–1786

    PubMed  CAS  CrossRef  Google Scholar 

  • Ho HP, Olsson M, Westberg L, Melke J, Eriksson E (2001) The serotonin reuptake inhibitor fluoxetine reduces sex steroid-related aggression in female rats: an animal model of premenstrual irritability? Neuropsychopharmacology 24:502–510

    PubMed  CAS  CrossRef  Google Scholar 

  • Hollander E (1999) Managing aggressive behavior in patients with obsessive-compulsive disorder and borderline personality disorder. J Clin Psychiatry 60(Suppl 15):38–44

    PubMed  Google Scholar 

  • Holmes A, Murphy DL, Crawley JN (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161:160–167

    PubMed  CAS  CrossRef  Google Scholar 

  • Homberg JR (2007) Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 26:2066–2073

    PubMed  CrossRef  Google Scholar 

  • Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286

    PubMed  CAS  CrossRef  Google Scholar 

  • Huang YY, Grailhe R, Arango V, Hen R, Mann JJ (1999) Relationship of psychopathology to the human serotonin1B genotype and receptor binding kinetics in postmortem brain tissue. Neuropsychopharmacology 21:238–246

    PubMed  CAS  CrossRef  Google Scholar 

  • Hurst JL (1987) Behavioral variation in wild house mice Mus domesticus Rutty: a quantitative assessment of female social organization. Anim Behav 35:1846–1857

    CrossRef  Google Scholar 

  • Innis RB, Aghajanian GK (1987) Pertussis toxin blocks 5-HT1A and GABAB receptor-mediated inhibition of serotonergic neurons. Eur J Pharmacol 143:195–204

    PubMed  CAS  CrossRef  Google Scholar 

  • Ito W, Chehab M, Thakur S, Li J, Morozov A (2011) BDNF-restricted knockout mice as an animal model for aggression. Genes Brain Behav 10:365–374

    PubMed  CAS  CrossRef  Google Scholar 

  • Jacobs BL, Cohen A (1976) Differential behavioral effects of lesions of the median or dorsal raphe nuclei in rats: open field and pain-elicited aggression. J Comp Physiol Psychol 90:102–108

    PubMed  CAS  CrossRef  Google Scholar 

  • Jarrell H, Hoffman JB, Kaplan JR, Berga S, Kinkead B, Wilson ME (2008) Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 93:807–819

    PubMed  CAS  CrossRef  Google Scholar 

  • Jensen KP, Covault J, Conner TS, Tennen H, Kranzler HR, Furneaux HM (2009) A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol Psychiatry 14:381–389

    PubMed  CAS  CrossRef  Google Scholar 

  • Johnson DE, Rollema H, Schmidt AW, McHarg AD (2001) Serotonergic effects and extracellular brain levels of eletriptan, zolmitriptan and sumatriptan in rat brain. Eur J Pharmacol 425:203–210

    PubMed  CAS  CrossRef  Google Scholar 

  • Johnson O, Becnel J, Nichols CD (2009) Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience 158:1292–1300

    PubMed  CAS  CrossRef  Google Scholar 

  • Jonsson EG, Goldman D, Spurlock G, Gustavsson JP, Nielsen DA, Linnoila M, Owen MJ, Sedvall GC (1997) Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Eur Arch Psychiatry Clin Neurosci 247:297–302

    PubMed  CAS  CrossRef  Google Scholar 

  • Joppa MA, Rowe RK, Meisel RL (1997) Effects of serotonin 1A or 1B receptor agonists on social aggression in male and female Syrian hamsters. Pharmacol Biochem Behav 58:349–353

    PubMed  CAS  CrossRef  Google Scholar 

  • Judge SJ, Ingram CD, Gartside SE (2004) GABA receptor modulation of 5-HT neuronal firing: characterization and effect of moderate in vivo variations in glucocorticoid levels. Neurochem Int 45:1057–1065

    PubMed  CAS  CrossRef  Google Scholar 

  • Kalen P, Pritzel M, Nieoullon A, Wiklund L (1986) Further evidence for excitatory amino acid transmission in the lateral habenular projection to the rostral raphe nuclei: lesion-induced decrease of high affinity glutamate uptake. Neurosci Lett 68:35–40

    PubMed  CAS  CrossRef  Google Scholar 

  • Karl T, Lin S, Schwarzer C, Sainsbury A, Couzens M, Wittmann W, Boey D, von Horsten S, Herzog H (2004) Y1 receptors regulate aggressive behavior by modulating serotonin pathways. Proc Natl Acad Sci USA 101:12742–12747

    PubMed  CAS  CrossRef  Google Scholar 

  • Kavoussi R, Armstead P, Coccaro E (1997) The neurobiology of impulsive aggression. Psychiatr Clin North Am 20:395–403

    PubMed  CAS  CrossRef  Google Scholar 

  • Keck PE Jr, Strakowski SM, McElroy SL (2000) The efficacy of atypical antipsychotics in the treatment of depressive symptoms, hostility, and suicidality in patients with schizophrenia. J Clin Psychiatry 61(Suppl 3):4–9

    PubMed  CAS  Google Scholar 

  • Khait VD, Huang YY, Zalsman G, Oquendo MA, Brent DA, Harkavy-Friedman JM, Mann JJ (2005) Association of serotonin 5-HT2A receptor binding and the T102C polymorphism in depressed and healthy Caucasian subjects. Neuropsychopharmacology 30:166–172

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim C, Jeon D, Kim YH, Lee CJ, Kim H, Shin HS (2009a) Deletion of N-type Ca2+ channel Cav2.2 results in hyperaggressive behaviors in mice. J Biol Chem 284:2738–2745

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim JJ, Shih JC, Chen K, Chen L, Bao SW, Maren S, Anagnostaras SG, Fanselow MS, DeMaeyer E, Seif I, Thompson RF (1997) Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice. Proc Nat Acad Sci USA 94:5929–5933

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim YR, Jahng JW, Min SK (2009b) Association between the serotonin transporter gene (5-HTTLPR) and anger-related traits in Korean schizophrenic patients. Neuropsychobiology 59:165–171

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913

    PubMed  CAS  CrossRef  Google Scholar 

  • Kirby LG, Rice KC, Valentino RJ (2000) Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 22:148–162

    PubMed  CAS  CrossRef  Google Scholar 

  • Knobelman DA, Kung HF, Lucki I (2000) Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT1A and 5-HT1B receptors. J Pharmacol Exp Ther 292:1111–1117

    PubMed  CAS  Google Scholar 

  • Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT, Miczek KA, Baltimore D (1998) Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21:1259–1272

    PubMed  CAS  CrossRef  Google Scholar 

  • Kombian SB, Colmers WF (1992) Neuropeptide Y selectively inhibits slow synaptic potentials in rat dorsal raphe nucleus in vitro by a presynaptic action. J Neurosci 12:1086–1093

    PubMed  CAS  Google Scholar 

  • König M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A (1996) Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538

    PubMed  CrossRef  Google Scholar 

  • Koolhaas JM (1978) Hypothalamically induced intraspecific aggressive behaviour in the rat. Exp Brain Res 32:365–375

    PubMed  CAS  CrossRef  Google Scholar 

  • Koolhaas JM, Van der Brink THC, Roozendaal B, Boorsma F (1990) Medial amygdala and aggressive behavior: interaction between testosterone and vasopressin. Aggress Behav 16:223–229

