Skip to main content

Using Zebrafish to Unravel the Genetics of Complex Brain Disorders

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 12))

Abstract

The zebrafish has been prominently utilized in developmental biology for the past three decades and numerous genetic tools have been developed for it. Due to the accumulated genetic knowledge the zebrafish has now been considered an excellent research tool in other disciplines of biology too, including behavioral neuroscience and behavior genetics. Given the complexity of the vertebrate brain in general and the large number of human brain disorders whose mechanisms remain mainly unmapped in particular, there is a substantial need for appropriate laboratory research organisms that may be utilized to model such diseases and facilitate the analysis of their mechanisms. The zebrafish may have a bright future in this research field. It offers a compromise between system complexity (it is a vertebrate similar in many ways to our own species) and practical simplicity (it is small, easy to keep, and it is prolific). These features have made zebrafish an excellent choice, for example, for large scale mutation and drug screening. Such approaches may have a chance to tackle the potentially large number of molecular targets and mechanisms involved in complex brain disorders. However, although promising, the zebrafish is admittedly a novel research tool and only few empirical examples exist to support this claim. In this chapter, first I briefly review some of the rapidly evolving genetic methods available for zebrafish. Second, I discuss some promising examples for how zebrafish have been used to model and analyze molecular mechanisms of complex brain disorders. Last, I present some recently developed zebrafish behavioral paradigms that may have relevance for a spectrum of complex human brain disorders including those associated with abnormalities of learning and memory, fear and anxiety, and social behavior. Although at this point co-application of the genetics and behavioral approaches is rare with zebrafish, I argue that the rapid accumulation of knowledge in both of these disciplines will make zebrafish a prominent research tool for the genetic analysis of complex brain disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Imari L, Gerlai R (2008) Conspecifics as reward in associative learning tasks for zebrafish (Danio rerio). Behav Brain Res 189:216–219

    Google Scholar 

  • Alsop D, Vijayan MM (2008) Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 294:R711–R719

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam A, Hopkins N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22:473–478

    Article  PubMed  CAS  Google Scholar 

  • Bailey CH, Kandel ER (2008) Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia. Prog Brain Res 169:179–198

    Article  PubMed  CAS  Google Scholar 

  • Bandmann O, Burton EA (2010) Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 40:58–65

    Article  PubMed  CAS  Google Scholar 

  • Bass SLS, Gerlai R (2008) Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186:107–117

    Article  PubMed  Google Scholar 

  • Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6:69–77

    Article  PubMed  CAS  Google Scholar 

  • Blaser R, Gerlai R (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Meth 38:456–469

    Article  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS et al (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  PubMed  CAS  Google Scholar 

  • Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee D, Gerlai R (2009) High precision liquid chromatography analysis of dopaminergic and serotoninergic responses to acute alcohol exposure in zebrafish. Behav Brain Res 200:208–213

    Article  PubMed  CAS  Google Scholar 

  • Chen E, Ekker SC (2004) Zebrafish as a genomics research model. Curr Pharm Biotechnol 5:409–413

    Article  PubMed  CAS  Google Scholar 

  • Cohen NJ, Poldrack RA, Eichenbaum H (1997) Memory for items and memory for relations in the procedural/declarative memory framework. Memory 5:131–178

    Google Scholar 

  • Denver RJ (2009) Structural and functional evolution of vertebrate neuroendocrine stress systems. Ann N Y Acad Sci 1163:1–16

    Article  PubMed  CAS  Google Scholar 

  • Drerup CM, Wiora HM, Topczewski J, Morris JA (2009) Disc1 regulates foxd3 and sox10 expression, affecting neural crest migration and differentiation. Development 136:2623–2632

    Article  PubMed  CAS  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss, SCF, Malicki J, Stemple DL, Stainier DYR, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    PubMed  CAS  Google Scholar 

  • Ekker SC (2008) Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5:121–123

    Article  PubMed  CAS  Google Scholar 

  • Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4:21–40

    Google Scholar 

  • Fan L, Collodi P (2006) Zebrafish embryonic stem cells. Methods Enzymol 418:64–77

    Article  PubMed  CAS  Google Scholar 

  • Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E et al (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA 107:7863–7868

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (2010) Zebrafish antipredatory responses: a future for translational research? Behav Brain Res (in press)

    Google Scholar 

  • Gerlai R (2002) Phenomics: fiction or the future? Trends Neurosci 25:506–509

    Article  PubMed  Google Scholar 

  • Gerlai J, Gerlai R (2003) Autism: a large unmet medical need and a complex research problem. Physiol Behav 79:461–470

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Clayton NS (1999) Analysing hippocampal function in transgenic mice: an ethological perspective. Trends Neurosci 22:47–51

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Chatterjee D, Pereira T, Sawashima T, Krishnannair R (2009a) Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav 8:586–599

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Fernandes Y, Pereira T (2009b) Zebrafish (Danio rerio) responds to the animated image of a predator: towards the development of an automated aversive task. Behav Brain Res 201:318–324

    Article  PubMed  Google Scholar 

  • Gerlai R, Wojtowicz JM, Marks A, Roder J (1995) Over-expression of a calcium binding protein, S100ß, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem 2:26–39

    Article  PubMed  CAS  Google Scholar 

  • Giles AC, Rankin CH (2009) Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem 92:139–146

    Article  PubMed  Google Scholar 

  • Gómez-Laplaza LM, Gerlai R (2010) Latent Learning in Zebrafish (Danio rerio). Behav Brain Res 208:509–515

    Article  PubMed  Google Scholar 

  • Haffter P, Nüsslein-Volhard C (1996) Large scale genetics in a small vertebrate, the zebrafish. Int J Dev Biol 40:221–227

