Skip to main content

Abstract

Epigenetics is the field of research that examines alterations in gene expression caused by mechanisms other than changes in DNA sequence. ADHD is highly heritable; however, epigenetics are considered relevant in potentially explaining the variance not accounted for by genetic influence. In this chapter, some of the well-known processes of epigenetics, such as chromosome organization, DNA methylation, and effects of transcriptional factors are reviewed along with studies examining the role of these processes in the pathophysiology of ADHD. Potential epigenetic factors conferring risk for ADHD at various developmental stages, such as alcohol, tobacco, toxins, medications, and psychosocial stressor are discussed. Animal studies investigating ADHD medications and changes in CNS Gene/Protein Expression are also explored since they provide insight into the neuronal pathways involved in ADHD pathophysiology. The current limited data suggest that identification of the epigenetic processes involved in ADHD is extremely important and may lead to potential interventions that may be applied to modify the expression of deleterious, as well as protective, genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADHD:

Attention deficit hyperactivity disorder

alpha2A-AR:

α2A-Adrenoceptor

ApT:

Adenine-thymine base pair

CD:

Conduct disorder

CpG:

Cytosine-guanine base pair

CREB:

Cyclic nucleotide response element binding protein

DAT:

Dopamine transporter

DES:

Diethylstilbestrol

DZ:

Dizygotic

GATA-1:

Erythroid transcription factor

GC:

Guanine-cytosine

hERG:

Human Ether-a-go-go

IEG:

Immediate early gene

IMAGE:

International Multicentre ADHD Genetics Project

MAOB:

Monoamine oxidase-B

MPH:

Methylphenidate

MSN-D1′:

Medium sized spiny neurons expressing dopamine D1 receptors

MZ:

Monozygotic

ODD:

Oppositional defiant disorder

VNTR:

Variable number tandem repeat

References

  • Adriani W, Leo D, Greco D, Rea M, di Porzio U, Laviola G, Perrone-Capano C (2006a) Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression. Neuropsychopharmacology 31:1946–1956

    PubMed  CAS  Google Scholar 

  • Adriani W, Leo D, Guarino M, Natoli A, Di Consiglio E, De Angelis G, Traina E, Testai E, Perrone-Capano C, Laviola G (2006b) Short-term effects of adolescent methylphenidate exposure on brain striatal gene expression and sexual/endocrine parameters in male rats. Ann N Y Acad Sci 1074:52–73

    PubMed  CAS  Google Scholar 

  • Altink ME, Arias-Vasquez A, Franke B, Slaats-Willemse DI, Buschgens CJ, Rommelse NN, Fliers EA, Anney R, Brookes KJ, Chen W, Gill M, Mulligan A, Sonuga-Barke E, Thompson M, Sergeant JA, Faraone SV, Asherson P, Buitelaar JK (2008) The dopamine receptor D4 7-repeat allele and prenatal smoking in ADHD-affected children and their unaffected siblings: no gene-environment interaction. J Child Psychol Psychiatry 49:1053–1060

    PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    PubMed  CAS  Google Scholar 

  • Andres RL, Day MC (2000) Perinatal complications associated with maternal tobacco use. Semin Neonatol 5:231–241

    PubMed  CAS  Google Scholar 

  • Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM (2007) Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev Biol 7:53

    PubMed  Google Scholar 

  • Anney RJ, Hawi Z, Sheehan K, Mulligan A, Pinto C, Brookes KJ, Xu X, Zhou K, Franke B, Buitelaar J, Vermeulen SH, Banaschewski T, Sonuga-Barke E, Ebstein R, Manor I, Miranda A, Mulas F, Oades RD, Roeyers H, Rommelse N, Rothenberger A, Sergeant J, Steinhausen HC, Taylor E, Thompson M, Asherson P, Faraone SV, Gill M (2008) Parent of origin effects in attention/deficit hyperactivity disorder (ADHD): analysis of data from the international multicenter ADHD genetics (IMAGE) program. Am J Med Genet B Neuropsychiatr Genet 147B:1495–1500

    PubMed  CAS  Google Scholar 

  • Asbury K, Dunn JF, Plomin R (2006) Birthweight-discordance and differences in early parenting relate to monozygotic twin differences in behaviour problems and academic achievement at age 7. Dev Sci 9:F22–F31

    PubMed  Google Scholar 

  • Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251

    PubMed  Google Scholar 

  • Badiani A, Oates MM, Day HE, Watson SJ, Akil H, Robinson TE (1998) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J Neurosci 18:10579–10593