    CAS  Google Scholar 

  • Koprowska M, Romaniuk A (1997) Behavioral and biochemical alterations in median and dorsal raphe nuclei lesioned cats. Pharmacol Biochem Behav 56:529–540

    PubMed  CAS  CrossRef  Google Scholar 

  • Korte SM, Meijer OC, De Kloet ER, Buwalda B, Keijser J, Sluyter F, van Oortmerssen G, Bohus B (1996) Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Res 736:338–343

    PubMed  CAS  CrossRef  Google Scholar 

  • Kovács GL, Bohus B, Versteeg DH, De Kloet ER, de Wied D (1979) Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res 175:303–314

    PubMed  CrossRef  Google Scholar 

  • Kraemer GW, Ebert MH, Schmidt DE, McKinney WT (1989) A longitudinal study of the effect of different social rearing conditions on cerebrospinal fluid norepinephrine and biogenic amine metabolites in rhesus monkeys. Neuropsychopharmacology 2:175–189

    PubMed  CAS  CrossRef  Google Scholar 

  • Kranzler HR, Hernandez-Avila CA, Gelernter J (2002) Polymorphism of the 5-HT1B receptor gene (HTR1B): Strong within-locus linkage disequilibrium without association to antisocial substance dependence. Neuropsychopharmacology 26:115–122

    PubMed  CAS  CrossRef  Google Scholar 

  • Kreiss DS, Lucki I (1994) Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther 269:1268–1279

    PubMed  CAS  Google Scholar 

  • Krsiak M (1974) Isolation-induced timidity in mice as a measure of anxiolytic activity of drugs. Act Nerv Super (Praha) 16:241–242

    CAS  Google Scholar 

  • Kushi A, Sasai H, Koizumi H, Takeda N, Yokoyama M, Nakamura M (1998) Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice. Proc Natl Acad Sci USA 95:15659–15664

    PubMed  CAS  CrossRef  Google Scholar 

  • Lamar M, Cutter WJ, Rubia K, Brammer M, Daly EM, Craig MC, Cleare AJ, Murphy DG (2009) 5-HT, prefrontal function and aging: fMRI of inhibition and acute tryptophan depletion. Neurobiol Aging 30:1135–1146

    PubMed  CAS  CrossRef  Google Scholar 

  • Lang A, Harro J, Soosaar A, Koks S, Volke V, Oreland L, Bourin M, Vasar E, Bradwejn J, Mannisto PT (1995) Role of N-methyl-d-aspartic acid and cholecystokinin receptors in apomorphine-induced aggressive behaviour in rats. Naunyn Schmiedebergs Arch Pharmacol 351:363–370

    PubMed  CAS  CrossRef  Google Scholar 

  • Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL, Naukkarinen H, Virkkunen M, Linnoila M, Goldman D (1998) Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 55:989–994

    PubMed  CAS  CrossRef  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    PubMed  CAS  CrossRef  Google Scholar 

  • Lee R, Ferris C, Van de Kar LD, Coccaro EF (2009) Cerebrospinal fluid oxytocin, life history of aggression, and personality disorder. Psychoneuroendocrinology 34:1567–1573

    PubMed  CAS  CrossRef  Google Scholar 

  • Lerch-Haner JK, Frierson D, Crawford LK, Beck SG, Deneris ES (2008) Serotonergic transcriptional programming determines maternal behavior and offspring survival. Nat Neurosci 11:1001–1003

    PubMed  CAS  CrossRef  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Mueller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 264:1537–1551

    Google Scholar 

  • Lesch KP, Merschdorf U (2000) Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci Law 18:581–604

    PubMed  CAS  CrossRef  Google Scholar 

  • Lesch KP, Meyer J, Glatz K, Flugge G, Hinney A, Hebebrand J, Klauck SM, Poustka A, Poustka F, Bengel D, Mossner R, Riederer P, Heils A (1997) The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: alternative biallelic variation in rhesus monkeys. J Neural Transm 104:1259–1266

    PubMed  CAS  CrossRef  Google Scholar 

  • Leyhausen P (1979) Cat behavior: predatory and social behavior of domestic and wild cats. Garland STPM Press, New York

    Google Scholar 

  • Lin YMJ, Chao SC, Chen TM, Lai TJ, Chen JS, Sun HS (2007) Association of functional polymorphisms of the human tryptophan hydroxylase 2 gene with risk for bipolar disorder in Han Chinese. Arch Gen Psychiatry 64:1015–1024

    PubMed  CAS  CrossRef  Google Scholar 

  • Lindgren T, Kantak KM (1987) Effects of serotonin receptor agonists and antagonists on offensive aggression in mice. Aggress Behav 13:87–96

    CAS  CrossRef  Google Scholar 

  • Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33:2609–2614

    PubMed  CAS  CrossRef  Google Scholar 

  • Linnoila VMI, Virkkunen M (1992) Aggression, suicidality, and serotonin. J Clin Psychiatry 53:46–51

    PubMed  Google Scholar 

  • Loconto J, Papes F, Chang E, Stowers L, Jones EP, Takada T, Kumanovics A, Fischer LK, Dulac C (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–618

    PubMed  CAS  CrossRef  Google Scholar 

  • Lonstein JS, Gammie SC (2002) Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26:869–888

    PubMed  CrossRef  CAS  Google Scholar 

  • Lowry CA, Rodda JE, Lightman SL, Ingram CD (2000) Corticotropin-releasing factor increases in vitro firing rates of serotonergic neurons in the rat dorsal raphe nucleus: evidence for activation of a topographically organized mesolimbocortical serotonergic system. J Neurosci 20:7728–7736

    PubMed  CAS  Google Scholar 

  • Lucion AB, de Almeida RMM (1996) On the dual nature of maternal aggression in rats. Aggress Behav 22:365–373

    CrossRef  Google Scholar 

  • Lucki I, Wieland S (1990) 5-Hydroxytryptamine-1A receptors and behavioral responses. Neuropsychopharmacology 3:481–493

    PubMed  CAS  Google Scholar 

  • Lukkes JL, Forster GL, Renner KJ, Summers CH (2008) Corticotropin-releasing factor 1 and 2 receptors in the dorsal raphe differentially affect serotonin release in the nucleus accumbens. Eur J Pharmacol 578:185–193

    PubMed  CAS  CrossRef  Google Scholar 

  • Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 96:15239–15244

    PubMed  CAS  CrossRef  Google Scholar 

  • Maciewicz R, Foote WE, Bry J (1981) Excitatory projection from the interpeduncular nucleus to central superior raphe neurons. Brain Res 225:179–183

    PubMed  CAS  CrossRef  Google Scholar 

  • Malick JB (1979) The pharmacology of isolation-induced aggressive behavior in mice. In: Essman WB (ed) Current Developments in Psychopharmacology. SP Medical and Scientific Books, New York, pp 1–27

    Google Scholar 

  • Malleret G, Hen R, Guillou JL, Segu L, Buhot MC (1999) 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. J Neurosci 19:6157–6168

    PubMed  CAS  Google Scholar 

  • Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662

    PubMed  CAS  CrossRef  Google Scholar 

  • Mann JJ (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21:99S–105S

    PubMed  CAS  Google Scholar 

  • Mann JJ, Stanley M, McBride PA, McEwen BS (1986) Increased serotonin2 and β-adrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43:954–959

    PubMed  CAS  CrossRef  Google Scholar 

  • Manuck SB, Flory JD, Ferrell RE, Dent KM, Mann JJ, Muldoon MF (1999) Aggression and anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene. Biol Psychiatry 45:603–614

