Skip to main content

Genetic Factors Modulating the Response to Stimulant Drugs in Humans

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 12)

Abstract

Individuals vary in their responses to stimulant drugs, and several lines of evidence suggest that the basis for this variation is at least partially genetic in origin. Association studies have examined the effects of polymorphisms in specific genes on acute and chronic responses to stimulant drugs. Several of these genetic polymorphisms are also associated with other psychiatric dimensions and disorders. This chapter examines the evidence for genetic associations between the genes that have been most carefully examined for their influence on the response to stimulant drugs.

Keywords

  • Stimulants
  • Inter-individual variation
  • Drug response
  • Candidate gene
  • Genetic association
  • Genetic polymorphism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7854_2011_187
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27859-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

References

  • Allen N, Bagade S, McQueen M, Ioannidis J, Kavvoura F, Khoury M, Tanzi R, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

    PubMed  CAS  CrossRef  Google Scholar 

  • American Psychiatry Association (1987) Diagnostic and statistical manual of mental disorders, revised 3rd edn. American Psychiatric Association, Washington DC

    Google Scholar 

  • Andersen S, Skorpen F (2009) Variation in the COMT gene: implications for pain perception and pain treatment. Pharmacogenomics 10:669–684

    PubMed  CAS  CrossRef  Google Scholar 

  • Aoyama N, Takahashi N, Kitaichi K, Ishihara R, Saito S, Maeno N, Ji X, Takagi K, Sekine Y, Iyo M, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Iwata N, Inada T, Ozaki N (2006) Association between gene polymorphisms of SLC22A3 and methamphetamine use disorder. Alcohol Clin Exp Res 30:1644–1649

    PubMed  CAS  CrossRef  Google Scholar 

  • Asherson P, Brookes K, Franke B, Chen W, Gill M, Ebstein R, Buitelaar J, Banaschewski T, Sonuga-Barke E, Eisenberg J (2007) Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am J Psychiatry 164:674–677

    PubMed  CrossRef  Google Scholar 

  • Banaschewski T, Becker K, Scherag S, Franke B, Coghill D (2010) Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur child adolescent psychiatry 19:237–257

    CrossRef  Google Scholar 

  • Bellgrove MA, Hawi Z, Kirley A, Fitzgerald M, Gill M, Robertson IH (2005) Association between dopamine transporter (DAT1) genotype, left-sided inattention, and an enhanced response to methylphenidate in attention-deficit hyperactivity disorder. Neuropsychopharmacology 30:2290–2297

    PubMed  CAS  CrossRef  Google Scholar 

  • Bergen A, Kokoszka J, Peterson R, Long J, Virkkunen M, Linnoila M, Goldman D (1997) Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol Psychiatry 2:490–494

    PubMed  CAS  CrossRef  Google Scholar 

  • Bloch M, Landeros-Weisenberger A, Sen S, Dombrowski P, Kelmendi B, Coric V, Pittenger C, Leckman J (2008) Association of the serotonin transporter polymorphism and obsessive-compulsive disorder: systematic review. Am J Med Genet Part B Neuropsychiatr Genet 147:850–858

    Google Scholar 

  • Bond C, LaForge K, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong J, Leal S (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 95:9608–9613

    PubMed  CAS  CrossRef  Google Scholar 

  • Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Aneey R, Franke B, Gill M, Ebstein R (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953

    PubMed  CAS  CrossRef  Google Scholar 

  • Brown G, Harris T (2008) Depression and the serotonin transporter 5-HTTLPR polymorphism: a review and a hypothesis concerning gene-environment interaction. J Affect Disord 111:1–12

    PubMed  CAS  CrossRef  Google Scholar 

  • Brown WA, Corriveau DP, Ebert MH (1978) Acute psychologic and neuroendocrine effects of dextroamphetamine and methylphenidate. Psychopharmacology (Berl) 58:189–195

    CAS  CrossRef  Google Scholar 

  • Bryant CD, Graham ME, Distler MG, Munoz MB, Li D, Vezina P, Sokoloff G, Palmer AA (2009) A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Psychopharmacology (Berl) 203:703–711

    CAS  CrossRef  Google Scholar 

  • Cabeza R, Nyberg L (2000) Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol 13:415–421

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen C, Hu X, Lin S, Sham P, Loh E, Li T, Murray R, Ball D (2004a) Association analysis of dopamine D2-like receptor genes and methamphetamine abuse. Psychiatr Genet 14:223–226

    PubMed  CrossRef  Google Scholar 

  • Chen J, Lipska B, Halim N, Ma Q, Matsumoto M, Melhem S, Kolachana B, Hyde T, Herman M, Apud J (2004b) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Human Genet 75:807–821

    CAS  CrossRef  Google Scholar 

  • Cheon K, Ryu Y, Kim J, Cho D (2005) The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol 15:95–101

    PubMed  CAS  CrossRef  Google Scholar 

  • Cheon K, Kim B, Cho S (2006) Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology 32:1377–1383

    PubMed  CrossRef  CAS  Google Scholar 

  • Crabbe J, Jarvik L, Liston E, Jenden D (1983) Behavioral responses to amphetamines in identical twins. Acta Genet Med Gemellol (Roma) 32:139–149

    CAS  Google Scholar 

  • Cropley V, Fujita M, Innis R, Nathan P (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59:898–907