    PubMed  CAS  Google Scholar 

  • Banerjee E, Sinha S, Chatterjee A, Gangopadhyay PK, Singh M, Nandagopal K (2006) A family-based study of Indian subjects from Kolkata reveals allelic association of the serotonin transporter intron-2 (STin2) polymorphism and attention-deficit-hyperactivity disorder (ADHD). Am J Med Genet B Neuropsychiatr Genet 141B:361–366

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48:969–977

    PubMed  CAS  Google Scholar 

  • Barker MJ, Benitez JG, Ternullo S, Juhl GA (2004) Acute oxcarbazepine and atomoxetine overdose with quetiapine. Vet Hum Toxicol 46:130–132

    PubMed  Google Scholar 

  • Barkley RA, Fischer M, Smallish L, Fletcher K (2006) Young adult outcome of hyperactive children: adaptive functioning in major life activities. J Am Acad Child Adolesc Psychiatry 45:192–202

    PubMed  Google Scholar 

  • Baumgardner TL, Reiss AL, Freund LS, Abrams MT (1995) Specification of the neurobehavioral phenotype in males with fragile X syndrome. Pediatrics 95:744–752

    PubMed  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    PubMed  CAS  Google Scholar 

  • Bhatara V, Loudenberg R, Ellis R (2006) Association of attention deficit hyperactivity disorder and gestational alcohol exposure: an exploratory study. J Atten Disord 9:515–522

    PubMed  Google Scholar 

  • Boikess SR, Marshall JF (2008) A sensitizing d-amphetamine regimen induces long-lasting spinophilin protein upregulation in the rat striatum and limbic forebrain. Eur J Neurosci 28:2099–2107

    PubMed  Google Scholar 

  • Boikess SR, O'Dell SJ, Marshall JF (2010) A sensitizing d-amphetamine dose regimen induces long-lasting spinophilin and VGLUT1 protein upregulation in the rat diencephalon. Neurosci Lett 469:49–54

    PubMed  CAS  Google Scholar 

  • Brandon CL, Steiner H (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci 18:1584–1592

    PubMed  Google Scholar 

  • Braun JM, Kahn RS, Froehlich T, Auinger P, Lanphear BP (2006) Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children. Environ Health Perspect 114:1904–1909

    PubMed  Google Scholar 

  • Brookes KJ, Mill J, Guindalini C, Curran S, Xu X, Knight J, Chen CK, Huang YS, Sethna V, Taylor E, Chen W, Breen G, Asherson P (2006) A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch Gen Psychiatry 63:74–81

    PubMed  CAS  Google Scholar 

  • Brophy K, Hawi Z, Kirley A, Fitzgerald M, Gill M (2002) Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry 7:913–917

    PubMed  CAS  Google Scholar 

  • Carr KD, Kutchukhidze N (2000) Chronic food restriction increases fos-like immunoreactivity (FLI) induced in rat forebrain by intraventricular amphetamine. Brain Res 861:88–96

    PubMed  CAS  Google Scholar 

  • Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–498

    PubMed  CAS  Google Scholar 

  • Chandler VL (2007) Paramutation: from maize to mice. Cell 128:641–645

    PubMed  CAS  Google Scholar 

  • Cho SC, Kim BN, Hong YC, Shin MS, Yoo HJ, Kim JW, Bhang SY, Cho IH, Kim HW (2010) Effect of environmental exposure to lead and tobacco smoke on inattentive and hyperactive symptoms and neurocognitive performance in children. J Child Psychol Psychiatry 51:1050–1057

    PubMed  Google Scholar 

  • Colussi-Mas J, Geisler S et al (2007) Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double-labelling study. Eur J Neurosci 26(4):1011–1025

    PubMed  Google Scholar 

  • Dalia A, Wallace LJ (1995) Amphetamine induction of c-fos in the nucleus accumbens is not inhibited by glutamate antagonists. Brain Res 694:299–307

    PubMed  CAS  Google Scholar 

  • Day NL, Richardson GA, Goldschmidt L, Cornelius MD (2000) Effects of prenatal tobacco exposure on preschoolers' behavior. J Dev Behav Pediatr 21:180–188

    PubMed  CAS  Google Scholar 

  • Day HE, Badiani A, Uslaner JM, Oates MM, Vittoz NM, Robinson TE, Watson SJ Jr, Akil H (2001) Environmental novelty differentially affects c-fos mRNA expression induced by amphetamine or cocaine in subregions of the bed nucleus of the stria terminalis and amygdala. J Neurosci 21:732–740