    PubMed  CAS  CrossRef  Google Scholar 

  • Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF (2000) A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 95:9–23

    PubMed  CAS  CrossRef  Google Scholar 

  • Manuck SB, Flory JD, Muldoon MF, Ferrell RE (2002) Central nervous system serotonergic responsivity and aggressive disposition in men. Physiol Behav 77:705–709

    PubMed  CAS  CrossRef  Google Scholar 

  • Marino MD, Bourdelat-Parks BN, Liles LC, Weinshenker D (2005) Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197–203

    PubMed  CAS  CrossRef  Google Scholar 

  • Martel JC, Fournier A, St PS, Quirion R (1990) Quantitative autoradiographic distribution of [125I] Bolton-Hunter neuropeptide Y receptor binding sites in rat brain. Comparison with [125I] peptide YY receptor sites. Neuroscience 36:255–283

    PubMed  CAS  CrossRef  Google Scholar 

  • Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology 159:379–387

    PubMed  CAS  CrossRef  Google Scholar 

  • Mathews TA (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140:169–181

    PubMed  CAS  CrossRef  Google Scholar 

  • Matsumoto T, Honda S, Harada N (2003) Alteration in sex-specific behaviors in male mice lacking the aromatase gene. Neuroendocrinology 77:416–424

    PubMed  CAS  CrossRef  Google Scholar 

  • Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, Tanaka Y, Kitaoka S, Ushikubi F, Nabeshima T, Narumiya S (2005) Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci USA 102:16066–16071

    PubMed  CAS  CrossRef  Google Scholar 

  • McAllister KH (1990) Ethological analysis of the effects of MK-801 upon aggressive male mice: similarity to chlordiazepoxide. Pharmacol Biochem Behav 37:101–106

    PubMed  CAS  CrossRef  Google Scholar 

  • McBride PA, Brown RP, DeMeo M, Keilp J, Mieczkowski T, Mann JJ (1994) The relationship of platelet 5-HT2 receptor indices to major depressive disorder, personality traits, and suicidal behavior. Biol Psychiatry 35:295–308

    PubMed  CAS  CrossRef  Google Scholar 

  • McKenzie-Quirk SD, Girasa KA, Allan AM, Miczek KA (2005) 5-HT3 receptors, alcohol and aggressive behavior in mice. Behav Pharmacol 16:163–170

    PubMed  CAS  CrossRef  Google Scholar 

  • McKinley JC, Hathaway SR, Meehl PE (1948) The Minnesota multiphasic personality inventory: the K-scale. J Consult Psychol 12:20–31

    PubMed  CAS  CrossRef  Google Scholar 

  • McMillen BA, DaVanzo EA, Scott SM, Song AH (1988) N-alkyl-substituted aryl-piperazine drugs: relationship between affinity for serotonin receptors and inhibition of aggression. Drug Dev Res 12:53–62

    CAS  CrossRef  Google Scholar 

  • Mehlman PT, Higley JD, Faucher I, Lilly AA, Taub DM, Vickers J, Suomi SJ, Linnoila M (1994) Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am J Psychiatry 151:1485–1491

    PubMed  CAS  Google Scholar 

  • Meloni EG, Reedy CL, Cohen BM, Carlezon WA Jr (2008) Activation of raphe efferents to the medial prefrontal cortex by corticotropin-releasing factor: correlation with anxiety-like behavior. Biol Psychiatry 63:832–839

    PubMed  CAS  CrossRef  Google Scholar 

  • Mendoza DL, Bravo HA, Swanson HH (1999) Antiaggresive and anxiolytic effects of gepirone in mice, and their attenuation by WAY 100635. Pharmacol Biochem Behav 62:499–509

    PubMed  CAS  CrossRef  Google Scholar 

  • Meyer JH, Wilson AA, Rusjan P, Clark M, Houle S, Woodside S, Arrowood J, Martin K, Colleton M (2008) Serotonin2A receptor binding potential in people with aggressive and violent behaviour. J Psychiatry Neurosci 33:499–508

    PubMed  Google Scholar 

  • Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Nat Acad Sci USA 103:6269–6274

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA (1974) Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 39:275–301

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA (1987) The psychopharmacology of aggression. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 19. New directions in behavioral pharmacology. Plenum, New York, pp 183–328

    CrossRef  Google Scholar 

  • Miczek KA, Barros HM, Sakoda L, Weerts EM (1998a) Alcohol and heightened aggression in individual mice. Alcohol Clin Exp Res 22:1698–1705

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, de Almeida RMM (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology 157:421–429

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, de Almeida RMM, Kravitz EA, Rissman EF, de Boer SF, Raine A (2007) Neurobiology of escalated aggression and violence. J Neurosci 27:11803–11806

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Faccidomo S, de Almeida RMM, Bannai M, Fish EW, DeBold JF (2004) Escalated aggressive behavior: new pharmacotherapeutic approaches and opportunities. Ann N Y Acad Sci 1036:336–355

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Fish EW, De Bold JF (2003) Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav 44:242–257

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Fish EW, DeBold JF, de Almeida RMM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163:434–458

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Haney M (1994) Psychomotor stimulant effects of d-amphetamine, MDMA and PCP: aggressive and schedule-controlled behavior in mice. Psychopharmacology 115:358–365

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Hussain S, Faccidomo S (1998b) Alcohol-heightened aggression in mice: attenuation by 5-HT1A receptor agonists. Psychopharmacology 139:160–168

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Nikulina EM, Takahashi A, Covington HE, III, Yap JJ, Boyson CO, Shimamoto A, de Almeida RM (2011) Gene expression in aminergic and peptidergic cells during aggression and defeat: relevance to violence, depression and drug abuse. Behav Genet, Online First

    Google Scholar 

  • Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology 57:47–55

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, O’Donnell JM (1980) Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 69:39–44

    PubMed  CAS  CrossRef  Google Scholar 

  • Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM (1992) Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacology 107:551–563

    PubMed  CAS  CrossRef  Google Scholar 

  • Mitchell PJ (2005) Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol 526:147–162

    PubMed  CAS  CrossRef  Google Scholar 

  • Mitchell PJ, Fletcher A, Redfern PH (1991) Is antidepressant efficacy revealed by drug-induced changes in rat behaviour exhibited during social interaction? Neurosci Biobehav Rev 15:539–544

    PubMed  CAS  CrossRef  Google Scholar 

  • Mitchell PJ, Redfern PH (1992) Acute and chronic antidepressant drug treatments induce opposite effects in the social behavior of rats. J Psychopharmacol 6:241–257

    PubMed  CAS  CrossRef  Google Scholar 

  • Mitchell PJ, Redfern PH (1997) Potentiation of the time-dependent, antidepressant-induced changes in the agonistic behaviour of resident rats by the 5-HT1A receptor antagonist, WAY-100635. Behav Pharmacol 8:585–606

    PubMed  CAS  CrossRef  Google Scholar 

  • Miyakawa T, Yagi T, Takao K, Niki H (2001) Differential effect of Fyn tyrosine kinase deletion on offensive and defensive aggression. Behav Brain Res 122:51–56

    PubMed  CAS  CrossRef  Google Scholar 

  • Morgan C, Thomas RE, Ma W, Novotny MV, Cone RD (2004) Melanocortin-5 receptor deficiency reduces a pheromonal signal for aggression in male mice. Chem Senses 29:111–115

    PubMed  CAS  CrossRef  Google Scholar 

  • Mos J, Olivier B (1989) Quantitative and comparative analyses of pro-aggressive actions of benzodiazepines in maternal aggression of rats. Psychopharmacology 97:152–153

