Skip to main content

Forward Genetic Approaches to Understanding Complex Behaviors

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 12)

Abstract

Assigning function to genes has long been a focus of biomedical research. Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions, insertions, deletions, copy number variation, epigenetic changes (DNA methylation, histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.

Keywords

  • Mouse
  • Genetics
  • Behavior
  • Mapping
  • QTL
  • Mutagenesis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7854_2011_189
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27859-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  • Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, Blankenhorn EP, Blizard DA, Bolivar V, Brockmann GA, Buck KJ, Bureau JF, Casley WL, Chesler EJ, Cheverud JM, Churchill GA, Cook M, Crabbe JC, Crusio WE, Darvasi A, de Haan G, Dermant P, Doerge RW, Elliot RW, Farber CR, Flaherty L, Flint J, Gershenfeld H, Gibson JP, Gu J, Gu W, Himmelbauer H, Hitzemann R, Hsu HC, Hunter K, Iraqi FF, Jansen RC, Johnson TE, Jones BC, Kempermann G, Lammert F, Lu L, Manly KF, Matthews DB, Medrano JF, Mehrabian M, Mittlemann G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Mountz JD, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Paigen B, Palmer AA, Peirce JL, Pomp D, Rosemann M, Rosen GD, Schalkwyk LC, Seltzer Z, Settle S, Shimomura K, Shou S, Sikela JM, Siracusa LD, Spearow JL, Teuscher C, Threadgill DW, Toth LA, Toye AA, Vadasz C, Van Zant G, Wakeland E, Williams RW, Zhang HG, Zou F (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4:911–916

    PubMed  Google Scholar 

  • Aldinger KA, Sokoloff G, Rosenberg DM, Palmer AA, Millen KJ (2009) Genetic variation and population substructure in outbred CD-1 mice: implications for genome-wide association studies. PLoS One 4:e4729

    PubMed  CrossRef  CAS  Google Scholar 

  • Alexander RC, Wright R, Freed W (1996) Quantitative trait loci contributing to phencyclidine-induced and amphetamine-induced locomotor behavior in inbred mice. Neuropsychopharmacology 15:484–490

    PubMed  CAS  CrossRef  Google Scholar 

  • Atkins JKBAL (2001) The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mamm Genome 12: 893–899

    Google Scholar 

  • Bailey DW (1971) Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11:325–327

    PubMed  CAS  CrossRef  Google Scholar 

  • Bailey JS, Grabowski-Boase L, Steffy BM, Wiltshire T, Churchill GA, Tarantino LM (2008) Identification of QTL for locomotor activation and anxiety using closely-related inbred strains. Genes Brain Behav 7:761–769

    Google Scholar 

  • Bao L, Peirce JL, Zhou M, Li H, Goldowitz D, Williams RW, Lu L, Cui Y (2007) An integrative genomics strategy for systematic characterization of genetic loci modulating phenotypes. Hum Mol Genet 16:1381–1390

    PubMed  CAS  CrossRef  Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (1994) Zmap—a QTL cartographer. In: Smith C, Gavora JS, Benkel B, Chesnais J, Fairfull W, Gibson JP, Kennedy BW, Burnside EB (eds) 5th world congress on genetics applied to livestock production: computing strategies and software. Organizing Committee, 5th world congress on genetics applied to livestock production, Guelph, Ontario, Canada, pp 65–66

    Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (2002) QTL Cartographer, version 1.16. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Belknap JK (2003) Chromosome substitution strains: some quantitative considerations for genome scans and fine mapping. Mamm Genome 14:723–732

    PubMed  CrossRef  Google Scholar 

  • Berrettini WH, Ferraro TN, Alexander RC, Buchberg AM, Vogel WH (1994) Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nat Genet 7:54–58

    PubMed  CAS  CrossRef  Google Scholar 

  • Blizard DA, Bailey DW (1979) Genetic correlation between open-field activity and defecation: analysis with the CXB recombinant-inbred strains. Behav Genet 9:349–357

    PubMed  CAS  CrossRef  Google Scholar 

  • Bogue M (2003) Mouse phenome project: understanding human biology through mouse genetics and genomics. J Appl Physiol 95:1335–1337

    PubMed  CAS  Google Scholar 

  • Bogue MA, Grubb SC, Maddatu TP, Bult CJ (2007) Mouse phenome database (MPD). Nucleic Acids Res 35:D643–D649

    PubMed  CAS  CrossRef  Google Scholar 

  • Bopp SE, Ramachandran V, Henson K, Luzader A, Lindstrom M, Spooner M, Steffy BM, Suzuki O, Janse C, Waters AP, Zhou Y, Wiltshire T, Winzeler EA (2010) Genome wide analysis of inbred mouse lines identifies a locus containing Ppar-gamma as contributing to enhanced malaria survival. PLoS One 5: e10903

    Google Scholar 

  • Boyle AE, Gill KJ (2008) Confirmation of provisional quantitative trait loci for voluntary alcohol consumption: genetic analysis in chromosome substitution strains and F2 crosses derived from A/J and C57BL/6J progenitors. Pharmacogenet Genomics 18:1071–1082

    PubMed  CAS  CrossRef  Google Scholar 

  • Boyle AE, Gill KJ (2009) A verification of previously identified QTLs for cocaine-induced activation using a panel of B6.A chromosome substitution strains (CSS) and A/J × C57Bl/6J F2 mice. Psychopharmacology (Berl) 207(2):325–334

    Google Scholar 

  • Broman KW (2005) The genomes of recombinant inbred lines. Genetics 169:1133–1146

    PubMed  CAS  CrossRef  Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York

    Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    PubMed  CAS  CrossRef  Google Scholar 

  • Buchner DA, Burrage LC, Hill AE, Yazbek SN, O’Brien WE, Croniger CM, Nadeau JH (2008) Resistance to diet-induced obesity in mice with a single substituted chromosome. Physiol Genomics 35:116–122

    PubMed  CAS  CrossRef  Google Scholar 

  • Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B (2008) Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 180:2227–2235