    PubMed  CAS  Google Scholar 

  • Derks EM, Hudziak JJ, Dolan CV, van Beijsterveldt TC, Verhulst FC, Boomsma DI (2008) Genetic and environmental influences on the relation between attention problems and attention deficit hyperactivity disorder. Behav Genet 38:11–23

    PubMed  Google Scholar 

  • Dygalo NN, Bannova AV, Kalinina TS, Shishkina GT (2004) Clonidine increases caspase-3 mRNA level and DNA fragmentation in the developing rat brainstem. Brain Res Dev Brain Res 152:225–231

    PubMed  CAS  Google Scholar 

  • Eubig PA, Aguiar A, Schantz SL (2010) Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environ Health Perspect 118:1654–1667

    PubMed  CAS  Google Scholar 

  • Feinberg AP (2008) Epigenetics at the epicenter of modern medicine. JAMA 299:1345–1350

    PubMed  CAS  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    PubMed  CAS  Google Scholar 

  • French NP, Hagan R, Evans SF, Mullan A, Newnham JP (2004) Repeated antenatal corticosteroids: effects on cerebral palsy and childhood behavior. Am J Obstet Gynecol 190:588–595

    PubMed  CAS  Google Scholar 

  • Fried PA, Makin JE (1987) Neonatal behavioural correlates of prenatal exposure to marihuana, cigarettes and alcohol in a low risk population. Neurotoxicol Teratol 9:1–7

    PubMed  CAS  Google Scholar 

  • Fryer SL, McGee CL, Matt GE, Riley EP, Mattson SN (2007) Evaluation of psychopathological conditions in children with heavy prenatal alcohol exposure. Pediatrics 119:e733–e741

    PubMed  Google Scholar 

  • Goto T, Monk M (1998) Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev 62:362–378

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 87:6912–6916

    PubMed  CAS  Google Scholar 

  • Halmoy A, Johansson S, Winge I, McKinney JA, Knappskog PM, Haavik J (2010) Attention-deficit/hyperactivity disorder symptoms in offspring of mothers with impaired serotonin production. Arch Gen Psychiatry 67:1033–1043

    PubMed  Google Scholar 

  • Hawi Z, Foley D, Kirley A, McCarron M, Fitzgerald M, Gill M (2001) Dopa decarboxylase gene polymorphisms and attention deficit hyperactivity disorder (ADHD): no evidence for association in the Irish population. Mol Psychiatry 6:420–424

    PubMed  CAS  Google Scholar 

  • Hawi Z, Dring M, Kirley A, Foley D, Kent L, Craddock N, Asherson P, Curran S, Gould A, Richards S, Lawson D, Pay H, Turic D, Langley K, Owen M, O'Donovan M, Thapar A, Fitzgerald M, Gill M (2002) Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry 7:718–725

    PubMed  CAS  Google Scholar 

  • Hawi Z, Segurado R, Conroy J, Sheehan K, Lowe N, Kirley A, Shields D, Fitzgerald M, Gallagher L, Gill M (2005) Preferential transmission of paternal alleles at risk genes in attention-deficit/hyperactivity disorder. Am J Hum Genet 77:958–965

    PubMed  CAS  Google Scholar 

  • Hay D, Bennett KS, McStephen M, Rooney R, Levy F (2004) Attention deficit-hyperactivity disorder in twins: a developmental genetic analysis. Aust J Psychol 56:99–107

    Google Scholar 

  • Hay DA, Bennett KS, Levy F, Sergeant J, Swanson J (2007) A twin study of attention-deficit/hyperactivity disorder dimensions rated by the strengths and weaknesses of ADHD-symptoms and normal-behavior (SWAN) scale. Biol Psychiatry 61:700–705

    PubMed  Google Scholar 

  • Heal DJ, Smith SL, Findling RL (2011) ADHD: Current and future therapeutics. Curr Topics Behav Neurosci DOI 10.1007/7854_2011_125

    Google Scholar 

  • Hollick JB, Dorweiler JE, Chandler VL (1997) Paramutation and related allelic interactions. Trends Genet 13:302–308

    PubMed  CAS  Google Scholar 

  • Hope BT (1998) Cocaine and the AP-1 transcription factor complex. Ann N Y Acad Sci 844:1–6

    PubMed  CAS  Google Scholar 

  • Huizink AC, Mulder EJ (2006) Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci Biobehav Rev 30:24–41