    PubMed  CAS  CrossRef  Google Scholar 

  • Mos J, Olivier B, Poth M, Van Oorschot R, Van Aken H (1993) The effects of dorsal raphé administration of eltoprazine, TFMPP and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 238:411–415

    PubMed  CAS  CrossRef  Google Scholar 

  • Muehlenkamp F, Lucion A, Vogel WH (1995) Effects of selective serotenergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50:671–674

    PubMed  CAS  CrossRef  Google Scholar 

  • Murphy DL, Lesch KP (2008) Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9:85–96

    PubMed  CAS  CrossRef  Google Scholar 

  • Musty RE, Consroe PF (1982) Phencyclidine produces aggressive behavior in rapid eye movement sleep- deprived rats. Life Sci 30:1733–1738

    PubMed  CAS  CrossRef  Google Scholar 

  • Nagtegaal MH, Rassin E (2004) The usefulness of the thought suppression paradigm in explaining impulsivity and aggression. Pers Individ Dif 37:1233–1244

    CrossRef  Google Scholar 

  • Nanopoulos D, Belin MF, Maitre M, Vincendon G, Pujol JF (1982) Immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis. Possible existence of neurons containing serotonin and GABA. Brain Res 232:375–389

    PubMed  CAS  CrossRef  Google Scholar 

  • Natarajan D, Caramaschi D (2010) Animal violence demystified. Front. Behav Neurosci 4:9

    Google Scholar 

  • Nelson RJ, Chiavegatto S (2001) Molecular basis of aggression. Trends Neurosci 24:713–719

    PubMed  CAS  CrossRef  Google Scholar 

  • Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, Dawson TM, Snyder SH (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378:383–386

    PubMed  CAS  CrossRef  Google Scholar 

  • Neumann ID, Veenema AH, Beiderbeck DI (2010) Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 4:12

    PubMed  Google Scholar 

  • Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL (2002) The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Gene 71:651–655

    CAS  CrossRef  Google Scholar 

  • New AS, Buchsbaum MS, Hazlett EA, Goodman M, Koenigsberg HW, Lo J, Iskander L, Newmark R, Brand J, O’Flynn K, Siever LJ (2004) Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology 176:451–458

    PubMed  CAS  CrossRef  Google Scholar 

  • New AS, Gelernter J, Goodman M, Mitropoulou V, Koenigsberg H, Silverman J, Siever LJ (2001) Suicide, impulsive aggression, and HTR1B genotype. Biol Psychiatry 50:62–65

    PubMed  CAS  CrossRef  Google Scholar 

  • New AS, Gelernter J, Yovell Y, Trestman RL, Nielsen DA, Silverman J, Mitropoulou V, Siever LJ (1998) Tryptophan hydroxylase genotype is associated with impulsive-aggression measures: a preliminary study. Am J Med Genet 81:13–17

    PubMed  CAS  CrossRef  Google Scholar 

  • Newman TK, Syagailo YV, Barr CS, Wendland JR, Champoux M, Graessle M, Suomi SJ, Higley JD, Lesch KP (2005) Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biol Psychiatry 57:167–172

    PubMed  CAS  CrossRef  Google Scholar 

  • Nicot A, Otto T, Brabet P, Dicicco-Bloom EM (2004) Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. J Neurosci 24:8786–8795

    PubMed  CAS  CrossRef  Google Scholar 

  • Nielsen DA, Goldman D, Virkkunen M, Tokola R, Rawlings R, Linnoila M (1994) Suicidality and 5-hydroxyindoleacetic acid concentration associated with a tryptophan-hydroxylase polymorphism. Arch Gen Psychiatry 51:34–38

    PubMed  CAS  CrossRef  Google Scholar 

  • Nikulina EM, Avgustinovich DF, Popova NK (1992) Role of 5HT1A receptors in a variety of kinds of aggressive behavior in wild rats and counterparts selected for low defensiveness towards man. Aggress Behav 18:357–364

    CAS  CrossRef  Google Scholar 

  • Nogueira RL, Graeff FG (1995) Role of 5HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52:1–6

    PubMed  CAS  CrossRef  Google Scholar 

  • Noirot E, Goyens J, Buhot MC (1975) Aggressive behavior of pregnant mice towards males. Horm Behav 6:9–17

    PubMed  CAS  CrossRef  Google Scholar 

  • Nomura M, Kusumi I, Kaneko M, Masui T, Daiguji M, Ueno T, Koyama T, Nomura Y (2006) Involvement of a polymorphism in the 5-HT2A receptor gene in impulsive behavior. Psychopharmacology 187:30–35

    PubMed  CAS  CrossRef  Google Scholar 

  • O’Donohue TL, Chronwall BM, Pruss RM, Mezey E, Kiss JZ, Eiden LE, Massari VJ, Tessel RE, Pickel VM, DiMaggio DA (1985) Neuropeptide Y and peptide YY neuronal and endocrine systems. Peptides 6:755–768

    PubMed  CrossRef  Google Scholar 

  • Oades RD, Lasky-Su J, Christiansen H, Faraone SV, Sonuga-Barke EJS, Banaschewski T, Chen W, Anney RJL, Buitelaar JK, Ebstein RP, Franke B, Gill M, Miranda A, Roeyers H, Rothenberger A, Sergeant JA, Steinhausen HC, Taylor EA, Thompson M, Asherson P (2008) The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): findings from a family-based association test (FBAT) analysis. Behav Brain Funct 4:48

    PubMed  CrossRef  Google Scholar 

  • Ogawa S, Chan J, Chester AE, Gustafsson JA, Korach KS, Pfaff DW (1999) Survival of reproductive behaviors in estrogen receptor β gene-deficient (βERKO) male and female mice. Proc Nat Acad Sci USA 96:12887–12892

    PubMed  CAS  CrossRef  Google Scholar 

  • Ogawa S, Eng V, Taylor J, Lubahn DB, Korach KS, Pfaff DW (1998a) Roles of estrogen receptor-α gene expression in reproduction-related behaviors in female mice. Endocrinology 139:5070–5081

    PubMed  CAS  CrossRef  Google Scholar 

  • Ogawa S, Washburn TF, Taylor J, Lubahn DB, Korach KS, Pfaff DW (1998b) Modifications of testosterone-dependent behaviors by estrogen receptor-α gene disruption in male mice. Endocrinology 139:5058–5069

    PubMed  CAS  CrossRef  Google Scholar 

  • Oliveira-dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, Whishaw IQ, Mariathasan S, Sasaki T, Wakeham A, Ohashi PS, Roder JC, Barnes CA, Siderovski DP, Penninger JM (2000) Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc Nat Acad Sci USA 97:12272–12277

    PubMed  CAS  CrossRef  Google Scholar 

  • Olivier B (2004) Serotonin and aggression. Ann N Y Acad Sci 1036:382–392

    PubMed  CAS  CrossRef  Google Scholar 

  • Olivier B, Mos J, Rasmussen D (1990) Behavioural pharmacology of the serenic, eltoprazine. Rev Drug Metab Drug Interact 8:31–83

    CAS  CrossRef  Google Scholar 

  • Olivier B, Mos J, Tulp MTM, van der Poel AM (1992) Animal models of anxiety and aggression in the study of serotonergic agents. In: Langer SZ (ed) Serotonin receptor subtypes: pharmacological significance and clinical implications. Karger, Basel, pp 67–79