    PubMed  CAS  CrossRef  Google Scholar 

  • Cubells J, Kranzler H, McCance-Katz E, Anderson G, Malison R, Price L, Gelernter J (2000) A haplotype at the DBH locus, associated with low plasma dopamine β-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry 5:56–63

    PubMed  CAS  CrossRef  Google Scholar 

  • da Silva M, Cordeiro Q, Louza M, Vallada H (2010) Lack of association between a 30UTR VNTR 776 polymorphism of dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of 777 adult patients. J Atten Disord 15:305–309

    CrossRef  Google Scholar 

  • Daly J, Fredholm B (1998) Caffeine—an atypical drug of dependence. Drug Alcohol Depend 51:199–206

    PubMed  CAS  CrossRef  Google Scholar 

  • David S, Munafò M (2008) Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics 9:1307–1321

    PubMed  CAS  CrossRef  Google Scholar 

  • David S, Strong D, Munafo M, Brown R, Lloyd-Richardson E, Wileyto P, Evins E, Shields P, Lerman C, Niaura R (2007) Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: analysis of pooled data from two clinical trials. Nicotine Tob Res 9:1251–1257

    PubMed  CAS  CrossRef  Google Scholar 

  • de Wit H (2009) Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Bio 14:22–31

    CrossRef  Google Scholar 

  • de Wit H, Uhlenhuth E, Johanson C (1986) Individual differences in the reinforcing and subjective effects of amphetamine and diazepam. Drug Alcohol Depend 16:341–360

    PubMed  CrossRef  Google Scholar 

  • de Wit H, Crean J, Richards JB (2000) Effects of d-amphetamine and ethanol on a measure of behavioral inhibition in humans. Behav Neurosci 114:830–837

    PubMed  CrossRef  Google Scholar 

  • den Hoed M, Ekelund U, Brage S, Grontved A, Zhao JH, Sharp SJ, Ong KK, Wareham NJ, Loos RJ (2010) Genetic susceptibility to obesity and related traits in childhood and adolescence; influence of loci identified by genome-wide association studies. Diabetes 59:2980–2988

    CrossRef  CAS  Google Scholar 

  • Dlugos A, Freitag C, Hohoff C, McDonald J, Cook E, Deckert J, de Wit H (2007) Norepinephrine transporter gene variation modulates acute response to D-amphetamine. Biol Psychiatry 61:1296–1305

    PubMed  CAS  CrossRef  Google Scholar 

  • Dlugos AM, Hamidovic A, Palmer AA, Wit H (2009a) Further evidence of association between amphetamine response and SLC6A2 gene variants. Psychopharmacology (Berl) 206:501–511

    CAS  CrossRef  Google Scholar 

  • Dlugos AM, Hamidovic A, Hodgkinson CA, Goldman D, Palmer AA, Hd Wit (2009b) More aroused, less fatigued: fatty acid amide hydrolase gene polymorphisms influence acute response to amphetamine. Neuropsychopharmacology 35:613–622

    PubMed  CrossRef  CAS  Google Scholar 

  • Dlugos A, Hamidovic A, Hodgkinson CA, Pei-Hong S, Goldman D, Palmer A, de Wit H (2010) OPRM1 gene variants modulate amphetamine-induced euphoria in humans. Genes Brain Behav 10:199–209

    PubMed  Google Scholar 

  • Drakenberg K, Nikoshkov A, Horváth M, Fagergren P, Gharibyan A, Saarelainen K, Rahman S, Nylander I, Bakalkin G, Rajs J (2006) μ Opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers. Proc Nat Acad Sci 103:7883–7888

    PubMed  CAS  CrossRef  Google Scholar 

  • DuPaul G, Power T, Anastopoulos A, Reid R (1998) ADHD rating scales-IV: checklists. Norms and Clinical Interpretation, Guilford

    Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    PubMed  CAS  CrossRef  Google Scholar 

  • Eisenberg DTA, Mackillop J, Modi M, Beauchemin J, Dang D, Lisman SA, Lum JK, Wilson DS (2007) Examining impulsivity as an endophenotype using a behavioral approach: a DRD2 TaqI A and DRD4 48-bp VNTR association study. BBF 3:2

    PubMed  Google Scholar 

  • Engeli S (2008) Dysregulation of the endocannabinoid system in obesity. J Neuroendocrinol 20:110–115

    PubMed  CAS  CrossRef  Google Scholar 

  • Ezaki N, Nakamura K, Sekine Y, Thanseem I, Anitha A, Iwata Y, Kawai M, Takebayashi K, Suzuki K, Takei N (2008) Short allele of 5-HTTLPR as a risk factor for the development of psychosis in Japanese methamphetamine abusers. Ann N Y Acad Sci 1139:49–56

    PubMed  CAS  CrossRef  Google Scholar 

  • Faraone S, Doyle A, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D4 receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158:1052–1057

    PubMed  CAS  CrossRef  Google Scholar 

  • Farrer L, Kranzler H, Yu Y, Weiss R, Brady K, Anton R, Cubells J, Gelernter J (2009) Association of variants in MANEA with cocaine-related behaviors. Arch Gen Psychiatry 66:267

    PubMed  CrossRef  Google Scholar 

  • Fergusson D, Horwood L, Lynskey M, Madden P (2003) Early reactions to cannabis predict later dependence. Arch Gen Psychiatry 60:1033–1039