    PubMed  CAS  Google Scholar 

  • Hultman CM, Torrang A, Tuvblad C, Cnattingius S, Larsson JO, Lichtenstein P (2007) Birth weight and attention-deficit/hyperactivity symptoms in childhood and early adolescence: a prospective Swedish twin study. J Am Acad Child Adolesc Psychiatry 46:370–377

    PubMed  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18:780–790

    PubMed  CAS  Google Scholar 

  • Jacobson SW, Carr LG, Croxford J, Sokol RJ, Li TK, Jacobson JL (2006) Protective effects of the alcohol dehydrogenase-ADH1B allele in children exposed to alcohol during pregnancy. J Pediatr 148:30–37

    PubMed  CAS  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    PubMed  CAS  Google Scholar 

  • Johansson B, Lindstrom K, Fredholm BB (1994) Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat. Neuroscience 59:837–849

    PubMed  CAS  Google Scholar 

  • Kahn RS, Khoury J, Nichols WC, Lanphear BP (2003) Role of dopamine transporter genotype and maternal prenatal smoking in childhood hyperactive-impulsive, inattentive, and oppositional behaviors. J Pediatr 143:104–110

    PubMed  Google Scholar 

  • Kapoor A, Petropoulos S, Matthews SG (2008) Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res Rev 57:586–595

    PubMed  CAS  Google Scholar 

  • Karin M (1990) Too many transcription factors: positive and negative interactions. New Biol 2:126–131

    PubMed  CAS  Google Scholar 

  • Kent L, Green E, Hawi Z, Kirley A, Dudbridge F, Lowe N, Raybould R, Langley K, Bray N, Fitzgerald M, Owen MJ, O'Donovan MC, Gill M, Thapar A, Craddock N (2005) Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Mol Psychiatry 10:939–943

    PubMed  CAS  Google Scholar 

  • Kiehn J, Lacerda AE, Brown AM (1999) Pathways of HERG inactivation. Am J Physiol 277:H199–H210

    PubMed  CAS  Google Scholar 

  • Kim JW, Waldman ID, Faraone SV, Biederman J, Doyle AE, Purcell S, Arbeitman L, Fagerness J, Sklar P, Smoller JW (2007) Investigation of parent-of-origin effects in ADHD candidate genes. Am J Med Genet B Neuropsychiatr Genet 144B:776–780

    PubMed  CAS  Google Scholar 

  • Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P (2009) Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens. Proc Natl Acad Sci U S A 106:2915–2920

    PubMed  CAS  Google Scholar 

  • Knopik VS, Sparrow EP, Madden PA, Bucholz KK, Hudziak JJ, Reich W, Slutske WS, Grant JD, McLaughlin TL, Todorov A, Todd RD, Heath AC (2005) Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: a female twin study. Psychol Med 35:625–635

    PubMed  Google Scholar 

  • Knopik VS, Heath AC, Jacob T, Slutske WS, Bucholz KK, Madden PA, Waldron M, Martin NG (2006) Maternal alcohol use disorder and offspring ADHD: disentangling genetic and environmental effects using a children-of-twins design. Psychol Med 36:1461–1471

    PubMed  Google Scholar 

  • Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270

    PubMed  CAS  Google Scholar 

  • Konradi C, Leveque JC, Hyman SE (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J Neurosci 16:4231–4239

    PubMed  CAS  Google Scholar 

  • Kotimaa AJ, Moilanen I, Taanila A, Ebeling H, Smalley SL, McGough JJ, Hartikainen AL, Jarvelin MR (2003) Maternal smoking and hyperactivity in 8-year-old children. J Am Acad Child Adolesc Psychiatry 42:826–833

    PubMed  Google Scholar 

  • Kuntsi J, Rijsdijk F, Ronald A, Asherson P, Plomin R (2005) Genetic influences on the stability of attention-deficit/hyperactivity disorder symptoms from early to middle childhood. Biol Psychiatry 57:647–654

    PubMed  Google Scholar 

  • Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8:309–315

    PubMed  CAS  Google Scholar 

  • Langley K, Rice F, van den Bree MB, Thapar A (2005) Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr 57:359–371

    PubMed  CAS  Google Scholar 

  • Larsson JO, Larsson H, Lichtenstein P (2004) Genetic and environmental contributions to stability and change of ADHD symptoms between 8 and 13 years of age: a longitudinal twin study. J Am Acad Child Adolesc Psychiatry 43:1267–1275