    PubMed  CrossRef  Google Scholar 

  • Burgess-Herbert SL, Tsaih SW, Stylianou IM, Walsh K, Cox AJ, Paigen B (2009) An experimental assessment of in silico haplotype association mapping in laboratory mice. BMC Genet 10:81

    PubMed  CrossRef  CAS  Google Scholar 

  • Caldarone B, Saavedra C, Tartaglia K, Wehner JM, Dudek BC, Flaherty L (1997) Quantitative trait loci analysis affecting contextual conditioning in mice. Nat Genet 17:335–337

    PubMed  CAS  CrossRef  Google Scholar 

  • Cervino AC, Li G, Edwards S, Zhu J, Laurie C, Tokiwa G, Lum PY, Wang S, Castellani LW, Lusis AJ, Carlson S, Sachs AB, Schadt EE (2005) Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics 86:505–517

    PubMed  CAS  CrossRef  Google Scholar 

  • Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD, Palmer AA (2010) Genome-wide association studies and the problem of relatedness among advanced intercross lines and other highly recombinant populations. Genetics 185:1033–1044

    PubMed  CAS  CrossRef  Google Scholar 

  • Chesler EJ, Bystrykh L, De Haan G, Cooke MP, Su AI, Manly KF, Williams RW (2006) Reply to normalization procedures and detection of linkage signal in genetical-genomics experiments. Nat Genet 38:856–858

    CAS  CrossRef  Google Scholar 

  • Chesler EJ, Rodriguez-Zas SL, Mogil JS (2001) In silico mapping of mouse quantitative trait loci. Science 294:2423

    PubMed  CAS  CrossRef  Google Scholar 

  • Chia R, Achilli F, Festing MF, Fisher EM (2005) The origins and uses of mouse outbred stocks. Nat Genet 37:1181–1186

    PubMed  CAS  CrossRef  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M, Zou F (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    PubMed  CAS  CrossRef  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128:9–13

    PubMed  CAS  CrossRef  Google Scholar 

  • Cordes SP (2005) N-ethyl-N-nitrosourea mutagenesis: boarding the mouse mutant express. Microbiol Mol Biol Rev 69:426–439

    PubMed  CAS  CrossRef  Google Scholar 

  • Crabbe JC, Rigter H, Kerbusch S (1982) Analysis of behavioural responses to an ACTH analog in CXB/By recombinant inbred mice. Behav Brain Res 4:289–314

    PubMed  CAS  CrossRef  Google Scholar 

  • Crow JF (2002) C. C. Little, cancer and inbred mice. Genetics 161:1357–1361

    PubMed  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    PubMed  CAS  CrossRef  Google Scholar 

  • Cryan JF, Slattery DA (2010) GABAB receptors and depression. Current status. Adv Pharmacol 58:427–451

    PubMed  CAS  CrossRef  Google Scholar 

  • Cunningham CL (1995) Localization of genes influencing ethanol-induced conditioned place preference and locomotor activity in BXD recombinant inbred mice. Psychopharmacology (Berl) 120:28–41

    CAS  CrossRef  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    PubMed  CAS  CrossRef  Google Scholar 

  • Darvasi A (2001) In silico mapping of mouse quantitative trait loci. Science 294:2423

    PubMed  CAS  CrossRef  Google Scholar 

  • Darvasi A, Soller M (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138:1365–1373

    PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    PubMed  CAS  Google Scholar 

  • Demarest K, Koyner J, McCaughran J Jr, Cipp L, Hitzemann R (2001) Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav Genet 31:79–91

    PubMed  CAS  CrossRef  Google Scholar 

  • Desbonnet L, Waddington JL, O’Tuathaigh CM (2009) Mutant models for genes associated with schizophrenia. Biochem Soc Trans 37:308–312

    PubMed  CAS  CrossRef  Google Scholar 

  • DiPetrillo K, Wang X, Stylianou IM, Paigen B (2005) Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet 21:683–692

    PubMed  CAS  CrossRef  Google Scholar 

  • Doyle GA, Furlong PJ, Schwebel CL, Smith GG, Lohoff FW, Buono RJ, Berrettini WH, Ferraro TN (2008) Fine mapping of a major QTL influencing morphine preference in C57BL/6 and DBA/2 mice using congenic strains. Neuropsychopharmacology 33:2801–2809

    PubMed  CAS  CrossRef  Google Scholar 

  • Eisener-Dorman AF, Grabowski-Boase L, Steffy BM, Wiltshire T, Tarantino LM (2010) Quantitative trait locus and haplotype mapping in closely related inbred strains identifies a locus for open field behavior. Mamm Genome 21:231–246

    PubMed  CrossRef  Google Scholar 

  • Fernandez JR, Tarantino LM, Hofer SM, Vogler GP, McClearn GE (2000) Epistatic quantitative trait loci for alcohol preference in mice. Behav Genet 30:431–437

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferraro TN, Golden GT, Smith GG, Martin JF, Schwebel CL, Doyle GA, Buono RJ, Berrettini WH (2005) Confirmation of a major QTL influencing oral morphine intake in C57 and DBA mice using reciprocal congenic strains. Neuropsychopharmacology 30:742–746

    PubMed  CAS  Google Scholar 

  • Flint J (2003) Analysis of quantitative trait loci that influence animal behavior. J Neurobiol 54:46–77

    PubMed  CAS  CrossRef  Google Scholar 

  • Flint J, Corley R, DeFries JC, Fulker DW, Gray JA, Miller S, Collins AC (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269:1432–1435

    PubMed  CAS  CrossRef  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    PubMed  CAS  CrossRef  Google Scholar 

  • Frankel WN, Yang Y, Mahaffey CL, Beyer BJ, O’Brien TP (2009) Szt2, a novel gene for seizure threshold in mice. Genes Brain Behav 8:568–576

