Skip to main content

Rare Genomic Deletions and Duplications and their Role in Neurodevelopmental Disorders

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 12)

Abstract

Copy number variations (CNVs) are deletions and duplications of DNA sequences that vary in length from a few base pairs to several million. While these structural variations are often benign, they can disrupt vital biological functions and result in disease. CNVs have been identified as causal in a number of neurodevelopmental disorders (NDs), including but not limited to, autism, attention-deficit/hyperactivity disorder (ADHD), and schizophrenia. Here, we examine CNV research into these disorders, and discuss relevant methodological considerations. By identifying specific rare deletions and duplications, we may be better able to determine the etiology of neurodevelopmental disorders and identify appropriate treatments.

Keywords

  • Copy number variation
  • Neurodevelopmental disorder
  • Autism
  • Schizophrenia
  • Attention deficit hyperactivity disorder

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7854_2011_179
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-27859-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1

References

  • Arajärvi R et al (2005) Prevalence and diagnosis of schizophrenia based on register, case record and interview data in an isolated Finnish birth cohort born 1940–1969. Soc Psychiatry Psychiatr Epidemiol 40:808–816

    PubMed  CrossRef  Google Scholar 

  • Britten RJ, Davidson EH (1976) Studies on nucleic acid reassociation kinetics: empirical equations describing DNA reassociation. Proc Natl Acad Sci USA 73:415–419

    PubMed  CrossRef  CAS  Google Scholar 

  • Chamberlain SJ, Lalande M (2010) Neurodevelopmental disorders involving genomic imprinting at human chromosome 15q11-q13. Neurobiol Dis 39(1):13–20

    PubMed  CrossRef  CAS  Google Scholar 

  • Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J; Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature, 464(7289):704–12. Epub 2009 Oct 7

    Google Scholar 

  • Crespi B, Stead P, Elliot M (2010) Evolution in health and medicine Sackler colloquium: Comparative genomics of autism and schizophrenia. Proc Natl Acad Sci USA, 107 Suppl 1:1736–41. Epub 2009 Dec 1

    Google Scholar 

  • Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H, Bucan M, Maris JM, Wang K (2008) Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res, 36(19):e126. Epub 2008 Sep 10

    Google Scholar 

  • Dobyns WB, Reiner O, Carrozzo R, Ledbetter DH (1993) Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA 270:2838–2842

    PubMed  CrossRef  CAS  Google Scholar 

  • Elia J, Devoto M (2007) ADHD genetics: 2007 update. Curr Psychiatry Rep. 9:434–439

    PubMed  CrossRef  Google Scholar 

  • Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, D’arcy M, deBerardinis R, Frackelton E, Kim C, Lantieri F, Muganga BM, Wang L, Takeda T, Rappaport EF, Grant SF, Berrettini W, Devoto M, Shaikh TH, Hakonarson H, White PS (2010) Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry. 15(6):637–46. Epub 2009 Jun 23

    Google Scholar 

  • Fernandez T et al (2008) Disruption of Contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am. J. Hum. Genet. 82:1385

    PubMed  CrossRef  CAS  Google Scholar 

  • Fishman I, Yam A, Bellugi U, Lincoln A, Mills D (2010) Contrasting patterns of language-associated brain activity in autism and Williams syndrome. Social Cognitive and Affective Neuroscience, Aug 27. [Epub ahead of print, doi:10.1093/scan/nsq075]

  • Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    PubMed  CrossRef  CAS  Google Scholar 

  • Francke U (1999) Williams syndrome: genes and mechanisms. Hum Mol Genet 8:1947–1954

    PubMed  CrossRef  CAS  Google Scholar 

  • Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA et al (2008) CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol. Psychiatry 13:261–266

    PubMed  CrossRef  CAS  Google Scholar 

  • Garbern JY (2006) Pelizaeus–Merzbacher disease: Genetic and cellular pathogenesis. Cell Mol Life Sci: CMLS 64(1):50–65

    CrossRef  Google Scholar 

  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Current Opin Neurobiol 17(1):103–111

    CrossRef  CAS  Google Scholar 

  • Gillberg C, Steffenburg S, Wahlström J, Gillberg IC, Sjöstedt A, Martinsson T, Liedgren S, Eeg-Olofsson O (1991) Autism associated with marker chromosome. J Am Acad Child Adolesc Psychiatry 30(3):489–494