    PubMed  Google Scholar 

  • Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312

    PubMed  CAS  Google Scholar 

  • Laucht M, Skowronek MH, Becker K, Schmidt MH, Esser G, Schulze TG, Rietschel M (2007) Interacting effects of the dopamine transporter gene and psychosocial adversity on attention-deficit/hyperactivity disorder symptoms among 15-year-olds from a high-risk community sample. Arch Gen Psychiatry 64:585–590

    PubMed  CAS  Google Scholar 

  • Laurin N, Feng Y, Ickowicz A, Pathare T, Malone M, Tannock R, Schachar R, Kennedy JL, Barr CL (2007) No preferential transmission of paternal alleles at risk genes in attention-deficit hyperactivity disorder. Mol Psychiatry 12:226–229

    PubMed  CAS  Google Scholar 

  • Laurin N, Ickowicz A, Pathare T, Malone M, Tannock R, Schachar R, Kennedy JL, Barr CL (2008) Investigation of the G protein subunit Galphaolf gene (GNAL) in attention deficit/hyperactivity disorder. J Psychiatr Res 42:117–124

    PubMed  Google Scholar 

  • Leff S, Costigan TE, Power TJ (2004) Using participatory action research to develop a playground-based prevention program. J Sch Psychol 42:3–21

    Google Scholar 

  • Lehn H, Derks EM, Hudziak JJ, Heutink P, van Beijsterveldt TC, Boomsma DI (2007) Attention problems and attention-deficit/hyperactivity disorder in discordant and concordant monozygotic twins: evidence of environmental mediators. J Am Acad Child Adolesc Psychiatry 46:83–91

    PubMed  Google Scholar 

  • Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118

    PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    PubMed  CAS  Google Scholar 

  • Li Y, Kolb B, Robinson TE (2003) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology 28:1082–1085

    PubMed  CAS  Google Scholar 

  • Lillrank SM, Lipska BK, Bachus SE, Wood GK, Weinberger DR (1996) Amphetamine-induced c-fos mRNA expression is altered in rats with neonatal ventral hippocampal damage. Synapse 23:292–301

    PubMed  CAS  Google Scholar 

  • Lim JH, Booker AB, Fallon JR (2005) Regulating fragile X gene transcription in the brain and beyond. J Cell Physiol 205:170–175

    PubMed  CAS  Google Scholar 

  • Lin JS, Hou Y, Jouvet M (1996) Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci U S A 93:14128–14133

    PubMed  CAS  Google Scholar 

  • Linnet KM, Wisborg K, Obel C, Secher NJ, Thomsen PH, Agerbo E, Henriksen TB (2005) Smoking during pregnancy and the risk for hyperkinetic disorder in offspring. Pediatrics 116:462–467

    PubMed  Google Scholar 

  • Maughan B, Taylor A, Caspi A, Moffitt TE (2004) Prenatal smoking and early childhood conduct problems: testing genetic and environmental explanations of the association. Arch Gen Psychiatry 61:836–843

    PubMed  Google Scholar 

  • McArthur S, McHale E, Gillies GE (2007) The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner. Neuropsychopharmacology 32:1462–1476

    PubMed  CAS  Google Scholar 

  • McIntosh DE, Mulkins RS, Dean RS (1995) Utilization of maternal perinatal risk indicators in the differential diagnosis of ADHD and UADD children. Int J Neurosci 81:35–46

    PubMed  CAS  Google Scholar 

  • McLoughlin G, Ronald A, Kuntsi J, Asherson P, Plomin R (2007) Genetic support for the dual nature of attention deficit hyperactivity disorder: substantial genetic overlap between the inattentive and hyperactive-impulsive components. J Abnorm Child Psychol 35:999–1008

    PubMed  Google Scholar 

  • Mick E, Faraone SV (2008) Genetics of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 17:261–284, vii-viii

    PubMed  Google Scholar 

  • Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S (2002) Case-control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J Am Acad Child Adolesc Psychiatry 41:378–385

    PubMed  Google Scholar 

  • Milberger S, Biederman J, Faraone SV, Chen L, Jones J (1996) Is maternal smoking during pregnancy a risk factor for attention deficit hyperactivity disorder in children? Am J Psychiatry 153:1138–1142

    PubMed  CAS  Google Scholar 

  • Milberger S, Biederman J, Faraone SV, Chen L, Jones J (1997) Further evidence of an association between attention-deficit/hyperactivity disorder and cigarette smoking. Findings from a high-risk sample of siblings. Am J Addict 6:205–217

    PubMed  CAS  Google Scholar 

  • Mill J, Richards S, Knight J, Curran S, Taylor E, Asherson P (2004) Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHD. Mol Psychiatry 9:801–810