    PubMed  CAS  CrossRef  Google Scholar 

  • Furuse T, Wada Y, Hattori K, Yamada I, Kushida T, Shibukawa Y, Masuya H, Kaneda H, Miura I, Seno N, Kanda T, Hirose R, Toki S, Nakanishi K, Kobayashi K, Sezutsu H, Gondo Y, Noda T, Yuasa S, Wakana S (2010) Phenotypic characterization of a new Grin1 mutant mouse generated by ENU mutagenesis. Eur J Neurosci 31:1281–1291

    PubMed  CrossRef  Google Scholar 

  • Gailus-Durner V, Fuchs H, Adler T, Aguilar Pimentel A, Becker L, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Ferwagner B, Hans W, Holter SM, Holzlwimmer G, Horsch M, Javaheri A, Kallnik M, Kling E, Lengger C, Morth C, Mossbrugger I, Naton B, Prehn C, Puk O, Rathkolb B, Rozman J, Schrewe A, Thiele F, Adamski J, Aigner B, Behrendt H, Busch DH, Favor J, Graw J, Heldmaier G, Ivandic B, Katus H, Klingenspor M, Klopstock T, Kremmer E, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, de Angelis MH (2009) Systemic first-line phenotyping. Methods Mol Biol 530:463–509

    PubMed  CAS  CrossRef  Google Scholar 

  • Garcia–Garcia MJ, Eggenschwiler JT, Caspary T, Alcorn HL, Wyler MR, Huangfu D, Rakeman AS, Lee JD, Feinberg EH, Timmer JR, Anderson KV (2005) Analysis of mouse embryonic patterning and morphogenesis by forward genetics. Proc Natl Acad Sci USA 102:5913–5919

    PubMed  CrossRef  CAS  Google Scholar 

  • Gershenfeld HK, Neumann PE, Mathis C, Crawley JN, Li X, Paul SM (1997) Mapping quantitative trait loci for open-field behavior in mice. Behav Genet 27:201–210

    PubMed  CAS  CrossRef  Google Scholar 

  • Glenister PH, Thornton CE (2000) Cryoconservation—archiving for the future. Mamm Genome 11:565–571

    PubMed  CAS  CrossRef  Google Scholar 

  • Gora-Maslak G, McClearn GE, Crabbe JC, Phillips TJ, Belknap JK, Plomin R (1991) Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology. Psychopharmacology (Berl) 104:413–424

    CAS  CrossRef  Google Scholar 

  • Gregorova S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL, Donahue LR, Paigen B, Forejt J (2008) Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res 18:509–515

    PubMed  CAS  CrossRef  Google Scholar 

  • Grillet N, Schwander M, Hildebrand MS, Sczaniecka A, Kolatkar A, Velasco J, Webster JA, Kahrizi K, Najmabadi H, Kimberling WJ, Stephan D, Bahlo M, Wiltshire T, Tarantino LM, Kuhn P, Smith RJ, Muller U (2009) Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans. Am J Hum Genet 85:328–337

    PubMed  CAS  CrossRef  Google Scholar 

  • Grisel JE, Belknap JK, O’Toole LA, Helms ML, Wenger CD, Crabbe JC (1997) Quantitative trait loci affecting methamphetamine responses in BXD recombinant inbred mouse strains. J Neurosci 17:745–754

    PubMed  CAS  Google Scholar 

  • Grupe A, Germer S, Usuka J, Aud D, Belknap JK, Klein RF, Ahluwalia MK, Higuchi R, Peltz G (2001) In silico mapping of complex disease-related traits in mice. Science 292:1915–1918

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamilton BA, Frankel WN (2001) Of mice and genome sequence. Cell 107:13–16

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamre KM, Goldowitz D, Wilkinson S, Matthews DB (2007) Screening for ENU-induced mutations in mice that result in aberrant ethanol-related phenotypes. Behav Neurosci 121:665–678

    PubMed  CrossRef  Google Scholar 

  • Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, Stylianou IM, Boorman GA, Russo MW, Sackler RS, Harris SC, Smith PC, Tennant R, Bogue M, Paigen K, Harris C, Contractor T, Wiltshire T, Rusyn I, Threadgill DW (2009) Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res 19:1507–1515

    Google Scholar 

  • Henderson ND, Turri MG, DeFries JC, Flint J (2004) QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet 34:267–293

    PubMed  CrossRef  Google Scholar 

  • Herron BJ, Lu W, Rao C, Liu S, Peters H, Bronson RT, Justice MJ, McDonald JD, Beier DR (2002) Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet 30:185–189

    PubMed  CAS  CrossRef  Google Scholar 

  • Hitzemann B, Dains K, Kanes S, Hitzemann R (1994) Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J Pharmacol Exp Ther 271:969–976

    PubMed  CAS  Google Scholar 

  • Hitzemann R, Cipp L, Demarest K, Mahjubi E, McCaughran J Jr (1998) Genetics of ethanol-induced locomotor activation: detection of QTLs in a C57BL/6J × DBA/2J F2 intercross. Mamm Genome 9:956–962

    PubMed  CAS  CrossRef  Google Scholar 

  • Hitzemann R, Dains K, Bier-Langing CM, Zahniser NR (1991) On the selection of mice for haloperidol response and non-response. Psychopharmacology (Berl) 103:244–250

    CAS  CrossRef  Google Scholar 

  • Hoebe K, Beutler B (2008) Forward genetic analysis of TLR-signaling pathways: an evaluation. Adv Drug Deliv Rev 60:824–829

    PubMed  CAS  CrossRef  Google Scholar 

  • Holmes A, Murphy DL, Crawley JN (2003) Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 54:953–959

    PubMed  CAS  CrossRef  Google Scholar 

  • Horvat S, Bunger L, Falconer VM, Mackay P, Law A, Bulfield G, Keightley PD (2000) Mapping of obesity QTLs in a cross between mouse lines divergently selected on fat content. Mamm Genome 11:2–7