    PubMed  CrossRef  CAS  Google Scholar 

  • Glessner JT, Hakonarson H (2009) Common variants in polygenic schizophrenia. Genome Biol, 10(9):236. Epub 2009 Sep 29

    Google Scholar 

  • Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C, Bradfield JP, Zhang H, Sleiman PM, Flory JH, Imielinski M, Frackelton EC, Chiavacci R, Thomas KA, Garris M, Otieno FG, Davidson M, Weiser M, Reichenberg A, Davis KL, Friedman JI, Cappola TP, Margulies KB, Rader DJ, Grant SF, Buxbaum JD, Gur RE, Hakonarson H (2010) Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA, 107(23):10584–10589. Epub 2010 May 20

    Google Scholar 

  • Glessner JT, Wang K, Cai G, Korvatska O, Kim CE et al (2009) Autism genomewide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–573

    PubMed  CrossRef  CAS  Google Scholar 

  • Greenberg F, Guzzetta V, Montes de Oca-Luna R, Magenis RE, Smith AC, Richter SF, Kondo I, Dobyns WB, Patel PI, Lupski JR (1991) Molecular analysis of the Smith-Magenis syndrome: a possible contiguous-gene syndrome associated with del(17)(p11.2). Am. J. Hum. Genet, 49:1207–1218

    Google Scholar 

  • Inoue K, Osaka H, Thurston VC, Clarke JTR, Yoneyama A, Rosenbarker L, Bird TD, Hodes ME, Shaffer LG, Lupski JR (2002) Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am. J. Hum. Genet 71:838–853

    PubMed  CrossRef  Google Scholar 

  • International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256):748–752. Epub 2009 Jul 1

    Google Scholar 

  • International Schizophrenia Consortium, Stone JL, O’Donovan MC, Gurling H, Kirov GK et al (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241

    CrossRef  Google Scholar 

  • Korn JM et al (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 40:1253–1260

    PubMed  CrossRef  CAS  Google Scholar 

  • Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11(6):402–416

    PubMed  CrossRef  CAS  Google Scholar 

  • Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tüzün E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA, Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn L, Olson MV, Kaul R, Smith DR, Eichler EE (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453(7191):56–64

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim HG et al (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am. J. Hum. Genet 82:199–207

    PubMed  CrossRef  CAS  Google Scholar 

  • Kirov G, Gumus D, Chen W, Norton N, Georgieva L et al (2007) Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum. Mol. Genet. 17(3):458–465

    PubMed  CrossRef  Google Scholar 

  • Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15(1):70–73

    PubMed  CrossRef  CAS  Google Scholar 

  • Lee JA, Carvalho CM, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131(7):1235–1247

    PubMed  CrossRef  CAS  Google Scholar 

  • Lejeune J, Turpin R, Gautier M (1959) Le mongolisme: premier exemple d’aberration autosomique humaine. Ann Genet 1:41

    Google Scholar 

  • Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV et al (2007) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. PNAS 104:19942–19947

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu H, Abecasis GR, Heath SC, Knowles A, Demars S et al (2002) Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 99:16859–16864

    PubMed  CrossRef  CAS  Google Scholar 

  • Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417–422

    PubMed  CrossRef  CAS  Google Scholar 

  • Marioni JC, Thorne NP, Valsesia A, Fitzgerald T, Redon R, Fiegler H, Andrews TD, Stranger BE, Lynch AG, Dermitzakis ET, Carter NP, Tavaré S, Hurles ME (2007) Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization. Genome Biol 8(10):R228

    PubMed  CrossRef  Google Scholar 

  • Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE, Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82(2):477–488. Epub 2008 Jan 17

    Google Scholar 

  • Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15(1):74–77

    PubMed  CrossRef  CAS  Google Scholar 

  • McDermid HE, Morrow BE (2002) Genomic disorders on 22q11. Am J Hum Genet 70:1077–1088

    PubMed  CrossRef  CAS  Google Scholar 

  • Moore JK, Haber JE (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2164–2173

    PubMed  CAS  Google Scholar 

  • Need AC, Ge D, Weale ME, Maia J, Feng S et al (2009) A genome-wide investigation of SNPs and CNVs in Schizophrenia. PLoS Genet 5(2):e1000373

    PubMed  CrossRef  Google Scholar 

  • Newschaffer CJ et al (2007) The epidemiology of autism spectrum disorders. Annu Rev Public Health 28:235–258