    Google Scholar 

  • Olivier B, Mos J, Van der Heyden J, Hartog J (1989) Serotonergic modulation of social interactions in isolated male mice. Psychopharmacology 97:154–156

    PubMed  CAS  CrossRef  Google Scholar 

  • Olivier B, Mos J, Van Oorschot R, Hen R (1995) Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28:80–90

    PubMed  CrossRef  Google Scholar 

  • Oquendo MA, Russo SA, Underwood MD, Kassir SA, Ellis SP, Mann JJ, Arango V (2006) Higher postmortem prefrontal 5-HT2A receptor binding correlates with lifetime aggression in suicide. Biol Psychiatry 59:235–243

    PubMed  CAS  CrossRef  Google Scholar 

  • Osipova DV, Kulikov AV, Popova NK (2009) C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test. J Neurosci Res 87:1168–1174

    CAS  CrossRef  PubMed  Google Scholar 

  • Pabis DJ, Stanislav SW (1996) Pharmacotherapy of aggressive behavior. Ann Pharmacother 30:278–287

    PubMed  CAS  Google Scholar 

  • Palanza P, Della Seta D, Ferrari PF, Parmigiani S (2005) Female competition in wild house mice depends upon timing of female/male settlement and kinship between females. Anim Behav 69:1259–1271

    CrossRef  Google Scholar 

  • Pallotta M, Segieth J, Whitton PS (1998) N-methyl-d-aspartate receptors regulate 5-HT release in the raphe nuclei and frontal cortex of freely moving rats: differential role of 5-HT1A autoreceptors. Brain Res 783:173–178

    PubMed  CAS  CrossRef  Google Scholar 

  • Parmigiani S, Ferrari PF, Palanza P (1998) An evolutionary approach to behavioral pharmacology: using drugs to understand proximate and ultimate mechanisms of different forms of aggression in mice. Neurosci Biobehav Rev 23:143–153

    PubMed  CAS  CrossRef  Google Scholar 

  • Passamonti L, Cerasa A, Gioia MC, Magariello A, Muglia M, Quattrone A, Fera F (2008) Genetically dependent modulation of serotonergic inactivation in the human prefrontal cortex. Neuroimage 40:1264–1273

    PubMed  CrossRef  Google Scholar 

  • Peeke HVS, Figler MH (1981) Modulation of aggressive behavior in fish by alcohol and congeners. Pharmacol Biochem Behav 14(Suppl 1):79–84

    PubMed  Google Scholar 

  • Pellis SM, Pellis VC (1988) Play-fighting in the Syrian golden hamster Mesocricetus auratus Waterhouse, and its relationship to serious fighting during postweaning development. Dev Psychobiol 21:323–337

    PubMed  CAS  CrossRef  Google Scholar 

  • Pineyro G, Blier P, Dennis T, de Montigny C (1994) Desensitization of the neuronal 5-HT carrier following its long-term blockade. J Neurosci 14:3036–3047

    CAS  PubMed  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186:362–372

    PubMed  CAS  CrossRef  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci USA 100:2035–2040

    PubMed  CAS  CrossRef  Google Scholar 

  • Popova NK, Avgustinovich DF, Kolpakov VG, Plyusnina IZ (1998) Specific [H-3]8-OH-DPAT binding in brain regions of rats genetically predisposed to various defense behavior strategies. Pharmacol Biochem Behav 59:793–797

    PubMed  CAS  CrossRef  Google Scholar 

  • Popova NK, Voitenko NN, Kulikov AV, Avgustinovich DF (1991) Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes. Pharmacol Biochem Behav 40:751–756

    PubMed  CAS  CrossRef  Google Scholar 

  • Potegal M (1991) Attack priming and satiation in female golden hamsters: tests of some alternatives to the aggression arousal interpretation. Aggress Behav 17:327–335

    CrossRef  Google Scholar 

  • Potegal M, Tenbrink L (1984) Behavior of attack-primed and attack-satiated female golden hamsters (Mesocricetus auratus). J Comp Psychol 98:66–75

    CrossRef  Google Scholar 

  • Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, Sawchenko PE, Vale W (1994) Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci USA 91:8777–8781

    PubMed  CAS  CrossRef  Google Scholar 

  • Price ML, Curtis AL, Kirby LJ, Valentino RJ, Lucki I (1998) Effects of corticotropin-releasing factor on brain serotonergic activity. Neuropsychopharmacology 18:492–502

    PubMed  CAS  CrossRef  Google Scholar 

  • Price ML, Lucki I (2001) Regulation of serotonin release in the lateral septum and striatum by corticotropin-releasing factor. J Neurosci 21:2833–2841

    PubMed  CAS  Google Scholar 

  • Quadros IM, Miguel TT, DeBold JF, Miczek KA (2009a) Opposing action of CRF1 vs. CRF2 receptors in the dorsal raphé: modulation of alcohol-heightened aggression. 2009 Neuroscience meeting planner. Society for neuroscience, Chicago, Program No.445.5/T8

    Google Scholar 

  • Quadros IM, Takahashi A, Miczek KA (2009b) Serotonin and aggression. In: Müller CP, Jacobs BL (eds) Handbook of the behavioral neurobiology of serotonin. Academic Press, pp 687–714

    Google Scholar 

  • Ragnauth AK, Devidze N, Moy V, Finley K, Goodwillie A, Kow LM, Muglia LJ, Pfaff DW (2005) Female oxytocin gene-knockout mice, in a semi-natural environment, display exaggerated aggressive behavior. Genes Brain Behav 4:229–239

    PubMed  CAS  CrossRef  Google Scholar 

  • Raine A (2002) Biosocial studies of antisocial and violent behavior in children and adults: a review. J Abnorm Child Psychol 30:311–326

    PubMed  CrossRef  Google Scholar 

  • Raj YP (2004) Psychopharmacology of borderline personality disorder. Curr Psychiatry Rep 6:225–231

    PubMed  CrossRef  Google Scholar 

  • Ramboz S, Saudou F, Amara DA, Belzung C, Segu L, Misslin R, Buhot MC, Hen R (1995) 5-HT1B receptor knock out: behavioral consequences. Behav Brain Res 73:305–312

    CAS  CrossRef  Google Scholar 

  • Rasia-Filho AA, Giovenardi M, de Almeida RM (2008) Drugs and aggression. Recent Pat CNS Drug Discov 3:40–49

    PubMed  CAS  CrossRef  Google Scholar 

  • Raskin K, de Gendt K, Duittoz A, Liere P, Verhoeven G, Tronche F, Mhaouty-Kodja S (2009) Conditional inactivation of androgen receptor gene in the nervous system: effects on male behavioral and neuroendocrine responses. J Neurosci 29:4461–4470

    PubMed  CAS  CrossRef  Google Scholar 

  • Ratey J, Sovner R, Parks A, Rogentine K (1991) Buspirone treatment of aggression and anxiety in mentally retarded patients: a multiple-baseline, placebo lead-in study. J Clin Psychiatry 52:159–162

    PubMed  CAS  Google Scholar 

  • Reist C, Nakamura K, Sagart E, Sokolski KN, Fujimoto KA (2003) Impulsive aggressive behavior: open-label treatment with citalopram. J Clin Psychiatry 64:81–85

    PubMed  CAS  CrossRef  Google Scholar 

  • Rewerski W, Kostowski W, Piechocki T, Rylski M (1971) The effects of some hallucinogens on aggressiveness of mice and rats. I. Pharmacology 5:314–320