    PubMed  CAS  CrossRef  Google Scholar 

  • Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, Marschall S, Heffner S, Pargent W, Wuensch K, Jung M, Reis A, Richter T, Alessandrini F, Jakob T, Fuchs E, Kolb H, Kremmer E, Schaeble K, Rollinski B, Roscher A, Peters C, Meitinger T, Strom T, Steckler T, Holsboer F, Klopstock T, Gekeler F, Schindewolf C, Jung T, Avraham K, Behrendt H, Ring J, Zimmer A, Schughart K, Pfeffer K, Wolf E, Balling R (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    PubMed  CAS  CrossRef  Google Scholar 

  • Iancu OD, Darakjian P, Walter NA, Malmanger B, Oberbeck D, Belknap J, McWeeney S, Hitzemann R (2010) Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse. BMC Genomics 11:585

    PubMed  CrossRef  CAS  Google Scholar 

  • International HapMap Consortium (2003) The international HapMap project. Nature 426:789–796

    Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jones BC, Tarantino LM, Rodriguez LA, Reed CL, McClearn GE, Plomin R, Erwin VG (1999) Quantitative-trait loci analysis of cocaine-related behaviours and neurochemistry. Pharmacogenetics 9:607–617

    PubMed  CAS  CrossRef  Google Scholar 

  • Justice MJ (2004) From the atomic age to the genome project. Genetica 122:3–7

    PubMed  CAS  CrossRef  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    PubMed  CrossRef  Google Scholar 

  • Keays DA, Tian G, Poirier K, Huang GJ, Siebold C, Cleak J, Oliver PL, Fray M, Harvey RJ, Molnar Z, Pinon MC, Dear N, Valdar W, Brown SD, Davies KE, Rawlins JN, Cowan NJ, Nolan P, Chelly J, Flint J (2007) Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128:45–57

    PubMed  CAS  CrossRef  Google Scholar 

  • Kelly MA, Low MJ, Phillips TJ, Wakeland EK, Yanagisawa M (2003) The mapping of quantitative trait loci underlying strain differences in locomotor activity between 129S6 and C57BL/6J mice. Mamm Genome 14:692–702

    PubMed  CAS  CrossRef  Google Scholar 

  • Kenney-Hunt JP, Wang B, Norgard EA, Fawcett G, Falk D, Pletscher LS, Jarvis JP, Roseman C, Wolf J, Cheverud JM (2008) Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics 178:2275–2288

    PubMed  CrossRef  Google Scholar 

  • Kile BT, Hilton DJ (2005) The art and design of genetic screens: mouse. Nat Rev Genet 6:557–567

    PubMed  CAS  CrossRef  Google Scholar 

  • Kono DH, Park MS, Theofilopoulos AN (2003) Genetic complementation in female (BXSB × NZW) F2 mice. J Immunol 171:6442–6447

    PubMed  CAS  Google Scholar 

  • Koyner J, Demarest K, McCaughran J Jr, Cipp L, Hitzemann R (2000) Identification and time dependence of quantitative trait loci for basal locomotor activity in the BXD recombinant inbred series and a B6D2 F2 intercross. Behav Genet 30:159–170

    PubMed  CAS  CrossRef  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    PubMed  CAS  CrossRef  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    PubMed  CAS  CrossRef  Google Scholar 

  • Legare ME, Bartlett FS 2nd, Frankel WN (2000) A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res 10:42–48

    PubMed  CAS  Google Scholar 

  • Legare ME, Frankel WN (2000) Multiple seizure susceptibility genes on chromosome 7 in SWXL-4 congenic mouse strains. Genomics 70:62–65

    PubMed  CAS  CrossRef  Google Scholar 

  • Lesch KP, Zeng Y, Reif A, Gutknecht L (2003) Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharmacol 480:185–204

    PubMed  CAS  CrossRef  Google Scholar 

  • Leussis MP, Frayne ML, Saito M, Berry EM, Aldinger KA, Rockwell GN, Hammer RP Jr, Baskin-Hill AE, Singer JB, Nadeau JH, Sklar P, Petryshen TL (2009) Genomic survey of prepulse inhibition in mouse chromosome substitution strains. Genes Brain Behav 8:806–816

    PubMed  CAS  CrossRef  Google Scholar 

  • Liao G, Wang J, Guo J, Allard J, Cheng J, Ng A, Shafer S, Puech A, McPherson JD, Foernzler D, Peltz G, Usuka J (2004) In silico genetics: identification of a functional element regulating H2-Ealpha gene expression. Science 306:690–695

    PubMed  CAS  CrossRef  Google Scholar 

  • Lindblad-Toh K, Winchester E, Daly MJ, Wang DG, Hirschhorn JN, Laviolette JP, Ardlie K, Reich DE, Robinson E, Sklar P, Shah N, Thomas D, Fan JB, Gingeras T, Warrington J, Patil N, Hudson TJ, Lander ES (2000) Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat Genet 24:381–386

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu P, Wang Y, Vikis H, Maciag A, Wang D, Lu Y, Liu Y, You M (2006) Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat Genet 38:888–895

    PubMed  CAS  CrossRef  Google Scholar 

  • Lloyd DJ, Bohan S, Gekakis N (2006) Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Hum Mol Genet 15:1884–1893

    PubMed  CAS  CrossRef  Google Scholar 

  • Lloyd DJ, Hall FW, Tarantino LM, Gekakis N (2005) Diabetes insipidus in mice with a mutation in Aquaporin-2. PLoS Genet 1:e20

    PubMed  CrossRef  CAS  Google Scholar 

  • Lloyd DJ, Wheeler MC, Gekakis N (2010) A point mutation in Sec61alpha1 leads to diabetes and hepatosteatosis in mice. Diabetes 59:460–470

    PubMed  CAS  CrossRef  Google Scholar 

  • Lyon MF (2002) A personal history of the mouse genome. Annu Rev Genomics Hum Genet 3:1–16

    PubMed  CAS  CrossRef  Google Scholar 

  • Macarthur DG, Tyler-Smith C (2010) Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet 19:R125–R130