    PubMed  CrossRef  Google Scholar 

  • Filbey F, Schacht J, Myers U, Chavez R, Hutchison K (2009) Individual and additive effects of the CNR1 and FAAH Genes on brain response to marijuana cues. Neuropsychopharmacology 35:967–975

    PubMed  CrossRef  CAS  Google Scholar 

  • Flanagin B, Cook E Jr, de Wit H (2006) An association study of the brain-derived neurotrophic factor Val66Met polymorphism and amphetamine response. Am J Med Genet Part B Neuropsychiatr Genet 141:576–583

    Google Scholar 

  • Friedel S, Saar K, Sauer S, Dempfle A, Walitza S, Renner T, Romanos M, Freitag C, Seitz C, Palmason H (2007) Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol Psychiatry 12:923–933

    PubMed  CAS  CrossRef  Google Scholar 

  • Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 1:152–156

    PubMed  CAS  CrossRef  Google Scholar 

  • Furberg H, Kim Y, Dackor J, Boerwinkle E, Franceschini N, Ardissino D, Bernardinelli L, Mannucci P, Mauri F, Merlini P (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447

    CAS  CrossRef  Google Scholar 

  • Fuxe K, Ferre S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg S, Staines W, Jacobsen K, Lluis C (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26(2):209–220

    PubMed  CAS  CrossRef  Google Scholar 

  • Gelernter J, Kranzler HR, Satel SL, Rao PA (1994) Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology 11:195–200

    PubMed  CAS  CrossRef  Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    PubMed  CAS  CrossRef  Google Scholar 

  • Grigorenko E, DeYoung C, Eastman M, Getchell M, Haeffel G, af Klinteberg B, Koposov R, Oreland L, Pakstis A, Ponomarev O (2010) Aggressive behavior, related conduct problems, and variation in genes affecting dopamine turnover. Aggress Behav 36:158–176

    PubMed  CAS  Google Scholar 

  • Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, Ammar N, Craig I, O’Gara C, Bubb VJ, Greenwood T, Kelsoe J, Asherson P, Murray RM, Castelo A, Quinn JP, Vallada H, Breen G (2006) A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci U S A 103:4552–4557

    PubMed  CAS  CrossRef  Google Scholar 

  • Guy W (1976) Clinical global impressions. In: ECDEU assessment manual for psychopharmacology, revised. National Institute of Mental Health, Rockville

    Google Scholar 

  • Haenisch B, Linsel K, Brüss M, Gilsbach R, Propping P, Nöthen M, Rietschel M, Fimmers R, Maier W, Zobel A (2009) Association of major depression with rare functional variants in norepinephrine transporter and serotonin1A receptor genes. Am J Med Genet Part B Neuropsychiatr Genet 150:1013–1016

    Google Scholar 

  • Haertzen C, Kocher T, Miyasato K (1983) Reinforcements from the first drug experience can predict later drug habits and/or addiction: results with coffee, cigarettes, alcohol, barbiturates, minor and major tranquilizers, stimulants, marijuana, hallucinogens, heroin, opiates and cocaine. Drug Alcohol Depend 11:147–165

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamarman S, Fossella J, Ulger C, Brimacombe M, Dermody J (2004) Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention deficit hyperactivity disorder: a pharmacogenetic study. J Child Adolescent Psychopharmacology 14:564–574

    CrossRef  Google Scholar 

  • Hamidovic A, Dlugos A, Skol A, Palmer AA, de Wit H (2009) Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: an exploratory study with d-amphetamine in healthy participants. Exp Clin Psychopharmacol 17:374–383

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamidovic A, Dlugos A, Palmer AA, Wit H (2010a) Polymorphisms in dopamine transporter (SLC6A3) are associated with stimulant effects of d-amphetamine: an exploratory pharmacogenetic study using healthy volunteers. Behav Genet 40:255–261

    PubMed  CrossRef  Google Scholar 

  • Hamidovic A, Dlugos A, Palmer A, De Wit H (2010b) Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatr Genet 20:85–92

    PubMed  Google Scholar 

  • Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Rev 45:104–114

    PubMed  CAS  CrossRef  Google Scholar 

  • Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G (1993) Wisconsin card sorting test manual (Rev. edn.). Psychological Assessment Resources, Odessa

    Google Scholar 

  • Hohoff C, McDonald J, Baune B, Cook E, Deckert J, De Wit H (2005) Interindividual variation in anxiety response to amphetamine: possible role for adenosine A2A receptor gene variants. Am J Med Genet Part B Neuropsychiatr Genet 139:42–44

    Google Scholar 

  • Holdstock L, de Wit H (2001) Individual differences in responses to ethanol and d-amphetamine: a within-subject study. Alcohol Clin Exp Res 25:540–548

    PubMed  CAS  CrossRef  Google Scholar 

  • Hranilovic D, Stefulj J, Schwab S, Borrmann-Hassenbach M, Albus M, Jernej B, Wildenauer D (2004) Serotonin transporter promoter and intron 2 polymorphisms: relationship between allelic variants and gene expression. Biol Psychiatry 55:1090–1094

    PubMed  CAS  CrossRef  Google Scholar 

  • Hu X, Lipsky R, Zhu G, Akhtar L, Taubman J, Greenberg B, Xu K, Arnold P, Richter M, Kennedy J (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Human Genet 78:815–826

    CAS  CrossRef  Google Scholar 

  • Huang C, Santangelo S (2008) Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. Am J Med Genet Part B: Neuropsychiatr Genet 147:903–913