    PubMed  CAS  Google Scholar 

  • Miyamoto S, Snouwaert JN, Koller BH, Moy SS, Lieberman JA, Duncan GE (2004) Amphetamine-induced Fos is reduced in limbic cortical regions but not in the caudate or accumbens in a genetic model of NMDA receptor hypofunction. Neuropsychopharmacology 29:2180–2188

    PubMed  CAS  Google Scholar 

  • Naeye RL, Peters EC (1984) Mental development of children whose mothers smoked during pregnancy. Obstet Gynecol 64:601–607

    PubMed  CAS  Google Scholar 

  • Neuman RJ, Lobos E et al (2006) Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry

    Google Scholar 

  • Neuman RJ, Lobos E, Reich W, Henderson CA, Sun LW, Todd RD (2007) Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry 61:1320–1328

    PubMed  CAS  Google Scholar 

  • Nigg JT, Breslau N (2007) Prenatal smoking exposure, low birth weight, and disruptive behavior disorders. J Am Acad Child Adolesc Psychiatry 46:362–369

    PubMed  Google Scholar 

  • O'Callaghan MJ, Williams GM, Andersen MJ, Bor W, Najman JM (1997) Obstetric and perinatal factors as predictors of child behaviour at 5 years. J Paediatr Child Health 33:497–503

    PubMed  Google Scholar 

  • O'Connor TG, Heron J, Golding J, Beveridge M, Glover V (2002) Maternal antenatal anxiety and children's behavioural/emotional problems at 4 years. Report from the Avon Longitudinal Study of Parents and Children. Br J Psychiatry 180:502–508

    PubMed  Google Scholar 

  • Orlebeke JF, Knol DL, Verhulst FC (1999) Child behavior problems increased by maternal smoking during pregnancy. Arch Environ Health 54:15–19

    PubMed  CAS  Google Scholar 

  • Ostrander MM, Richtand NM, Hermann JP (2003a) Stress and amphetamine induce Fos expression in medial prefrontal cortex neurons containing glucocorticoid receptors. Brain Res 990:209–214

    PubMed  CAS  Google Scholar 

  • Ostrander MM, Badiani A, Day HE, Norton CS, Watson SJ, Akil H, Robinson TE (2003b) Environmental context and drug history modulate amphetamine-induced c-fos mRNA expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience 120:551–571

    PubMed  CAS  Google Scholar 

  • O'Sullivan JB, Ryan KM, Curtin NM, Harkin A, Connor TJ (2009) Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: implications for depression and neurodegeneration. Int J Neuropsychopharmacol 12:687–699

    PubMed  Google Scholar 

  • Ouellet-Morin I, Wigg KG, Feng Y, Dionne G, Robaey P, Brendgen M, Vitaro F, Simard L, Schachar R, Tremblay RE, Perusse D, Boivin M, Barr CL (2008) Association of the dopamine transporter gene and ADHD symptoms in a Canadian population-based sample of same-age twins. Am J Med Genet B Neuropsychiatr Genet 147B:1442–1449

    PubMed  CAS  Google Scholar 

  • Palmer AA, Brown AS, Keegan D, Siska LD, Susser E, Rotrosen J, Butler PD (2008) Prenatal protein deprivation alters dopamine-mediated behaviors and dopaminergic and glutamatergic receptor binding. Brain Res 1237:62–74

    PubMed  CAS  Google Scholar 

  • Parelkar NK, Jiang Q, Chu XP, Guo ML, Mao LM, Wang JQ (2009) Amphetamine alters Ras-guanine nucleotide-releasing factor expression in the rat striatum in vivo. Eur J Pharmacol 619:50–56

    PubMed  CAS  Google Scholar 

  • Penner MR, McFadyen MP, Pinaud R, Carrey N, Robertson HA, Brown RE (2002) Age-related distribution of c-fos expression in the striatum of CD-1 mice after acute methylphenidate administration. Brain Res Dev Brain Res 135:71–77

    PubMed  CAS  Google Scholar 

  • Petersohn D, Thiel G (1996) Role of zinc-finger proteins Sp1 and zif268/egr-1 in transcriptional regulation of the human synaptobrevin II gene. Eur J Biochem 239:827–834

    PubMed  CAS  Google Scholar 

  • Polderman TJ, Derks EM, Hudziak JJ, Verhulst FC, Posthuma D, Boomsma DI (2007) Across the continuum of attention skills: a twin study of the SWAN ADHD rating scale. J Child Psychol Psychiatry 48:1080–1087