    PubMed  CAS  CrossRef  Google Scholar 

  • Mackenzie FE, Parker A, Parkinson NJ, Oliver PL, Brooker D, Underhill P, Lukashkina VA, Lukashkin AN, Holmes C, Brown SD (2009) Analysis of the mouse mutant cloth-ears shows a role for the voltage-gated sodium channel Scn8a in peripheral neural hearing loss. Genes Brain Behav 8:699–713

    PubMed  CAS  CrossRef  Google Scholar 

  • Malmanger B, Lawler M, Coulombe S, Murray R, Cooper S, Polyakov Y, Belknap J, Hitzemann R (2006) Further studies on using multiple-cross mapping (MCM) to map quantitative trait loci. Mamm Genome 17:1193–1204

    PubMed  CrossRef  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    PubMed  CAS  CrossRef  Google Scholar 

  • Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS, Moore KJ (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17:280–284

    PubMed  CAS  CrossRef  Google Scholar 

  • Mathews TA, Brookshire BR, Budygin EA, Hamre K, Goldowitz D, Jones SR (2009) Ethanol-induced hyperactivity is associated with hypodopaminergia in the 22-TNJ ENU-mutated mouse. Alcohol 43:421–431

    PubMed  CAS  CrossRef  Google Scholar 

  • McClearn GE, Wilson J, Meredith W (1970) The use of isogenic and heterogenic mouse stock in behavioral research. In: Lindzey G, Thiessen D (eds) Contributions to behavioral-genetic analysis: the mouse as a prototype. Appleton-Century-Crofts, New York, pp 3–22

    Google Scholar 

  • McClurg P, Janes J, Wu C, Delano DL, Walker JR, Batalov S, Takahashi JS, Shimomura K, Kohsaka A, Bass J, Wiltshire T, Su AI (2007) Genomewide association analysis in diverse inbred mice: power and population structure. Genetics 176:675–683

    PubMed  CAS  CrossRef  Google Scholar 

  • Melo JA, Shendure J, Pociask K, Silver LM (1996) Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nat Genet 13:147–153

    PubMed  CAS  CrossRef  Google Scholar 

  • Miller BH, Schultz LE, Gulati A, Su AI, Pletcher MT (2010) Phenotypic characterization of a genetically diverse panel of mice for behavioral despair and anxiety. PLoS One 5:e14458

    PubMed  CAS  CrossRef  Google Scholar 

  • Mogil JS, Richards SP, O’Toole LA, Helms ML, Mitchell SR, Kest B, Belknap JK (1997) Identification of a sex-specific quantitative trait locus mediating nonopioid stress-induced analgesia in female mice. J Neurosci 17:7995–8002

    PubMed  CAS  Google Scholar 

  • Mott R, Flint J (2002) Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160:1609–1618

    PubMed  CAS  Google Scholar 

  • Nathan BM, Hodges CA, Palmert MR (2006) The use of mouse chromosome substitution strains to investigate the genetic regulation of pubertal timing. Mol Cell Endocrinol 254–255:103–108

    PubMed  CrossRef  CAS  Google Scholar 

  • Neiderhiser JM, Plomin R, McClearn GE (1992) The use of CXB recombinant inbred mice to detect quantitative trait loci in behavior. Physiol Behav 52:429–439

    PubMed  CAS  CrossRef  Google Scholar 

  • Nishi A, Ishii A, Takahashi A, Shiroishi T, Koide T (2010) QTL analysis of measures of mouse home-cage activity using B6/MSM consomic strains. Mamm Genome 21:477–485

    PubMed  CrossRef  Google Scholar 

  • Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, Spurr N, Gray IC, Vizor L, Brooker D, Whitehill E, Washbourne R, Hough T, Greenaway S, Hewitt M, Liu X, McCormack S, Pickford K, Selley R, Wells C, Tymowska-Lalanne Z, Roby P, Glenister P, Thornton C, Thaung C, Stevenson JA, Arkell R, Mburu P, Hardisty R, Kiernan A, Erven A, Steel KP, Voegeling S, Guenet JL, Nickols C, Sadri R, Nasse M, Isaacs A, Davies K, Browne M, Fisher EM, Martin J, Rastan S, Brown SD, Hunter J (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    PubMed  CAS  CrossRef  Google Scholar 

  • Norgard EA, Jarvis JP, Roseman CC, Maxwell TJ, Kenney-Hunt JP, Samocha KE, Pletscher LS, Wang B, Fawcett GL, Leatherwood CJ, Wolf JB, Cheverud JM (2009) Replication of long-bone length QTL in the F9–F10 LG, SM advanced intercross. Mamm Genome 20:224–235

    PubMed  CAS  CrossRef  Google Scholar 

  • Norgard EA, Roseman CC, Fawcett GL, Pavlicev M, Morgan CD, Pletscher LS, Wang B, Cheverud JM (2008) Identification of quantitative trait loci affecting murine long bone length in a two-generation intercross of LG/J and SM/J Mice. J Bone Miner Res 23:887–895

    PubMed  CrossRef  Google Scholar 

  • Paigen K (2003) One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 163:1–7

    PubMed  CAS  Google Scholar 

  • Paigen K, Eppig JT (2000) A mouse phenome project. Mamm Genome 11:715–717

    PubMed  CAS  CrossRef  Google Scholar 

  • Park YG, Clifford R, Buetow KH, Hunter KW (2003) Multiple cross and inbred strain haplotype mapping of complex-trait candidate genes. Genome Res 13:118–121

    PubMed  CAS  CrossRef  Google Scholar 

  • Parker A, Hardisty-Hughes RE, Wisby L, Joyce S, Brown SD (2010) Melody, an ENU mutation in Caspase 3, alters the catalytic cysteine residue and causes sensorineural hearing loss in mice. Mamm Genome 21:565–576

    PubMed  CAS  CrossRef  Google Scholar 

  • Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7

    PubMed  CrossRef  Google Scholar 

  • Petryshen TL, Kirby A, Hammer RP Jr, Purcell S, O’Leary SB, Singer JB, Hill AE, Nadeau JH, Daly MJ, Sklar P (2005) Two quantitative trait Loci for prepulse inhibition of startle identified on mouse chromosome 16 using chromosome substitution strains. Genetics 171:1895–1904