    Google Scholar 

  • Hyman C, Hofer M, Barde Y, Juhasz M, Yancopoulos G, Squinto S, Lindsay R (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    PubMed  CAS  CrossRef  Google Scholar 

  • Ide S, Kobayashi H, Tanaka K, Ujike H, Sekine Y, Ozaki N, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Ikeda K, Sora I (2004) Gene polymorphisms of the mu opioid receptor in methamphetamine abusers. Ann N Y Acad Sci 1025:316–324

    PubMed  CAS  CrossRef  Google Scholar 

  • Ide S, Kobayashi H, Ujike H, Ozaki N, Sekine Y, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Iwata N, Tanaka K, Shen H, Iwahashi K, Itokawa M, Minami M, Satoh M, Ikeda K, Sora I (2006) Linkage disequilibrium and association with methamphetamine dependence/psychosis of mu-opioid receptor gene polymorphisms. Pharmacogenomics J 6:179–188

    PubMed  CAS  CrossRef  Google Scholar 

  • Johanson C, Uhlenhuth E (1980) Drug preference and mood in humans: diazepam. Psychopharmacology (Berl) 71:269–273

    CAS  CrossRef  Google Scholar 

  • Johansson I, Ingelman-Sundberg M (2008) CNVs of human genes and their implication in pharmacogenetics. Cytogenet Genome Res 123:195–204

    PubMed  CAS  CrossRef  Google Scholar 

  • Johansson S, Halleland H, Halmøy A, Jacobsen K, Landaas E, Dramsdahl M, Fasmer O, Bergsholm P, Lundervold A, Gillberg C (2008) Genetic analyses of dopamine related genes in adult ADHD patients suggest an association with the DRD5-microsatellite repeat, but not with DRD4 or SLC6A3 VNTRs. Am J Med Genet Part B Neuropsychiatr Genet 147:1470–1475

    Google Scholar 

  • Joober R, Grizenko N, Sengupta S, Amor LB, Schmitz N, Schwartz G, Karama S, Lageix P, Fathalli F, Torkaman-Zehi A, Ter Stepanian M (2007) Dopamine transporter 3′-UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology 32:1370–1376

    PubMed  CAS  CrossRef  Google Scholar 

  • Kalayasiri R, Sughondhabirom A, Gueorguieva R, Coric V, Lynch WJ, Lappalainen J, Gelernter J, Cubells JF, Malison RT (2007) Dopamine beta-hydroxylase gene (DbetaH) -1021C-->T influences self-reported paranoia during cocaine self-administration. Biol Psychiatry 61:1310–1313

    PubMed  CAS  CrossRef  Google Scholar 

  • Kato M, Serretti A (2008) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15:473–500

    PubMed  CrossRef  CAS  Google Scholar 

  • Kaufman S, Friedman S (1965) Dopamine-β-hydroxylase. Pharmacol Rev 17:71–100

    PubMed  CAS  Google Scholar 

  • Kaufman J, Birmaher B, Brent D, Rao UMA, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988

    PubMed  CAS  CrossRef  Google Scholar 

  • Kendler K, Karkowski L, Prescott C (1999) Hallucinogen, opiate, sedative and stimulant use and abuse in a population-based sample of female twins. Acta Psychiatr Scand 99:368–376

    PubMed  CAS  CrossRef  Google Scholar 

  • Kendler KS, Karkowski LM, Neale MC, Prescott CA (2000) Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch Gen Psychiatry 57:261–269

    PubMed  CAS  CrossRef  Google Scholar 

  • Kendler KS, Jacobson KC, Prescott CA, Neale MC (2003) Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am J Psychiatry 160:687–695

    PubMed  CrossRef  Google Scholar 

  • Kendler K, Gardner C, Jacobson K, Neale M, Prescott C (2005) Genetic and environmental influences on illicit drug use and tobacco use across birth cohorts. Psychol Med 35:1349–1356

    PubMed  CrossRef  Google Scholar 

  • Kirchner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychology 55:352–358

    CAS  CrossRef  Google Scholar 

  • Kishi T, Kitajima T, Tsunoka T, Okumura T, Okochi T, Kawashima K, Inada T, Ujike H, Yamada M, Uchimura N, Sora I, Iyo M, Ozaki N, Iwata N (2010) PROKR2 is associated with methamphetamine dependence in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 34:1033–1036

    PubMed  CAS  CrossRef  Google Scholar 

  • Kishimoto M, Ujike H, Motohashi Y, Tanaka Y, Okahisa Y, Kotaka T, Harano M, Inada T, Yamada M, Komiyama T, Hori T, Sekine Y, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2008a) The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biol Psychiatry 63:191–196

    PubMed  CAS  CrossRef  Google Scholar 

  • Kishimoto M, Ujike H, Okahisa Y, Kotaka T, Takaki M, Kodama M, Inada T, Yamada M, Uchimura N, Iwata N (2008b) The frizzled 3 gene is associated with methamphetamine psychosis in the Japanese population. Behav Brain Funct 4:37

    PubMed  CrossRef  CAS  Google Scholar 

  • Kobayashi H, Ide S, Hasegawa J, Ujike H, Sekine Y, Ozaki N, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Shen H-W, Ikeda K, Sora I (2004) Study of association between alpha-synuclein gene polymorphism and methamphetamine psychosis/dependence. Ann N Y Acad Sci 1025:325–334