    PubMed  Google Scholar 

  • Price TS, Simonoff E, Asherson P, Curran S, Kuntsi J, Waldman I, Plomin R (2005) Continuity and change in preschool ADHD symptoms: longitudinal genetic analysis with contrast effects. Behav Genet 35:121–132

    PubMed  Google Scholar 

  • Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R, Basile VS, Beitchman J, Kennedy JL (2003) The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiatry 8:98–102

    PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    PubMed  CAS  Google Scholar 

  • Rietveld MJ, Hudziak JJ, Bartels M, van Beijsterveldt CE, Boomsma DI (2004) Heritability of attention problems in children: longitudinal results from a study of twins, age 3 to 12. J Child Psychol Psychiatry 45:577–588

    PubMed  CAS  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497

    PubMed  CAS  Google Scholar 

  • Rodriguez A, Bohlin G (2005) Are maternal smoking and stress during pregnancy related to ADHD symptoms in children? J Child Psychol Psychiatry 46:246–254

    PubMed  Google Scholar 

  • Rotllant D, Marquez C, Nadal R, Armario A (2010) The brain pattern of c-fos induction by two doses of amphetamine suggests different brain processing pathways and minor contribution of behavioural traits. Neuroscience 168:691–705

    PubMed  CAS  Google Scholar 

  • Sarge KD, Park-Sarge OK (2005) Gene bookmarking: keeping the pages open. Trends Biochem Sci 30:605–610

    PubMed  CAS  Google Scholar 

  • Saudino KJ, Ronald A, Plomin R (2005) The etiology of behavior problems in 7-year-old twins: substantial genetic influence and negligible shared environmental influence for parent ratings and ratings by same and different teachers. J Abnorm Child Psychol 33:113–130

    PubMed  Google Scholar 

  • Sawant S, Daviss SR (2004) Seizures and prolonged QTc with atomoxetine overdose. Am J Psychiatry 161:757

    PubMed  Google Scholar 

  • Scahill L, Schwab-Stone M (2000) Epidemiology of ADHD in school-age children. Child Adolesc Psychiatr Clin N Am 9:541–555, vii

    PubMed  CAS  Google Scholar 

  • Scherer D, Hassel D, Bloehs R, Zitron E, von Lowenstern K, Seyler C, Thomas D, Konrad F, Burgers HF, Seemann G, Rottbauer W, Katus HA, Karle CA, Scholz EP (2009) Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents. Br J Pharmacol 156:226–236

    PubMed  CAS  Google Scholar 

  • Secker-Walker RH, Vacek PM, Flynn BS, Mead PB (1997) Smoking in pregnancy, exhaled carbon monoxide, and birth weight. Obstet Gynecol 89:648–653

    PubMed  CAS  Google Scholar 

  • Sharp WS, Gottesman RF, Greenstein DK, Ebens CL, Rapoport JL, Castellanos FX (2003) Monozygotic twins discordant for attention-deficit/hyperactivity disorder: ascertainment and clinical characteristics. J Am Acad Child Adolesc Psychiatry 42:93–97

    PubMed  Google Scholar 

  • Shishkina GT, Kalinina TS, Dygalo NN (2004) Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood. Neuroscience 129:521–528

    PubMed  CAS  Google Scholar 

  • Shumay E, Fowler JS, Volkow ND (2010) Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity. PLoS One 5:e11067

    PubMed  Google Scholar 

  • Smoller JW, Biederman J, Arbeitman L, Doyle AE, Fagerness J, Perlis RH, Sklar P, Faraone SV (2006) Association between the 5HT1B receptor gene (HTR1B) and the inattentive subtype of ADHD. Biol Psychiatry 59:460–467

    PubMed  CAS  Google Scholar 

  • Snyder-Keller AM (1991) Striatal c-fos induction by drugs and stress in neonatally dopamine-depleted rats given nigral transplants: importance of NMDA activation and relevance to sensitization phenomena. Exp Neurol 113:155–165

    PubMed  CAS  Google Scholar 

  • Son GH, Chung S, Geum D, Kang SS, Choi WS, Kim K, Choi S (2007) Hyperactivity and alteration of the midbrain dopaminergic system in maternally stressed male mice offspring. Biochem Biophys Res Commun 352:823–829

    PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    PubMed  CAS  Google Scholar 

  • Swanson JM, Volkow ND (2002) Pharmacokinetic and pharmacodynamic properties of stimulants: implications for the design of new treatments for ADHD. Behav Brain Res 130:73–78