    PubMed  CAS  CrossRef  Google Scholar 

  • Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Lariviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ (2010) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes Brain Behav 9:129–159

    PubMed  CAS  CrossRef  Google Scholar 

  • Phillips TJ, Crabbe JC, Metten P, Belknap JK (1994) Localization of genes affecting alcohol drinking in mice. Alcohol Clin Exp Res 18:931–941

    PubMed  CAS  CrossRef  Google Scholar 

  • Phillips TJ, Huson M, Gwiazdon C, Burkhart-Kasch S, Shen EH (1995) Effects of acute and repeated ethanol exposures on the locomotor activity of BXD recombinant inbred mice. Alcohol Clin Exp Res 19:269–278

    PubMed  CAS  CrossRef  Google Scholar 

  • Phillips TJ, Huson MG, McKinnon CS (1998) Localization of genes mediating acute and sensitized locomotor responses to cocaine in BXD/Ty recombinant inbred mice. J Neurosci 18:3023–3034

    PubMed  CAS  Google Scholar 

  • Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, Korstanje R, Wang X, Nusskern D, Bogue MA, Mural RJ, Paigen B, Wiltshire T (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2:e393

    PubMed  CrossRef  CAS  Google Scholar 

  • Prevorsek Z, Gorjanc G, Paigen B, Horvat S (2010) Congenic and bioinformatics analyses resolved a major-effect Fob3b QTL on mouse Chr 15 into two closely linked loci. Mamm Genome 21:172–185

    PubMed  CrossRef  Google Scholar 

  • Rastan S, Hough T, Kierman A, Hardisty R, Erven A, Gray IC, Voeling S, Isaacs A, Tsai H, Strivens M, Washbourne R, Thornton C, Greenaway S, Hewitt M, McCormick S, Selley R, Wells C, Tymowska-Lalanne Z, Roby P, Mburu P, Rogers D, Hagan J, Reavill C, Davies K, Glenister P, Fisher EM, Martin J, Vizor L, Bouzyk M, Kelsell D, Guenet JL, Steel KP, Sheardown S, Spurr N, Gray I, Peters J, Nolan PM, Hunter AJ, Brown SD (2004) Towards a mutant map of the mouse–new models of neurological, behavioural, deafness, bone, renal and blood disorders. Genetica 122:47–49

    PubMed  CAS  CrossRef  Google Scholar 

  • Reijmers LG, Coats JK, Pletcher MT, Wiltshire T, Tarantino LM, Mayford M (2006) A mutant mouse with a highly specific contextual fear-conditioning deficit found in an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Learn Mem 13:143–149

    PubMed  CAS  CrossRef  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83(Pt 4):363–372

    PubMed  CrossRef  Google Scholar 

  • Rockman MV, Kruglyak L (2008) Breeding designs for recombinant inbred advanced intercross lines. Genetics 179:1069–1078

    PubMed  CrossRef  Google Scholar 

  • Rodriguez LA, Plomin R, Blizard DA, Jones BC, McClearn GE (1994) Alcohol acceptance, preference, and sensitivity in mice. I. Quantitative genetic analysis using BXD recombinant inbred strains. Alcohol Clin Exp Res 18:1416–1422

    PubMed  CAS  CrossRef  Google Scholar 

  • Rodriguez LA, Plomin R, Blizard DA, Jones BC, McClearn GE (1995) Alcohol acceptance, preference, and sensitivity in mice. II. Quantitative trait loci mapping analysis using BXD recombinant inbred strains. Alcohol Clin Exp Res 19:367–373

    PubMed  CAS  CrossRef  Google Scholar 

  • Samocha KE, Lim JE, Cheng R, Sokoloff G, Palmer AA (2010) Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F(2) and advanced intercross lines. Genes Brain Behav 9:759–767

    PubMed  CAS  CrossRef  Google Scholar 

  • Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB, Cooke MP (2005) c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 8:153–166

    PubMed  CAS  CrossRef  Google Scholar 

  • Savitz J, Lucki I, Drevets WC (2009) 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88:17–31

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwander M, Lopes V, Sczaniecka A, Gibbs D, Lillo C, Delano D, Tarantino LM, Wiltshire T, Williams DS, Muller U (2009a) A novel allele of myosin VIIa reveals a critical function for the C-terminal FERM domain for melanosome transport in retinal pigment epithelial cells. J Neurosci 29:15810–15818

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwander M, Xiong W, Tokita J, Lelli A, Elledge HM, Kazmierczak P, Sczaniecka A, Kolatkar A, Wiltshire T, Kuhn P, Holt JR, Kachar B, Tarantino L, Muller U (2009b) A mouse model for nonsyndromic deafness (DFNB12) links hearing loss to defects in tip links of mechanosensory hair cells. Proc Natl Acad Sci USA 106:5252–5257

    PubMed  CAS  CrossRef  Google Scholar 

  • Schwartz WJ, Zimmerman P (1990) Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci 10:3685–3694

    PubMed  CAS  Google Scholar 

  • Sharkey LM, Cheng X, Drews V, Buchner DA, Jones JM, Justice MJ, Waxman SG, Dib-Hajj SD, Meisler MH (2009) The ataxia3 mutation in the N-terminal cytoplasmic domain of sodium channel Na(v)1.6 disrupts intracellular trafficking. J Neurosci 29:2733–2741

    PubMed  CAS  CrossRef  Google Scholar 

  • Silver LM (1995) Mouse genetics concepts and applications. Oxford University Press, Oxford

    Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, O’Brien WE, Conti DV, Witte JS, Lander ES, Nadeau JH (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    PubMed  CAS  CrossRef  Google Scholar 

  • Singer JB, Hill AE, Nadeau JH, Lander ES (2005) Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 169:855–862

    PubMed  CAS  CrossRef  Google Scholar 

  • Smith R, Sheppard K, DiPetrillo K, Churchill G (2009) Quantitative trait locus analysis using J/qtl. Methods Mol Biol 573:175–188

