Skip to main content

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 9))

Abstract

The neonatal 6-OHDA-lesioned rat, coloboma mouse, DAT-KO mouse, and spontaneously hypertensive rat (SHR) models all bear a phenotypic resemblance to ADHD in that they express hyperactivity, inattention, and/or impulsivity. The models also illustrate the heterogeneity of ADHD: the initial cause (chemical depletion or genetic abnormality) of the ADHD-like behaviors is different for each model. Neurochemical and behavioral studies of the models indicate aberrations in monoaminergic neurotransmission. Hyperdopaminergic neurotransmission is implicated in the abnormal behavior of all models. Norepinephrine has a dual enhancing/inhibitory role in ADHD symptoms, and serotonin acts to inhibit abnormal dopamine and norepinephrine signaling. It is unlikely that symptoms arise from a single neurotransmitter dysfunction. Rather, studies of animal models of ADHD suggest that symptoms develop through the complex interactions of monoaminergic neurotransmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5,7-DHT:

5,7-Dihydroxytryptamine

6-OHDA:

6-Hydroxydopamine

ADHD:

Attention-deficit hyperactivity disorder

DAT-KD:

Dopamine transporter knockdown

DAT-KO:

Dopamine transporter knockout

DSM-IV:

Diagnostic and Statistical Manual (Edition IV)

m-CPP:

m-Chlorophenylpiperazine

NET:

Norepinephrine transporter

SERT:

Serotonin transporter

SHR:

Spontaneously hypertensive rat

SNAP-25:

Synaptosomal associated peptide (-25)

TH:

Tyrosine hydroxylase

WKY:

Wistar Kyoto (rat)

References

  • Akiyama K, Yabe K, Sutoo D (1992) Quantitative immunohistochemical distributions of tyrosine hydroxylase and calmodulin in the brains of spontaneously hypertensive rats. Kitasato Arch Exp Med 65:199–208

    PubMed  CAS  Google Scholar 

  • Archer T, Fredriksson A (2007) Behavioural supersensitivity following neonatal 6-hydroxydopamine: attenuation by MK-801. Neurotox Res 12:113–124

    PubMed  CAS  Google Scholar 

  • Archer T, Danysz W, Fredriksson A, Jonsson G, Luthman J, Sundstrom E, Teiling A (1988) Neonatal 6-hydroxydopamine-induced dopamine depletions: motor activity and performance in maze learning. Pharmacol Biochem Behav 31:357–364

    PubMed  CAS  Google Scholar 

  • Archer T, Palomo T, Fredriksson A (2002) Neonatal 6-hydroxydopamine-induced hypo/hyperactivity: blockade by dopamine reuptake inhibitors and effect of acute D-amphetamine. Neurotox Res 4:247–266

    PubMed  CAS  Google Scholar 

  • Avale ME, Falzone TL, Gelman DM, Low MJ, Grandy DK, Rubinstein M (2004a) The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol Psychiatry 9:718–726

    PubMed  CAS  Google Scholar 

  • Avale ME, Nemirovsky SI, Raisman-Vozari R, Rubinstein M (2004b) Elevated serotonin is involved in hyperactivity but not in the paradoxical effect of amphetamine in mice neonatally lesioned with 6-hydroxydopamine. J Neurosci Res 78:289–296

    PubMed  CAS  Google Scholar 

  • Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL (2000) Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5:405–409

    PubMed  CAS  Google Scholar 

  • Barr AM, Lehmann-Masten V, Paulus M, Gainetdinov RR, Caron MG, Geyer MA (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29:221–228

    PubMed  CAS  Google Scholar 

  • Basura GJ, Walker PD (1999) Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation. Brain Res Dev Brain Res 116:111–117

    PubMed  CAS  Google Scholar 

  • Bishop C, Tessmer JL, Ullrich T, Rice KC, Walker PD (2004) Serotonin 5-HT2A receptors underlie increased motor behaviors induced in dopamine-depleted rats by intrastriatal 5-HT2A/2C agonism. J Pharmacol Exp Ther 310:687–694

    PubMed  CAS  Google Scholar 

  • Bishop C, Daut GS, Walker PD (2005) Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958. Neuropharmacology 49:350–358

    PubMed  CAS  Google Scholar 

  • Bizot JC, Chenault N, Houze B, Herpin A, David S, Pothion S, Trovero F (2007) Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl) 193:215–223

    CAS  Google Scholar 

  • Breese GR, Napier TC, Mueller RA (1985) Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: functional supersensitivity of D-1 dopamine receptors in neonatally lesioned rats. J Pharmacol Exp Ther 234:447–455

    PubMed  CAS  Google Scholar 

  • Broaddus WC, Bennett JP Jr (1990) Postnatal development of striatal dopamine function. II. Effects of neonatal 6-hydroxydopamine treatments on D1 and D2 receptors, adenylate cyclase activity and presynaptic dopamine function. Brain Res Dev Brain Res 52:273–277

    PubMed  CAS  Google Scholar 

  • Bruno KJ, Hess EJ (2006) The alpha(2C)-adrenergic receptor mediates hyperactivity of coloboma mice, a model of attention deficit hyperactivity disorder. Neurobiol Dis 23:679–688

    PubMed  CAS  Google Scholar 

  • Bruno JP, Jackson D, Zigmond MJ, Stricker EM (1987) Effect of dopamine-depleting brain lesions in rat pups: role of striatal serotonergic neurons in behavior. Behav Neurosci 101:806–811