    PubMed  CAS  CrossRef  Google Scholar 

  • Ricci LA, Grimes JM, Melloni RH Jr (2004) Serotonin type 3 receptors modulate the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters (Mesocricetus auratus). Behav Neurosci 118:1097–1110

    PubMed  CAS  CrossRef  Google Scholar 

  • Rios M, Lambe EK, Liu RJ, Teillon S, Liu JH, Akbarian S, Roffler-Tarlov S, Jaenisch R, Aghajanian GK (2006) Severe deficits in 5-HT2A-mediated neurotransmission in BDNF conditional mutant mice. J Neurobiol 66:408–420

    PubMed  CAS  CrossRef  Google Scholar 

  • Rocha BA, Scearce-Levie K, Lucas JJ, Hiroi N, Castanon N, Crabbe JC, Nestler EJ, Hen R (1998) Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393:175–178

    PubMed  CAS  CrossRef  Google Scholar 

  • Rodgers RJ, Waters AJ (1985) Benzodiazepines and their antagonists: a pharmacoethological analysis with particular reference to effects on “aggression”. Neurosci Biobehav Rev 9:21–35

    PubMed  CAS  CrossRef  Google Scholar 

  • Rodriguez-Arias M, Minarro J, Aguilar MA, Pinazo J, Simon VM (1998) Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 8:95–103

    PubMed  CAS  CrossRef  Google Scholar 

  • Rodriguiz RM, Chu R, Caron MG, Wetsel WC (2004) Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148:185–198

    PubMed  CAS  CrossRef  Google Scholar 

  • Rosell DR, Thompson JL, Slifstein M, Xu X, Frankle WG, New AS, Goodman M, Weinstein SR, Laruelle M, Abi-Dargham A, Siever LJ (2010) Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol Psychiatry 67:1154–1162

    PubMed  CAS  CrossRef  Google Scholar 

  • Rudissaar R, Pruus K, Skrebuhhova T, Allikmets L, Matto V (1999) Modulatory role of 5- HT3 receptors in mediation of apomorphine-induced aggressive behaviour in male rats. Behav Brain Res 106:91–96

    PubMed  CAS  CrossRef  Google Scholar 

  • Rujescu D, Giegling I, Bondy B, Gietl A, Zill P, Moller HJ (2002) Association of anger-related traits with SNPs in the TPH gene. Mol Psychiatry 7:1023–1029

    PubMed  CAS  CrossRef  Google Scholar 

  • Rydén E, Thase ME, Straht D, Aberg-Wistedt A, Bejerot S, Landen M (2009) A history of childhood attention-deficit hyperactivity disorder (ADHD) impacts clinical outcome in adult bipolar patients regardless of current ADHD. Acta Psychiatr Scand 120:239–246

    PubMed  CrossRef  Google Scholar 

  • Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279

    PubMed  CAS  CrossRef  Google Scholar 

  • Sakaue M, Ago Y, Sowa C, Sakamoto Y, Nishihara B, Koyama Y, Baba A, Matsuda T (2002) Modulation by 5-HT2A receptors of aggressive behavior in isolated mice. Jpn J Pharmacol 89:89–92

    PubMed  CAS  CrossRef  Google Scholar 

  • Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M (1998) Adrenergic α2c receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci 18:3035–3042

    PubMed  CAS  Google Scholar 

  • Sanchez C, Arnt J, Hyttel J, Moltzen EK (1993) The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology 110:53–59

    PubMed  CAS  CrossRef  Google Scholar 

  • Sanchez C, Hyttel J (1994) Isolation-induced aggression in mice: effects of 5- hydroxytryptamine uptake inhibitors and involvement of postsynaptic 5-HT1A receptors. Eur J Pharmacol 264:241–247

    PubMed  CAS  CrossRef  Google Scholar 

  • Sanchez C, Meier E (1997) Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Psychopharmacology 129:197–205

    PubMed  CAS  CrossRef  Google Scholar 

  • Sano Y, Ornthanalai VG, Yamada K, Homma C, Suzuki H, Suzuki T, Murphy NP, Itohara S (2009) X11-like protein deficiency is associated with impaired conflict resolution in mice. J Neurosci 29:5884–5896

    PubMed  CAS  CrossRef  Google Scholar 

  • Saria A, Theodorsson-Norheim E, Lundberg JM (1984) Evidence for specific neuropeptide Y-binding sites in rat brain synaptosomes. Eur J Pharmacol 107:105–107

    PubMed  CAS  CrossRef  Google Scholar 

  • Saudou F, Amara DA, Dierich A, Lemeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878

    PubMed  CAS  CrossRef  Google Scholar 

  • Scott AL, Bortolato M, Chen K, Shih JC (2008) Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. NeuroReport 19:739–743

    PubMed  CAS  CrossRef  Google Scholar 

  • Scott MM, Wylie CJ, Lerch JK, Murphy R, Lobur K, Herlitze S, Jiang W, Conlon RA, Strowbridge BW, Deneris ES (2005) A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci USA 102:16472–16477

    PubMed  CAS  CrossRef  Google Scholar 

  • Sgoifo A, Stilli D, Musso E, Mainardi D, Parmigiani S (1992) Offensive and defensive bite-target topographies in attacks by lactating rats. Aggress Behav 17:47–52

    Google Scholar 

  • Shaikh MB, De Lanerolle NC, Siegel A (1997) Serotonin 5-HT1A and 5-HT2/1C receptors in the midbrain periaqueductal gray differentially modulate defensive rage behavior elicited from the medial hypothalamus of the cat. Brain Res 765:198–207

    PubMed  CAS  CrossRef  Google Scholar 

  • Shih JC, Ridd MJ, Chen K, Meehan WP, Kung MP, Seif I, De Maeyer E (1999) Ketanserin and tetrabenazine aggression in mice lacking monoamine oxidase A. Brain Res 835:104–112

    PubMed  CAS  CrossRef  Google Scholar 

  • Siegel A, Roeling TAP, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23:359–389

    PubMed  CAS  CrossRef  Google Scholar 

  • Sijbesma H, Schipper J, De Kloet ER, Mos J, Van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38:447–458

    PubMed  CAS  CrossRef  Google Scholar 

  • Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in α-calcium-calmodulin kinase-II mutant mice. Science 257:206–211

    PubMed  CAS  CrossRef  Google Scholar 

  • Sinha R, Cloninger CR, Parsian A (2003) Linkage disequilibrium and haplotype analysis between serotonin receptor 1B gene variations and subtypes of alcoholism. Am J Med Genet B Neuropsychiatr Genet 121B:83–88

    PubMed  CrossRef  Google Scholar 

  • Sjoberg RL, Nilsson KW, Wargelius HL, Leppert J, Lindstrom L, Oreland L (2007) Adolescent girls and criminal activity: role of MAOA-LPR genotype and psychosicial factors. Am J Med Genet B Neuropsychiatr Genet 144B:159–164

    PubMed  CrossRef  CAS  Google Scholar 

  • Smuts BB (1986) Sexual competition and mate choice. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. University of Chicago Press, Chicago, pp 385–399

    Google Scholar 

  • Sofia RD (1969) Structural relationship and potency of agents which selectively block mouse killing (muricide) behavior in rats. Life Sci 8:1201–1210

    PubMed  CAS  CrossRef  Google Scholar 

  • Sperry TS, Thompson CK, Wingfield JC (2003) Effects of acute treatment with 8-OH-DPAT and fluoxetine on aggressive behaviour in male song sparrows (Melospiza melodia morphna). J Neuroendocrinol 15:150–160