    PubMed  CAS  CrossRef  Google Scholar 

  • Smoller JW, Paulus MP, Fagerness JA, Purcell S, Yamaki LH, Hirshfeld-Becker D, Biederman J, Rosenbaum JF, Gelernter J, Stein MB (2008) Influence of RGS2 on anxiety-related temperament, personality, and brain function. Arch Gen Psychiatry 65:298–308

    PubMed  CAS  CrossRef  Google Scholar 

  • Solberg LC, Valdar W, Gauguier D, Nunez G, Taylor A, Burnett S, Arboledas-Hita C, Hernandez-Pliego P, Davidson S, Burns P, Bhattacharya S, Hough T, Higgs D, Klenerman P, Cookson WO, Zhang Y, Deacon RM, Rawlins JN, Mott R, Flint J (2006) A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm Genome 17:129–146

    PubMed  CrossRef  Google Scholar 

  • Speca DJ, Chihara D, Ashique AM, Bowers MS, Pierce-Shimomura JT, Lee J, Rabbee N, Speed TP, Gularte RJ, Chitwood J, Medrano JF, Liao M, Sonner JM, Eger EI, 2nd, Peterson AS, McIntire SL (2010) Conserved role of unc-79 in ethanol responses in lightweight mutant mice. PLoS Genet 6(8):e1001057

    Google Scholar 

  • Steinberger D, Reynolds DS, Ferris P, Lincoln R, Datta S, Stanley J, Paterson A, Dawson GR, Flint J (2003) Genetic mapping of variation in spatial learning in the mouse. J Neurosci 23:2426–2433

    PubMed  CAS  Google Scholar 

  • Stottmann RW, Tran PV, Turbe-Doan A, Beier DR (2009) Ttc21b is required to restrict sonic hedgehog activity in the developing mouse forebrain. Dev Biol 335:166–178

    PubMed  CAS  CrossRef  Google Scholar 

  • Strohl KP, Gallaugher L, Lynn A, Friedman L, Hill A, Singer JB, Lander ES, Nadeau J (2007) Sleep-related epilepsy in the A/J mouse. Sleep 30:169–176

    PubMed  Google Scholar 

  • Stylianou IM, Christians JK, Keightley PD, Bunger L, Clinton M, Bulfield G, Horvat S (2004) Genetic complexity of an obesity QTL (Fob3) revealed by detailed genetic mapping. Mamm Genome 15:472–481

    PubMed  CAS  CrossRef  Google Scholar 

  • Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    PubMed  CrossRef  CAS  Google Scholar 

  • Swanson DJ, Steshina EY, Wakenight P, Aldinger KA, Goldowitz D, Millen KJ, Chizhikov VV (2010) Phenotypic and genetic analysis of the cerebellar mutant tmgc26, a new ENU-induced ROR-alpha allele. Eur J Neurosci 32:707–716

    PubMed  CrossRef  Google Scholar 

  • Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B (2006) The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7:156–164

    PubMed  CAS  CrossRef  Google Scholar 

  • Tafti M, Franken P, Kitahama K, Malafosse A, Jouvet M, Valatx JL (1997) Localization of candidate genomic regions influencing paradoxical sleep in mice. Neuroreport 8:3755–3758

    PubMed  CAS  CrossRef  Google Scholar 

  • Takada T, Mita A, Maeno A, Sakai T, Shitara H, Kikkawa Y, Moriwaki K, Yonekawa H, Shiroishi T (2008) Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res 18:500–508

    PubMed  CAS  CrossRef  Google Scholar 

  • Takahashi A, Nishi A, Ishii A, Shiroishi T, Koide T (2008) Systematic analysis of emotionality in consomic mouse strains established from C57BL/6J and wild-derived MSM/Ms. Genes Brain Behav 7:849–858

    PubMed  CAS  CrossRef  Google Scholar 

  • Takahashi A, Tomihara K, Shiroishi T, Koide T (2010) Genetic mapping of social interaction behavior in B6/MSM consomic mouse strains. Behav Genet 40:366–376

    PubMed  CrossRef  Google Scholar 

  • Takahasi KR, Sakuraba Y, Gondo Y (2007) Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis. BMC Mol Biol 8:52

    PubMed  CrossRef  CAS  Google Scholar 

  • Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, Flint J (1999) High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet 21:305–308

    PubMed  CAS  CrossRef  Google Scholar 

  • Taylor BA (1976) Genetic analysis of susceptibility to isoniazid-induced seizures in mice. Genetics 83:373–377

    PubMed  CAS  Google Scholar 

  • Taylor BA (1978) Recombinant inbred strains: use in gene mapping. In: Morse HC (ed) Origins of inbred Mice: proceedings of a workshop, Bethesda, Maryland, 14–16 February. Academic Press, New York, pp 423–438

    Google Scholar 

  • Taylor BA, Bedigian HG, Meier H (1977) Genetic studies of the Fv-1 locus of mice: linkage with Gpd-1 in recombinant inbred lines. J Virol 23:106–109

    PubMed  CAS  Google Scholar 

  • Taylor BA, Meier H, Myers DD (1971) Host-gene control of C-type RNA tumor virus: inheritance of the group-specific antigen of murine leukemia virus. Proc Natl Acad Sci USA 68:3190–3194

    PubMed  CAS  CrossRef  Google Scholar 

  • Taylor BA, Tarantino LM, Phillips SJ (1999) Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain. Mamm Genome 10:963–968

    PubMed  CAS  CrossRef  Google Scholar 

  • Taylor BA, Wnek C, Schroeder D, Phillips SJ (2001) Multiple obesity QTLs identified in an intercross between the NZO (New Zealand obese) and the SM (small) mouse strains. Mamm Genome 12:95–103

    PubMed  CAS  CrossRef  Google Scholar 

  • Theodoratos A, Whittle B, Enders A, Tscharke DC, Roots CM, Goodnow CC, Fahrer AM (2010) Mouse strains with point mutations in TAP1 and TAP2. Immunol Cell Biol 88:72–78