    PubMed  CAS  Google Scholar 

  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, Van Eeden FJM, Jiang YJ, Heisenberg CP, Kelsh RN, Furutaniseiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C (1996) The identification of genes with unique and essential function in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  • Huang CJ, Jou TS, Ho YL, Lee WH, Jeng YT, Hsieh FJ, Tsai HJ (2005) Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev Dyn 233:1294–1303

    Article  PubMed  CAS  Google Scholar 

  • Joshi P, Liang JO, Dimonte K, Sullivan J, Pimplikar SW (2009) Amyloid precursor protein is required for convergent-extension movements during zebrafish development. Dev Biol 335:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Radhakrishnan UP, Rajpurohit SK, Kulkarni V, Jagadeeswaran P (2010) Vivo-Morpholino knockdown of alpha IIb: a novel approach to inhibit thrombocyte function in adult zebrafish. Blood Cells Mol Dis 44:169–174

    Article  PubMed  CAS  Google Scholar 

  • Knapik EW (2000) ENU mutagenesis in zebrafish—from genes to complex diseases. Mamm Genome 11:511–519

    Article  PubMed  CAS  Google Scholar 

  • Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT (2005) Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 102:6068–6073

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Huang H, Ju B, Yang Z, Lin S (2002) Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotech 20:795–799

    CAS  Google Scholar 

  • Lekven AC, Helde KA, Thorpe CJ, Rooke R, Moon RT (2000) Reverse genetics in zebrafish. Physiol Genomics 2:37–48

    PubMed  CAS  Google Scholar 

  • Mathur P, Guo S (2010) Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiol Dis 40:66–72

    Article  PubMed  CAS  Google Scholar 

  • McEchron MD, Disterhoft JF (1999) Hippocampal encoding of non-spatial trace conditioning. Hippocampus 9:385–396

    Article  PubMed  CAS  Google Scholar 

  • Miller N, Gerlai R (2008) Oscillations in shoal cohesion in zebrafish (Danio rerio). Behav. Brain Res 193:148–151

    Google Scholar 

  • Miller N, Gerlai R (2007) Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav. Brain Res 184:157–166

    Article  Google Scholar 

  • Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7:454–459

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Razak Z, Mo K, Westwood JT, Gerlai R (2010) Chronic alcohol exposure induced gene expression changes in the zebrafish brain. Genes Brain Behav (in press)

    Google Scholar 

  • Parra KV, Adrian JC Jr, Gerlai R (2009) The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio). Behav. Brain Res 205:336–341

    CAS  Google Scholar 

  • Paquet D et al (2009) A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119:1382–1395

    Article  PubMed  CAS  Google Scholar 

  • Pather S, Gerlai R (2009) Shuttle box learning in zebrafish. Behav Brain Res 196:323–327

    Google Scholar 

  • Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2:956–966

    Article  PubMed  CAS  Google Scholar 

  • Pekhletski R, Gerlai R, Overstreet L, Huang X-P, Agopyan N, Slater NT, Roder J, Hampson DR (1996) Impaired motor learning and short-term synaptic plasticity in mice lacking mGluR4 metabotropic glutamate receptors. J Neurosci 16:6364–6373

    PubMed  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  PubMed  CAS  Google Scholar 

  • Reimers MJ, Hahn ME, Tanguay RL (2004) Two zebrafi sh alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics. J Biol Chem; 279:38303–38312

    Article  PubMed  CAS  Google Scholar 

  • Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogen Genomics 17:237–253

    Article  CAS  Google Scholar 

  • Salas C, Rodríguez F, Vargas JP, Durán E, Torres B (1996) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110:965–980

    Article  PubMed  CAS  Google Scholar 

  • Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4:323–326

    PubMed  CAS  Google Scholar 

  • Sison M, Gerlai R (2010) Associative learning in zebrafish (Danio rerio) in the plus maze. Behav Brain Res 207:99–104

    Article  PubMed  Google Scholar 

  • Sison M, Cawker J, Buske C, Gerlai R (2006) Fishing for genes of vertebrate behavior: zebra fish as an upcoming model system. Lab Animal 35:33–39

    Article  PubMed  Google Scholar 

  • Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC (2006) Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 123:513–529

    Article  PubMed  CAS  Google Scholar 

  • Skromne I, Prince VE (2008) Current perspectives in zebrafish reverse genetics: moving forward. Dev Dyn 237:861–882

    Article  PubMed  Google Scholar 

  • Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2:879–890

    Article  PubMed  CAS  Google Scholar 

  • Speedie N, Gerlai R (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio) Behav. Brain Res 188:168–177

    CAS  Google Scholar 

  • Sweatt JD (2010) Mechanisms of memory. 2nd edn, Elsevier, Amsterdam, p 343

    Google Scholar 

  • Tong C, Li P, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467:211–213

    Article  PubMed  CAS  Google Scholar 

  • Tropepe V, Sive HL (2003) Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav 2:268–281

    Article  PubMed  CAS  Google Scholar 

  • Vargas JP, López JC, Portavella M (2009) What are the functions of fish brain pallium? Brain Res Bull 79:436–440

    Article  PubMed  Google Scholar 

  • Weisberg RB (2009) Overview of generalized anxiety disorder: epidemiology, presentation, and course. J Clin Psychiatry 70(Suppl 2):4–9

    Article  PubMed  Google Scholar 

  • Xia W (2010) Exploring Alzheimer’s disease in zebrafish. J Alzheimer’s Dis 20:981–990

    CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH/NIAAA (USA) and NSERC (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Gerlai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerlai, R. (2011). Using Zebrafish to Unravel the Genetics of Complex Brain Disorders. In: Cryan, J., Reif, A. (eds) Behavioral Neurogenetics. Current Topics in Behavioral Neurosciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_180

Download citation

Publish with us

Policies and ethics