    PubMed  CAS  Google Scholar 

  • Thapar A, Fowler T, Rice F, Scourfield J, van den Bree M, Thomas H, Harold G, Hay D (2003) Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring. Am J Psychiatry 160:1985–1989

    PubMed  Google Scholar 

  • Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178

    PubMed  CAS  Google Scholar 

  • Todd RD, Neuman RJ (2007) Gene-environment interactions in the development of combined type ADHD: evidence for a synapse-based model. Am J Med Genet B Neuropsychiatr Genet 144B:971–975

    PubMed  CAS  Google Scholar 

  • Trinh JV, Nehrenberg DL, Jacobsen JP, Caron MG, Wetsel WC (2003) Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience 118:297–310

    PubMed  CAS  Google Scholar 

  • Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    PubMed  CAS  Google Scholar 

  • van der Valk JC, Verhulst FC, Neale MC, Boomsma DI (1998) Longitudinal genetic analysis of problem behaviors in biologically related and unrelated adoptees. Behav Genet 28:365–380

    PubMed  Google Scholar 

  • Vataeva LA, Kudrin VS, Vershinina EA, Mosin VM, Tiul'kova EI, Otellin VA (2007) Behavioral alteration in the adult rats prenatally exposed to para-chlorophenylalanine. Brain Res 1169:9–16

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Ding YS (2005) Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1410–1415

    PubMed  CAS  Google Scholar 

  • Vucetic Z, Totoki K, Schoch H, Whitaker KW, Hill-Smith T, Lucki I, Reyes TM (2010) Early life protein restriction alters dopamine circuitry. Neuroscience 168:359–370

    PubMed  CAS  Google Scholar 

  • Wakschlag LS, Pickett KE, Cook E Jr, Benowitz NL, Leventhal BL (2002) Maternal smoking during pregnancy and severe antisocial behavior in offspring: a review. Am J Public Health 92:966–974

    PubMed  Google Scholar 

  • Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458

    PubMed  Google Scholar 

  • Wang S, Yan JY, Lo YK, Carvey PM, Ling Z (2009) Dopaminergic and serotoninergic deficiencies in young adult rats prenatally exposed to the bacterial lipopolysaccharide. Brain Res 1265:196–204

    PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    PubMed  CAS  Google Scholar 

  • Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    PubMed  CAS  Google Scholar 

  • Wernicke JF, Faries D, Girod D, Brown J, Gao H, Kelsey D, Quintana H, Lipetz R, Michelson D, Heiligenstein J (2003) Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Saf 26:729–740

    PubMed  CAS  Google Scholar 

  • Wilens TE, Hahesy AL, Biederman J, Bredin E, Tanguay S, Kwon A, Faraone SV (2005) Influence of parental SUD and ADHD on ADHD in their offspring: preliminary results from a pilot-controlled family study. Am J Addict 14:179–187

    PubMed  Google Scholar 

  • Wilson MJ, Shivapurkar N, Poirier LA (1984) Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet. Biochem J 218:987–990

    PubMed  CAS  Google Scholar 

  • Wood AJ, Oakey RJ (2006) Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet 2:e147

    PubMed  Google Scholar 

  • Wood AC, Rijsdijk F, Saudino KJ, Asherson P, Kuntsi J (2008) High heritability for a composite index of children's activity level measures. Behav Genet 38:266–276

    PubMed  Google Scholar 

  • Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE (2010) Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329:444–448

    PubMed  CAS  Google Scholar 

  • Yano M, Steiner H (2005a) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132:855–865

    PubMed  CAS  Google Scholar 

  • Yano M, Steiner H (2005b) Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides. Neuropsychopharmacology 30:901–915

    PubMed  CAS  Google Scholar 

  • Yin HS, Chen K, Shih JC, Tien TW (2010) Down-regulated GABAergic expression in the olfactory bulb layers of the mouse deficient in monoamine oxidase B and administered with amphetamine. Cell Mol Neurobiol 30:511–519

    PubMed  CAS  Google Scholar 

  • Zhou R, Zhang Z, Zhu Y, Chen L, Sokabe M (2009) Deficits in development of synaptic plasticity in rat dorsal striatum following prenatal and neonatal exposure to low-dose bisphenol A. Neuroscience 159:161–171

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine Elia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elia, J., Laracy, S., Allen, J., Nissley-Tsiopinis, J., Borgmann-Winter, K. (2011). Epigenetics: Genetics Versus Life Experiences. In: Stanford, C., Tannock, R. (eds) Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment. Current Topics in Behavioral Neurosciences, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_144

Download citation

Publish with us

Policies and ethics