    PubMed  CAS  CrossRef  Google Scholar 

  • Tokuda S, Mahaffey CL, Monks B, Faulkner CR, Birnbaum MJ, Danzer SC, Frankel WN (2011) A novel Akt3 mutation associated with enhanced kinase activity and seizure susceptibility in mice. Hum Mol Genet 20(5):988–999

    Google Scholar 

  • Tsaih SW, Korstanje R (2009) Haplotype association mapping in mice. Methods Mol Biol 573:213–222

    PubMed  CAS  CrossRef  Google Scholar 

  • Turri MG, Datta SR, DeFries J, Henderson ND, Flint J (2001a) QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr Biol 11:725–734

    PubMed  CAS  CrossRef  Google Scholar 

  • Turri MG, DeFries JC, Henderson ND, Flint J (2004) Multivariate analysis of quantitative trait loci influencing variation in anxiety-related behavior in laboratory mice. Mamm Genome 15:69–76

    PubMed  CrossRef  Google Scholar 

  • Turri MG, Henderson ND, DeFries JC, Flint J (2001b) Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics 158:1217–1226

    PubMed  CAS  Google Scholar 

  • Turri MG, Talbot CJ, Radcliffe RA, Wehner JM, Flint J (1999) High-resolution mapping of quantitative trait loci for emotionality in selected strains of mice. Mamm Genome 10:1098–1101

    PubMed  CAS  CrossRef  Google Scholar 

  • Umemori J, Nishi A, Lionikas A, Sakaguchi T, Kuriki S, Blizard DA, Koide T (2009) QTL analyses of temporal and intensity components of home-cage activity in KJR and C57BL/6J strains. BMC Genet 10:40

    PubMed  CrossRef  CAS  Google Scholar 

  • Valdar W, Flint J, Mott R (2006a) Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172:1783–1797

    PubMed  CAS  CrossRef  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JN, Mott R, Flint J (2006b) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    PubMed  CAS  CrossRef  Google Scholar 

  • Wakeland E, Morel L, Achey K, Yui M, Longmate J (1997) Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18:472–477

    PubMed  CAS  CrossRef  Google Scholar 

  • Wang GL, Paterson AH (1994) Assessment of DNA pooling strategies for mapping of QTLs. Theor Appl Genet 88:355–361

    Google Scholar 

  • Wang J, Liao G, Usuka J, Peltz G (2005) Computational genetics: from mouse to human? Trends Genet 21:526–532

    PubMed  CAS  CrossRef  Google Scholar 

  • Wang J, Williams RW, Manly KF (2003) WebQTL: web-based complex trait analysis. Neuroinformatics 1:299–308

    PubMed  CrossRef  Google Scholar 

  • Watson J, Riblet R, Taylor BA (1977) The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J Immunol 118:2088–2093

    PubMed  CAS  Google Scholar 

  • Webb BT, McClay JL, Vargas-Irwin C, York TP, van den Oord EJ (2009) In silico whole genome association scan for murine prepulse inhibition. PLoS One 4:e5246

    PubMed  CrossRef  CAS  Google Scholar 

  • Wehner JM, Radcliffe RA, Rosmann ST, Christensen SC, Rasmussen DL, Fulker DW, Wiles M (1997) Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet 17:331–334

    PubMed  CAS  CrossRef  Google Scholar 

  • Wilkes JJ, Lloyd DJ, Gekakis N (2009) Loss-of-function mutation in myostatin reduces tumor necrosis factor alpha production and protects liver against obesity-induced insulin resistance. Diabetes 58:1133–1143

    PubMed  CAS  CrossRef  Google Scholar 

  • Williams RT, Lim JE, Harr B, Wing C, Walters R, Distler MG, Teschke M, Wu C, Wiltshire T, Su AI, Sokoloff G, Tarantino LM, Borevitz JO, Palmer AA (2009) A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior. PLoS One 4:e4649

    PubMed  CrossRef  CAS  Google Scholar 

  • Wu R, Ma C, Casella G (2010) Statistical genetics of quantitative traits: linkage, maps and QTL. Springer, New York

    Google Scholar 

  • Xia Y, Won S, Du X, Lin P, Ross C, La Vine D, Wiltshire S, Leiva G, Vidal SM, Whittle B, Goodnow CC, Koziol J, EM YM, Beutler B (2010) Bulk segregation mapping of mutations in closely related strains of mice. Genetics 186:1139–1146

    PubMed  CAS  CrossRef  Google Scholar 

  • Xie G, Harrison J, Clapcote SJ, Huang Y, Zhang JY, Wang LY, Roder JC (2010) A new Kv1.2 channelopathy underlying cerebellar ataxia. J Biol Chem 285:32160–32173

    PubMed  CAS  CrossRef  Google Scholar 

  • Yalcin B, Willis-Owen SA, Fullerton J, Meesaq A, Deacon RM, Rawlins JN, Copley RR, Morris AP, Flint J, Mott R (2004) Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet 36:1197–1202

    PubMed  CAS  CrossRef  Google Scholar 

  • Yoon CK (1996) J. NIH Res. 8:23–24

    Google Scholar 

  • Yoshiki A, Ike F, Mekada K, Kitaura Y, Nakata H, Hiraiwa N, Mochida K, Ijuin M, Kadota M, Murakami A, Ogura A, Abe K, Moriwaki K, Obata Y (2009) The mouse resources at the RIKEN BioResource center. Exp Anim 58:85–96

    PubMed  CAS  CrossRef  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang S, Gershenfeld HK (2003) Genetic contributions to body weight in mice: relationship of exploratory behavior to weight. Obes Res 11:828–838

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Tarantino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarantino, L.M., Eisener-Dorman, A.F. (2011). Forward Genetic Approaches to Understanding Complex Behaviors. In: Cryan, J., Reif, A. (eds) Behavioral Neurogenetics. Current Topics in Behavioral Neurosciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_189

Download citation