    PubMed  CAS  CrossRef  Google Scholar 

  • Kooij J, Boonstra A, Vermeulen S, Heister A, Burger H, Buitelaar J, Franke B (2008) Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet Part B: Neuropsychiatr Genet 147:201–208

    Google Scholar 

  • Kotaka T, Ujike H, Okahisa Y, Takaki M, Nakata K, Kodama M, Inada T, Yamada M, Uchimura N, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2009) G72 gene is associated with susceptibility to methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry 33:1046–1049

    PubMed  CAS  CrossRef  Google Scholar 

  • Kreek M, Nielsen D, Butelman E, LaForge K (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 8:1450–1457

    PubMed  CAS  CrossRef  Google Scholar 

  • Lachman H, Papolos D, Saito T, Yu Y, Szumlanski C, Weinshilboum R (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenet Genomics 6:243–250

    CAS  Google Scholar 

  • Lamb RJ, Henningfield JE (1994) Human d-amphetamine drug discrimination: methamphetamine and hydromorphone. J Exp Anal Behav 61:169–180

    PubMed  CAS  CrossRef  Google Scholar 

  • Laucht M, Becker K, Frank J, Schmidt MH, Esser G, Treutlein J, Skowronek MH, Schumann G (2008) Genetic variation in dopamine pathways differentially associated with smoking progression in adolescence. J Am Acad Child Adolesc Psychiatry 47:673–681

    PubMed  CrossRef  Google Scholar 

  • Lee Y, Hohoff C, Domschke K, Sand P, Kuhlenbäumer G, Schirmacher A, Freitag C, Meyer J, Stöber G, Franke P (2005) Norepinephrine transporter (NET) promoter and 5′-UTR polymorphisms: association analysis in panic disorder. Neurosci Lett 377:40–43

    PubMed  CAS  CrossRef  Google Scholar 

  • Lee A, Kim SJ, Lott DC, Cook EH, de Wit H, McGough JJ (2006) DRD4-7R mediated response to amphetamine in normal subjects. In: Scientific proceedings of the 53rd annual meeting of the American Academy of child and adolescent Psychiatry, San Diego

    Google Scholar 

  • Levran O, Londono D, O’Hara K, Nielsen D, Peles E, Rotrosen J, Casadonte P, Linzy S, Randesi M, Ott J (2008) Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 7:720–729

    PubMed  CAS  CrossRef  Google Scholar 

  • Li T, Chen C, Hu X, Ball D, Lin S, Chen W, Sham P, Loh E, Murray R, Collier D (2004) Association analysis of the DRD4 and COMT genes in methamphetamine abuse. Am J Med Genet Part B Neuropsychiatr Genet 129:120–124

    CrossRef  Google Scholar 

  • Li D, Sham P, Owen M, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15:2276–2284

    PubMed  CAS  CrossRef  Google Scholar 

  • Lichter J, Barr C, Kennedy J, Van Tol H, Kidd K, Livak K (1993) A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 2:767–773

    PubMed  CAS  CrossRef  Google Scholar 

  • Lin L, Di Stefano E, Schmitz D, Hsu L, Ellis S, Lennard M, Tucker G, Cho A (1997) Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos 25:1059–1064

    PubMed  CAS  Google Scholar 

  • Logan G, Cowan W, Davis K (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychology 10:276–291

    CAS  Google Scholar 

  • Lohoff F, Weller A, Bloch P, Nall A, Ferraro T, Kampman K, Pettinati H, Oslin D, Dackis C, O’Brien C (2008) Association between the catechol-O-methyltransferase Val158Met polymorphism and cocaine dependence. Neuropsychopharmacology 33:3078–3084

    PubMed  CAS  CrossRef  Google Scholar 

  • Lott D, Kim S, Cook E, de Wit H (2005) Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology 30:602–609

    PubMed  CAS  CrossRef  Google Scholar 

  • Lott D, Kim S, Cook E Jr, de Wit H (2006) Serotonin transporter genotype and acute subjective response to amphetamine. Am J Addict 15:327–335

    PubMed  CrossRef  Google Scholar 

  • Madsen MV, Peacock L, Werge T, Andersen MB (2006) Effects of the cannabinoid CB1 receptor agonist CP55, 940 and antagonist SR141716A on d-amphetamine-induced behaviours in Cebus monkeys. J Psychopharmacol (Oxford) 20:622–628

    CAS  CrossRef  Google Scholar 

  • Manor I, Laiba E, Eisenberg J, Meidad S, Lerer E, Israel S, Gritsenko I, Tyano S, Faraone S, Ebstein R (2008) Association between trypotphan hydroxylase 2, performance on a continuance performance test and response to methylphenidate in ADHD participants. Am J Med Genet Part B Neuropsychiatr Genet 147:1501–1508

    Google Scholar 

  • Martin WRSJW, Sapira JD, Jainski DR (1971) Physiologic, subjective and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine and methylphenidate in man. Clin Pharmacol Therap 12:245–258

    CAS  Google Scholar 

  • Matsuzawa D, Hashimoto K, Miyatake R, Shirayama Y, Shimizu E, Maeda K, Suzuki Y, Mashimo Y, Sekine Y, Inada T, Ozaki N, Iwata N, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Hata A, Sawa A, Iyo M (2007) Identification of functional polymorphisms in the promoter region of the human PICK1 gene and their association with methamphetamine psychosis. Am J Psychiatry 164:1105–1114