    PubMed  CAS  CrossRef  Google Scholar 

  • Spielberg CD, Sharma S, Singh M (1973) Development of Hindi edition of state-trait anxiety inventory. Indian J Psychol 48:11–20

    Google Scholar 

  • Spigset O (1999) Adverse reactions of selective serotonin reuptake inhibitors—reports from a spontaneous reporting system. Drug Saf 20:277–287

    PubMed  CAS  CrossRef  Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1:3–9

    PubMed  CAS  CrossRef  Google Scholar 

  • Steiniger F (1950) Beiträg zur Soziologie und sonstigen Biologie der Wanderratte. Z Tierpsychol 7:356–379

    CrossRef  Google Scholar 

  • Stoff DM, Vitiello B (1996) Role of serotonin in aggression of children and adolesecents: biochemical and phamacological studies. In: Stoff DM (ed) Aggression and violence: genetic. Neurobiological and Biosocial Perspectives, Lawrence Erlbaum Associates, Mahwah, pp 101–123

    Google Scholar 

  • Stork O, Ji FY, Kaneko K, Stork S, Yoshinobu Y, Moriya T, Shibata S, Obata K (2000) Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res 865:45–58

    PubMed  CAS  CrossRef  Google Scholar 

  • Stork O, Welzl H, Cremer H, Schachner M (1997) Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecule (NCAM). Eur J Neurosci 9:1117–1125

    PubMed  CAS  CrossRef  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male–male aggression in mice deficient for TRP2. Science 295:1493–1500

    PubMed  CAS  CrossRef  Google Scholar 

  • Sun HF, Chang YT, Fann CS, Chang CJ, Chen YH, Hsu YP, Yu WY, Cheng AT (2002) Association study of novel human serotonin 5-HT1B polymorphisms with alcohol dependence in Taiwanese Han. Biol Psychiatry 51:896–901

    PubMed  CAS  CrossRef  Google Scholar 

  • Swanson JW, Swartz MS, Van Dorn RA, Volavka J, Monahan J, Stroup TS, Mcevoy JP, Wagner HR, Elbogen EB, Lieberman JA (2008) Comparison of antipsychotic medication effects on reducing violence in people with schizophrenia. Br J Psychiatry 193:37–43

    PubMed  CrossRef  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–186

    PubMed  CAS  CrossRef  Google Scholar 

  • Takahashi A, Kwa C, DeBold JF, Miczek KA (2010a) GABAA receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology 211:467–477

    PubMed  CAS  CrossRef  Google Scholar 

  • Takahashi A, Quadros IM, de Almeida RM, Miczek KA (2011) Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology 213:183–212

    PubMed  CAS  CrossRef  Google Scholar 

  • Takahashi A, Shimamoto A, Boyson CO, DeBold JF, Miczek KA (2010b) GABAB receptor modulation of serotonin neurons in the dorsal raphe nucleus and escalation of aggression in mice. J Neurosci 30:11771–11780

    PubMed  CAS  CrossRef  Google Scholar 

  • Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA 102:16096–16101

    PubMed  CAS  CrossRef  Google Scholar 

  • Tao R, Auerbach SB (2000) Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14:100–113

    PubMed  CAS  CrossRef  Google Scholar 

  • Tao R, Ma Z, Auerbach SB (1996) Differential regulation of 5-hydroxytryptamine release by GABAA and GABAB receptors in midbrain raphe nuclei and forebrain of rats. Br J Pharmacol 119:1375–1384

    PubMed  CAS  Google Scholar 

  • Taylor SP (1967) Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression. J Personality 35:297–310

    PubMed  CAS  CrossRef  Google Scholar 

  • Tazi A, Dantzer R, Le Moal M, Rivier J, Vale W, Koob GF (1987) Corticotropin-releasing factor antagonist blocks stress-induced fighting in rats. Regul Pep 18:37–42

    CAS  CrossRef  Google Scholar 

  • Ten Eyck GR (2008) Serotonin modulates vocalizations and territorial behavior in an amphibian. Behav Brain Res 193:144–147

    PubMed  CrossRef  CAS  Google Scholar 

  • Tompkins EC, Clemento AJ, Taylor DP, Perhach JL Jr (1980) Inhibition of aggressive behavior in rhesus monkeys by buspirone. Res Commun Psychol Psychiatr Behav 5:337–352

    CAS  Google Scholar 

  • Troisi A, Vicario E, Nuccetelli F, Ciani N, Pasini A (1995) Effects of fluoxetine on aggressive behavior of adult inpatients with mental retardation and epilepsy. Pharmacopsychiatry 28:1–4

    CrossRef  Google Scholar 

  • Tsai SJ, Liao DL, Yu YW, Chen TJ, Wu HC, Lin CH, Cheng CY, Hong CJ (2005) A study of the association of (Val66Met) polymorphism in the brain-derived neurotrophic factor gene with alcohol dependence and extreme violence in Chinese males. Neurosci Lett 381:340–343

    PubMed  CAS  CrossRef  Google Scholar 

  • Tyler CB, Miczek KA (1982) Effects of phencyclidine on aggressive behavior in mice. Pharmacol Biochem Behav 17:503–510

    PubMed  CAS  CrossRef  Google Scholar 

  • Tyrer P, Oliver-Africano PC, Ahmed Z, Bouras N, Cooray S, Deb S, Murphy D, Hare M, Meade M, Reece B, Kramo K, Bhaumik S, Harley D, Regan A, Thomas D, Rao B, North B, Eliahoo J, Karatela S, Soni A, Crawford M (2008) Risperidone, haloperidol, and placebo in the treatment of aggressive challenging behaviour in patients with intellectual disability: a randomised controlled trial. Lancet 371:57–63

    PubMed  CAS  CrossRef  Google Scholar 

  • Valentino RJ, Commons KG (2005) Peptides that fine-tune the serotonin system. Neuropeptides 39:1–8

    PubMed  CAS  CrossRef  Google Scholar 

  • Valzelli L (1977) About a specific neurochemistry of aggressive behavior. In: Delgado JMR (ed) Behavioral neurochemistry. Spectrum Publications, Inc., New York, pp 113–132

    Google Scholar 

  • Valzelli L, Bernasconi S (1979) Aggressiveness by isolation and brain serotonin turnover changes in different strains of mice. Neuropsychobiology 5:129–135

    PubMed  CAS  CrossRef  Google Scholar 

  • Valzelli L, Giacalone E, Garattini S (1967) Pharmacological control of aggressive behavior in mice. Eur J Pharmacol 2:144–146

    PubMed  CAS  CrossRef  Google Scholar 

  • Van den Berg L, Vos-Loohuis M, Schilder MBH, van Oost BA, Hazewinkel HAW, Wade CM, Karlsson EK, Lindblad-Toh K, Liinamo AE, Leegwater PAJ (2008) Evaluation of the serotonergic genes htr1A, htr1B, htr2A, and slc6A4 in aggressive behavior of golden retriever dogs. Behav Genet 38:55–66

    CrossRef  Google Scholar 

  • Van Der Vegt BJ, de Boer SF, Buwalda B, de Ruiter AJ, de Jong JG, Koolhaas JM (2001) Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression. Physiol Behav 74:205–211

    PubMed  CrossRef  Google Scholar 

  • Van Der Vegt BJ, Lieuwes N, van de Wall EH, Kato K, Moya-Albiol L, Martinez-Sanchis S, de Boer SF, Koolhaas JM (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117:667–674