    PubMed  CrossRef  Google Scholar 

  • Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S et al (2006) Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 103:7729–7734

    PubMed  CrossRef  CAS  Google Scholar 

  • Pelizaeus F (1885) Über eine eigenthümliche Form spastischer Lähmung mit Cerebralerschinungen auf hereditärer Grundlage (Multiple Sklerose). Arch. Psychiatr. Nervenkr,16:698–710

    Google Scholar 

  • Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bölte S, Bolton PF, et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304):368–372. Epub 2010 Jun 9

    Google Scholar 

  • Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 164(6):942–948

    PubMed  CrossRef  Google Scholar 

  • Portnoï MF (2009) Microduplication 22q11.2: a new chromosomal syndrome. Eur J Med Genet 52(2–3):88–93

    PubMed  CrossRef  Google Scholar 

  • Ramocki MB, Tavyev YJ, Peters SU (2010) The MECP2 duplication syndrome. Am J Med Genet Part A 152A(5):1079–1088

    PubMed  CrossRef  Google Scholar 

  • Rodriguez-Jato S, Nicholls RD, Driscoll DJ, Yang TP (2005) Characterization of cis- and trans-acting elements in the imprinted human SNURF-SNRPN locus. Nucleic Acids Res 33(15):4740–4753

    PubMed  CrossRef  CAS  Google Scholar 

  • Roohi J et al (2008) Disruption of contactin 4 in three subjects with autism spectrum disorder. J Med Genet 46:176–182

    PubMed  CrossRef  Google Scholar 

  • Schiff M, Delahaye A, Andrieux J, Sanlaville D et al (2010) Further delineation of the 17p13.3 microdeletion involving YWHAE but distal to PAFAH1B1: Four additional patients. Eur J Med Genet 53(5):303–308

    PubMed  CrossRef  Google Scholar 

  • Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19(3):212–219

    PubMed  CrossRef  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M (2007) Strong association of de novo copy number mutations with autism. Sci 316:445–449

    CrossRef  CAS  Google Scholar 

  • Shaikh TH, Kurahashi H, Emanuel BS (2001) Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet Med 3(1):6–13

    PubMed  CrossRef  CAS  Google Scholar 

  • Shashi V, Keshavan MS, Howard TD, Berry MN, Basehore MJ, Lewandowski E, Kwapil TR (2006) Cognitive correlates of a functional COMT polymorphism in children with 22q11.2 deletion syndrome. Clin Genet 69:234–238

    PubMed  CrossRef  CAS  Google Scholar 

  • Shi YY, He G, Zhang Z, Tang W, Zhang J Jr et al (2008) A study of rare structural variants in schizophrenia patients and normal controls from Chinese Han population. Mol Psychiatry 13:911–913

    PubMed  CrossRef  CAS  Google Scholar 

  • Skuse DH (2007) Rethinking the nature of genetic vulnerability to autistic spectrum disorders. Trends in Genetics 23(8):387–395

    PubMed  CrossRef  CAS  Google Scholar 

  • Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49

    PubMed  CrossRef  CAS  Google Scholar 

  • Stefansson H, Rujescu D, Cichon S, Pietiläinen OP, Ingason A et al (2008) Large recurrent microdeletions associated with Schizophrenia. Nature 455:232–236

    PubMed  CrossRef  CAS  Google Scholar 

  • Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB et al (2008) Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia. Science 320:539–543

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang K, Zhang H, Ma D, Bucan M, Glessner JT et al (2009) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459:528–533

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang K et al (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674

    PubMed  CrossRef  CAS  Google Scholar 

  • Weiss LA, Arking DE (2009) Gene Discovery Project of Johns Hopkins & the Autism Consortium, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals novel loci for autism. Nature, 461(7265):802–808

    Google Scholar 

  • Weiss LA et al (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358:667–675

    PubMed  CrossRef  CAS  Google Scholar 

  • Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA et al (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 40:880–885

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakon Hakonarson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glessner, J.T., Connolly, J.J., Hakonarson, H. (2011). Rare Genomic Deletions and Duplications and their Role in Neurodevelopmental Disorders. In: Cryan, J., Reif, A. (eds) Behavioral Neurogenetics. Current Topics in Behavioral Neurosciences, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_179

Download citation