    PubMed  CrossRef  Google Scholar 

  • Mattay V, Goldberg T, Fera F, Hariri A, Tessitore A, Egan M, Kolachana B, Callicott J, Weinberger D (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100:6186–6191

    PubMed  CAS  CrossRef  Google Scholar 

  • McGough J, McCracken J, Swanson J, Riddle M, Kollins S, Greenhill L, Abikoff H, Davies M, Chuang S, Wigal T, Wigal S, Posner K, Skrobala A, Kastelic E, Ghuman J, Cunningham C, Shigawa S, Moyzis R, Vitiello B (2006) Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 45:1314–1322

    PubMed  CrossRef  Google Scholar 

  • McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    PubMed  CAS  CrossRef  Google Scholar 

  • McNair D, Lorr M, Droppleman L (1971) POMS manual for profile of mood states. EDITS, San Diego

    Google Scholar 

  • Mick E, Neale B, Middleton F, McGough J, Faraone S (2008) Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet 147:1412–1418

    Google Scholar 

  • Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd R, Biederman J, Byrne D, Dechairo B, Guiney A (2010) Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 9:898–905

    CrossRef  Google Scholar 

  • Min W, Li T, Ma X, Li Z, Yu T, Gao D, Zhang B, Yun Y, Sun X (2009) Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology (Berl) 205:409–417

    CAS  CrossRef  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y, Kishimoto M, Okahisa Y, Kotaka T, Harano M, Inada T, Komiyama T, Hori T, Yamada M, Sekine Y, Iwata N, Iyo M, Sora I, Ozaki N, Kuroda S (2008) The glycine transporter 1 gene (GLYT1) is associated with methamphetamine-use disorder. Am J Med Genet B Neuropsychiatr Genet 147B:54–58

    PubMed  CAS  CrossRef  Google Scholar 

  • Munafò M, Yalcin B, Willis-Owen S, Flint J (2008) Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol Psychiatry 63:197–206

    PubMed  CrossRef  CAS  Google Scholar 

  • Nakamura M, Ueno S, Sano A, Tanabe H (2000) The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry 5:32–38

    PubMed  CAS  CrossRef  Google Scholar 

  • Nakamura K, Chen C-K, Sekine Y, Iwata Y, Anitha A, Loh E-W, Takei N, Suzuki A, Kawai M, Takebayashi K, Suzuki K, Minabe Y, Tsuchiya K, Yamada K, Iyo M, Ozaki N, Inada T, Iwata N, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Ball DM, Yoshikawa T, Lin S-K, Mori N (2006) Association analysis of SOD2 variants with methamphetamine psychosis in Japanese and Taiwanese populations. Hum Genet 120:243–252

    PubMed  CAS  CrossRef  Google Scholar 

  • Nakamura K, Sekine Y, Takei N, Iwata Y, Suzuki K, Anitha A, Inada T, Harano M, Komiyama T, Yamada M, Iwata N, Iyo M, Sora I, Ozaki N, Ujike H, Mori N (2009) An association study of monoamine oxidase A (MAOA) gene polymorphism in methamphetamine psychosis. Neurosci Lett 455:120–123

    PubMed  CAS  CrossRef  Google Scholar 

  • Nakatome M, Miyaji A, Mochizuki K, Kishi Y, Isobe I, Matoba R (2009) Association between the GST genetic polymorphisms and methamphetamine abusers in the Japanese population. Leg Med (Tokyo) 11(1):S468–S470

    CrossRef  Google Scholar 

  • Nemoda Z, Angyal N, Tarnok Z, Gadoros J, Sasvari-Szekely M (2009) Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD. Neuropharmacology 57:731–733

    PubMed  CAS  CrossRef  Google Scholar 

  • Neville M, Johnstone E, Walton R (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23. 1. Hum Mutat 23:540–545

    PubMed  CAS  CrossRef  Google Scholar 

  • Nishiyama T, Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Sekine Y, Iyo M, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Inada T, Furukawa T, Ozaki N (2005) Haplotype association between GABAA receptor gamma2 subunit gene (GABRG2) and methamphetamine use disorder. Pharmacogenomics J 5:89–95

    PubMed  CAS  CrossRef  Google Scholar 

  • Nomura A, Ujike H, Tanaka Y, Otani K, Morita Y, Kishimoto M, Morio A, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2006) Genetic variant of prodynorphin gene is risk factor for methamphetamine dependence. Neurosci Lett 400:158–162

    PubMed  CAS  CrossRef  Google Scholar 

  • Nurnberger J, Gershon E, Simmons S, Ebert M, Kessler L, Dibble E, Jimerson S, Brown G, Gold P, Jimerson D (1982) Behavioral, biochemical and neuroendocrine responses to amphetamine in normal twins and 'well-state' bipolar patients. Psychoneuroendocrinology 7:163–176

    PubMed  CAS  CrossRef  Google Scholar 

  • Ohgake S, Hashimoto K, Shimizu E, Koizumi H, Okamura N, Koike K, Matsuzawa D, Sekine Y, Inada T, Ozaki N (2005) Functional polymorphism of the NQO2 gene is associated with methamphetamine psychosis. Addict Bio 10:145–148

    CAS  CrossRef  Google Scholar 

  • Oroszi G, Anton R, O’Malley S, Swift R, Pettinati H, Couper D, Yuan Q, Goldman D (2009) OPRM1 Asn40Asp predicts response to naltrexone treatment: a haplotype-based approach. Alcohol Clin Exp Res 33:383–393