    PubMed  CrossRef  Google Scholar 

  • Van Erp AMM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20:9320–9325

    PubMed  Google Scholar 

  • van Oortmerssen GA, Bakker TCM (1981) Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav Genet 11:115–126

    PubMed  CrossRef  Google Scholar 

  • van Riel E, Meijer OC, Veenema AH, Joels M (2002) Hippocampal serotonin responses in short and long attack latency mice. J Neuroendocrinol 14:234–239

    PubMed  CrossRef  Google Scholar 

  • Vandenbergh JG (1967) The development of social structure in free-ranging rhesus monkeys. Behaviour 29:179–194

    PubMed  CAS  CrossRef  Google Scholar 

  • Vandermaelen CP, Matheson GK, Wilderman RC, Patterson LA (1986) Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol 129:123–130

    PubMed  CAS  CrossRef  Google Scholar 

  • Veenema AH, Sijtsma B, Koolhaas JM, De Kloet ER (2005) The stress response to sensory contact in mice: genotype effect of the stimulus animal. Psychoneuroendocrinology 30:550–557

    PubMed  CrossRef  Google Scholar 

  • Veiga CP, Miczek KA, Lucion AB, de Almeida RMM (2007) Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz J Med Biol Res 40:825–830

    PubMed  CAS  CrossRef  Google Scholar 

  • Veiga CP, Miczek KA, Lucion AB, de Almeida RMM (2011) Social instigation and aggression in postpartum female rats: role of 5-HT1A and 5-HT1B receptors in the dorsal raphé nucleus and prefrontal cortex. Psychopharmacology 213:475–487

    PubMed  CrossRef  CAS  Google Scholar 

  • Vekovischeva OY, Aitta-aho T, Echenko O, Kankaanpaa A, Seppala T, Honkanen A, Sprengel R, Korpi ER (2004) Reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Genes Brain Behav 3:253–265

    PubMed  CAS  CrossRef  Google Scholar 

  • Vergnes M, Depaulis A, Boehrer A (1986) Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol Behav 36:653–658

    PubMed  CAS  CrossRef  Google Scholar 

  • Vitiello B, Stoff DM (1997) Subtypes of aggression and their relevance to child psychiatry. J Am Acad Child Adolesc Psychiatry 36:307–315

    PubMed  CAS  CrossRef  Google Scholar 

  • Volavka J, Czobor P, Citrome L, McQuade RD, Carson WH, Kostic D, Hardy S, Marcus R (2005) Efficacy of aripiprazole against hostility in schizophrenia and schizoaffective disorder: data from 5 double-blind studies. J Clin Psychiatry 66:1362–1366

    PubMed  CAS  CrossRef  Google Scholar 

  • Walsh MT, Dinan TG (2001) Selective serotonin reuptake inhibitors and violence: a review of the available evidence. Acta Psychiatr Scand 104:84–91

    PubMed  CAS  CrossRef  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    PubMed  CAS  CrossRef  Google Scholar 

  • Wang QP, Ochiai H, Nakai Y (1992) GABAergic innervation of serotonergic neurons in the dorsal raphe nucleus of the rat studied by electron microscopy double immunostaining. Brain Res Bull 29:943–948

    PubMed  CAS  CrossRef  Google Scholar 

  • Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J, Kaufman J (2009) MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 65:417–424

    PubMed  CAS  CrossRef  Google Scholar 

  • Weerts EM, Miczek KA (1996) Primate vocalizations during social separation and aggression: effects of alcohol and benzodiazepines. Psychopharmacology 127:255–264

    PubMed  CAS  Google Scholar 

  • Welch BL, Welch AS (1968) Rapid modification of isolation-induced aggressive behavior and elevation of brain catecholamines and serotonin by the quick-acting monoamine-oxidase inhibitor pargyline. Commun Behav Biol 1:347–351

    Google Scholar 

  • Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS III (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7:975–984

    PubMed  CAS  CrossRef  Google Scholar 

  • Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ (2000) Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology 150:120–122

    PubMed  CAS  CrossRef  Google Scholar 

  • White SM, Kucharik RF, Moyer JA (1991) Effects of serotonergic agents on isolation-induced aggression. Pharmacol Biochem Behav 39:729–736

    PubMed  CAS  CrossRef  Google Scholar 

  • Widom CS, Brzustowicz LM (2006) MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiatry 60:684–689

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilmot CA, Vander Wende C, Spoerlein MT (1987) The effects of phencyclidine on fighting in differentially housed mice. Pharmacol Biochem Behav 28:341–346

    PubMed  CAS  CrossRef  Google Scholar 

  • Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR (2000) Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37:145–155

    PubMed  CAS  CrossRef  Google Scholar 

  • Winslow JT, Insel TR (1993) Effects of central vasopressin administration to infant rats. Eur J Pharmacol 233:101–107

    PubMed  CAS  CrossRef  Google Scholar 

  • Witte AV, Floel A, Stein P, Savli M, Mien LK, Wadsak W, Spindelegger C, Moser U, Fink M, Hahn A, Mitterhauser M, Kletter K, Kasper S, Lanzenberger R (2009) Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum Brain Mapp 30:2558–2570

    PubMed  CrossRef  Google Scholar 

  • Yanai K, Son LZ, Endou M, Sakurai E, Nakagawasai O, Tadano T, Kisara K, Inoue I, Watanabe T, Watanabe T (1998) Behavioral characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience 87:479–487

    PubMed  CAS  CrossRef  Google Scholar 

  • Yen CY, Stanger RL, Millman N (1959) Ataractic suppression of isolation-induced aggressive behavior. Arch Int Pharmacodyn Ther 123:179–185

    PubMed  CAS  Google Scholar 

  • Young KA, Berry ML, Mahaffey CL, Saionz JR, Hawes NL, Chang B, Zheng QY, Smith RS, Bronson RT, Nelson RJ, Simpson EM (2002) Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent. Behav Brain Res 132:145–158

    PubMed  CAS  CrossRef  Google Scholar 

  • Zarcone JR, Hellings JA, Crandall K, Reese RM, Marquis J, Fleming K, Shores R, Williams D, Schroeder SR (2001) Effects of risperidone on aberrant behavior of persons with developmental disabilities: I. A double-blind crossover study using multiple measures. Am J Ment Retard 106:525–538

    PubMed  CAS  CrossRef  Google Scholar 

  • Zeichner A, Pihl RO (1979) Effects of alcohol and behavior contingencies on human-aggression. J Abnorm Psychol 88:153–160

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang XD, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang XD, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, Schwartz DA, Krishnan KRR, Caron MG (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21:S52–S60

    Google Scholar 

  • Zitzman D, DeBold JF, Miczek KA (2005) Positive modulation of the GABAA receptor heightens aggression in ovariectomized, nulliparous female mice. 2005 Neuroscience meeting planner, Program No. 76.15, Washington DC: Society for Neuroscience.

    Google Scholar 

  • Zouk H, McGirr A, Lebel V, Benkelfat C, Rouleau G, Turecki G (2007) The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide. Am J Med Genet B Neuropsychiatr Genet 144B:996–1002

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus A. Miczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takahashi, A., Quadros, I.M., de Almeida, R.M.M., Miczek, K.A. (2011). Behavioral and Pharmacogenetics of Aggressive Behavior. In: Cryan, J., Reif, A. (eds) Behavioral Neurogenetics. Current Topics in Behavioral Neurosciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_191

Download citation