    PubMed  CAS  CrossRef  Google Scholar 

  • Otani K, Ujike H, Sakai A, Okahisa Y, Kotaka T, Inada T, Harano M, Komiyama T, Hori T, Yamada M (2008) Reduced CYP2D6 activity is a negative risk factor for methamphetamine dependence. Neurosci Lett 434:88–92

    PubMed  CAS  CrossRef  Google Scholar 

  • Palmer AA, Verbitsky M, Suresh R, Kamens HM, Reed CL, Li N, Burkhart-Kasch S, McKinnon CS, Belknap JK, Gilliam TC, Phillips TJ (2005) Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mamm Genome 16:291–305

    PubMed  CAS  CrossRef  Google Scholar 

  • Phillips T, Kamens H, Wheeler J (2008) Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 32:707–759

    PubMed  CAS  CrossRef  Google Scholar 

  • Purper-Ouakil D, Wohl M, Orejarena S, Cortese S, Boni C, Asch M, Mouren M, Gorwood P (2008) Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet Part B Neuropsychiatr Genet 147:1425–1430

    Google Scholar 

  • Rausch J (2005) Initial conditions of psychotropic drug response: studies of serotonin transporter long promoter region (5-HTTLPR), serotonin transporter efficiency, cytokine and kinase gene expression relevant to depression and antidepressant outcome. Prog Neuropsychopharmacol Biol Psychiatry 29:1046–1061

    PubMed  CAS  CrossRef  Google Scholar 

  • Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Google Scholar 

  • Risch N, Herrell R, Lehner T, Liang K, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas K (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301:2462–2471

    PubMed  CAS  CrossRef  Google Scholar 

  • Rodriguez-Jimenez R, Ãvila C, Ponce G, Ibanez M, Rubio G, Jimenez-Arriero M, Ampuero I, Ramos J, Hoenicka J, Palomo T (2006) The TaqIA polymorphism linked to the DRD2 gene is related to lower attention and less inhibitory control in alcoholic patients. Eur Psychiatry 21:66–69

    PubMed  CAS  CrossRef  Google Scholar 

  • Rohde L, Roman T, Szobot C, Cunha R, Hutz M, Biederman J (2003) Dopamine transporter gene, response to methylphenidate and cerebral blood flow in attention-deficit/hyperactivity disorder: a pilot study. Synapse 48:87–89

    PubMed  CAS  CrossRef  Google Scholar 

  • Roman T, Schmitz M, Polanczyk G, Eizirik M, Rohde L, Hutz M (2001) Attention-deficit hyperactivity disorder: a study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am J Med Genet Part B: Neuropsychiatr Genet 105:471–478

    CAS  CrossRef  Google Scholar 

  • Rosvold HE, Mirsky AF, Sarason I, Bransome ED Jr, Beck LH (1956) A continuous performance test of brain damage. J Consult Psychology 20:343–350

    CrossRef  Google Scholar 

  • Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279

    PubMed  CAS  CrossRef  Google Scholar 

  • Seiden L, Sabol K, Ricaurte G (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–676

    PubMed  CAS  CrossRef  Google Scholar 

  • Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100

    PubMed  CAS  CrossRef  Google Scholar 

  • Šerý O, Vojtová V, Zvolský P (2001) The association study of DRD2, ACE and AGT gene polymorphisms and metamphetamine dependence. Physiol Res 50:43–50

    PubMed  Google Scholar 

  • Šerý O, Přikryl R, Častulík L, Šťastný F (2010) A118G polymorphism of OPRM1 gene is associated with schizophrenia. J Mol Neurosci 41:219–222

    PubMed  CrossRef  CAS  Google Scholar 

  • Sevak RJ, Stoops WW, Hays LR, Rush CR (2009) Discriminative stimulus and subject-rated effects of methamphetamine, d-amphetamine, methylphenidate, and triazolam in methamphetamine-trained humans. J Pharmacol Exp Ther 328:1007–1018

    PubMed  CAS  CrossRef  Google Scholar 

  • Shi J, Gershon E, Liu C (2008) Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res 104:96–107

    PubMed  CrossRef  Google Scholar 

  • Shugart Y, Chen L, Day I, Lewis S, Timpson N, Yuan W, Abdollahi M, Ring S, Ebrahim S, Golding J (2009) Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur J Hum Genet 17:1050–1055

    PubMed  CAS  CrossRef  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci 15:2045–2050

    Google Scholar 

  • Stein M, Waldman I, Sarampote C, Seymour K, Robb A, Conlon C, Kim S, Cook E (2005) Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 30:1374–1382

    PubMed  CAS  CrossRef  Google Scholar 

  • Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychology 18:643–662

    CrossRef  Google Scholar 

  • Sulzer D, Sonders M, Poulsen N, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    PubMed  CAS  CrossRef  Google Scholar 

  • Suzuki A, Nakamura K, Sekine Y, Minabe Y, Takei N, Suzuki K et al (2006) An association study between catechol-O-methyl transferase gene polymorphism and methamphetamine psychotic disorder. Psychiatr Genet 16:133–138

    PubMed  CrossRef  Google Scholar 

  • Thakur G, Grizenko N, Sengupta S (2010) The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD. BMC Psychiatry 10:50

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsuang MT, Lyons MJ, Eisen SA, Goldberg J, True W, Lin N, Meyer JM, Toomey R, Faraone SV, Eaves L (1996) Genetic influences on DSM-III-R drug abuse and dependence: a study of 3,372 twin pairs. Am J Med Genet 67:473–477

    PubMed  CAS  CrossRef  Google Scholar 

  • Tsunoka T, Kishi T, Kitajima T, Okochi T, Okumura T, Yamanouchi Y, Kinoshita Y, Kawashima K, Naitoh H, Inada T, Ujike H, Yamada M, Uchimura N, Sora I, Iyo M, Ozaki N, Iwata N (2010) Association analysis of GRM2 and HTR2A with methamphetamine-induced psychosis and schizophrenia in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 34:639–644

    PubMed  CAS  CrossRef  Google Scholar 

  • Tunbridge E, Harrison P, Weinberger D (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151

    PubMed  CAS  CrossRef  Google Scholar 

  • Uhl G (2006) Molecular genetics of addiction vulnerability. NeuroRx 3:295–301

    PubMed  CrossRef  Google Scholar 

  • Uhl G, Li S, Takahashi N, Itokawa K, Lin Z, Hazama M, Sora I (2000) The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins. FASEB J 14:2459–2465

    PubMed  CAS  CrossRef  Google Scholar 

  • Uhl GR, Drgon T, Liu Q-R, Johnson C, Walther D, Komiyama T, Harano M, Sekine Y, Inada T, Ozaki N, Iyo M, Iwata N, Yamada M, Sora I, Chen C-K, Liu H-C, Ujike H, Lin S-K (2008) Genome-wide association for methamphetamine dependence: convergent results from 2 samples. Arch Gen Psychiatry 65:345–355

    PubMed  CAS  CrossRef  Google Scholar 

  • Ujike H, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, Sora I, Iyo M, Katsu T, Nomura A, Nakata K, Ozaki N (2003) Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J 3:242–247

    PubMed  CAS  CrossRef  Google Scholar 

  • Ujike H, Katsu T, Okahisa Y, Takaki M (2009) Genetic variants of D2 but not D3 or D4 dopamine receptor gene are associated with rapid onset and poor prognosis of methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry 33:625–629

    PubMed  CAS  CrossRef  Google Scholar 

  • van de Giessen E, de Win M, Tanck M, van den Brink W, Baas F, Booij J (2009) Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med 50:4552

    Google Scholar 

  • Van Dyck C, Malison R, Jacobsen L, Seibyl J, Staley J, Laruelle M, Baldwin R, Innis R, Gelernter J (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46:745–751

    PubMed  Google Scholar 

  • Vandenbergh D, Persico A, Hawkins A, Griffin C, Li X, Jabs E, Uhl G (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15. 3 and displays a VNTR. Genomics 14:1104–1106

    PubMed  CAS  CrossRef  Google Scholar 

  • Vandenbergh DJ, Rodriguez LA, Miller IT, Uhl GR, Lachman HM (1997) High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers. Am J Med Genet 74:439–442

    PubMed  CAS  CrossRef  Google Scholar 

  • Veenstra-VanderWeele J, Qaadir A, Palmer A, Cook E, De Wit H (2006) Association between the casein kinase 1 epsilon gene region and subjective response to D-amphetamine. Neuropsychopharmacology 31:1056–1063

    PubMed  CAS  CrossRef  Google Scholar 

  • Warwick JM (2004) Imaging of brain function using SPECT. Metab Brain Dis 19:113–123

    PubMed  CrossRef  Google Scholar 

  • Wechsler D (1958) The measurement and appraisal of adult intelligence. Acad Med 33:706

    Google Scholar 

  • Yang A, Palmer A, de Wit H (2010) Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl) 211:245–257

    Google Scholar 

  • Yu Y, Kranzler HR, Panhuysen C, Weiss RD, Poling J, Farrer LA, Gelernter J (2008) Substance dependence low-density whole genome association study in two distinct American populations. Hum Genet 123:495–506

    PubMed  CAS  CrossRef  Google Scholar 

  • Zabetian C, Anderson G, Buxbaum S, Elston R, Ichinose H, Nagatsu T, Kim K, Kim C, Malison R, Gelernter J (2001) A quantitative-trait analysis of human plasma-dopamine [beta]-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Human Genet 68:515–522

    CAS  CrossRef  Google Scholar 

  • Zabetian C, Buxbaum S, Elston R, Köhnke M, Anderson G, Gelernter J, Cubells J (2003) The structure of linkage disequilibrium at the DBH locus strongly influences the magnitude of association between diallelic markers and plasma dopamine [beta]-hydroxylase activity. Am J Human Genet 72:1389–1400

    CAS  CrossRef  Google Scholar 

  • Zhang X, Beaulieu J, Gainetdinov R, Caron M (2006) Functional polymorphisms of the brain serotonin synthesizing enzyme tryptophan hydroxylase-2. Cell Mol Life Sci 63:6–11

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, Lee M, Xiao T, Papp A, Wang D (2007) Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Nat Acad Sci 104:20552–20557

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DA02812, DA027545 and DA021336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham A. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hart, A.B., de Wit, H., Palmer, A.A. (2011). Genetic Factors Modulating the Response to Stimulant Drugs in Humans. In: Cryan, J., Reif, A. (eds) Behavioral Neurogenetics. Current Topics in Behavioral Neurosciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_187

Download citation