    PubMed  CAS  Google Scholar 

  • Bruno KJ, Freet CS, Twining RC, Egami K, Grigson PS, Hess EJ (2007) Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis 25:206–216

    PubMed  CAS  Google Scholar 

  • Brus R, Kostrzewa RM, Perry KW, Fuller RW (1994) Supersensitization of the oral response to SKF 38393 in neonatal 6-hydroxydopamine-lesioned rats is eliminated by neonatal 5, 7-dihydroxytryptamine treatment. J Pharmacol Exp Ther 268:231–237

    PubMed  CAS  Google Scholar 

  • Brus R, Plech A, Kostrzewa RM (1995) Enhanced quinpirole response in rats lesioned neonatally with 5, 7-dihydroxytryptamine. Pharmacol Biochem Behav 50:649–653

    PubMed  CAS  Google Scholar 

  • Brus R, Nowak P, Szkilnik R, Mikolajun U, Kostrzewa RM (2004) Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotox Res 6:317–325

    PubMed  Google Scholar 

  • Budygin EA, Brodie MS, Sotnikova TD, Mateo Y, John CE, Cyr M, Gainetdinov RR, Jones SR (2004) Dissociation of rewarding and dopamine transporter-mediated properties of amphetamine. Proc Natl Acad Sci U S A 101:7781–7786

    PubMed  CAS  Google Scholar 

  • Butcher SP, Liptrot J, Aburthnott GW (1991) Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neurosci Lett 122:245–248

    PubMed  CAS  Google Scholar 

  • Carboni E, Spielewoy C, Vacca C, Nosten-Bertrand M, Giros B, Di Chiara G (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J Neurosci 21: RC141: 141–144

    Google Scholar 

  • Carboni E, Silvagni A, Valentini V, Di Chiara G (2003) Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdyalisis study. Neurosci Biobehav Rev 27:653–659

    PubMed  CAS  Google Scholar 

  • Castaneda E, Whishaw IQ, Lermer L, Robinson TE (1990) Dopamine depletion in neonatal rats: effects on behavior and striatal dopamine release assessed by intracerebral microdialysis during adulthood. Brain Res 508:30–39

    PubMed  CAS  Google Scholar 

  • Chiu P, Rajakumar G, Chiu S, Kwan CY, Mishra RK (1982) Enhanced [3H]spiroperidol binding in striatum of spontaneously hypertensive rat (SHR). Eur J Pharmacol 82:243–244

    PubMed  CAS  Google Scholar 

  • Chiu P, Rajakumar G, Chiu S, Kwan CY, Mishra RK (1984) Differential changes in central serotonin and dopamine receptors in spontaneous hypertensive rats. Prog Neuropsychopharmacol Biol Psychiatry 8:665–668

    PubMed  CAS  Google Scholar 

  • Dal Bo G, Berube-Carriere N, Mendez JA, Leo D, Riad M, Descarries L, Levesque D, Trudeau LE (2008) Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion. Neuroscience 156:59–70

    PubMed  CAS  Google Scholar 

  • Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ (2002) Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther 301:1097–1102

    PubMed  CAS  Google Scholar 

  • Dawson R Jr, Nagahama S, Oparil S (1987) Yohimbine-induced alterations of monoamine metabolism in the spontaneously hypertensive rat of the Okamoto strain (SHR). II. The central nervous system (CNS). Brain Res Bull 19:525–534

    PubMed  CAS  Google Scholar 

  • De Bruin NM, Kiliaan AJ, De Wilde MC, Broersen LM (2003) Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol Learn Mem 80:63–79

    PubMed  Google Scholar 

  • De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA, Smith AJH, Laird JMA, Belmonte C, Cervero F, Hunt SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    PubMed  Google Scholar 

  • de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJ (1995) Alpha 2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder. Neurochem Res 20:427–433

    PubMed  Google Scholar 

  • Dewar KM, Soghomonian JJ, Bruno JP, Descarries L, Reader TA (1990) Elevation of dopamine D2 but not D1 receptors in adult rat neostriatum after neonatal 6-hydroxydopamine denervation. Brain Res 536:287–296

    PubMed  CAS  Google Scholar 

  • Dewar KM, Paquet M, Reader TA (1997) Alterations in the turnover rate of dopamine D1 but not D2 receptors in the adult rat neostriatum after a neonatal dopamine denervation. Neurochem Int 30:613–621

    PubMed  CAS  Google Scholar 

  • Duncan GE, Criswell HE, McCown TJ, Paul IA, Mueller RA, Breese GR (1987) Behavioral and neurochemical responses to haloperidol and SCH-23390 in rats treated neonatally or as adults with 6-hydroxydopamine. J Pharmacol Exp Ther 243:1027–1034

    PubMed  CAS  Google Scholar 

  • Efron D, Jarman F, Barker M (1997) Methylphenidate versus dexamphetamine in children with attention deficit hyperactivity disorder: a double-blind, crossover trial. Pediatrics 100:E6

    PubMed  CAS  Google Scholar 

  • Elia J, Borcherding BG, Rapoport JL, Keysor CS (1991) Methylphenidate and dextroamphetamine treatments of hyperactivity: are there true nonresponders? Psychiatry Res 36:141–155

    PubMed  CAS  Google Scholar 

  • Erinoff L, MacPhail RC, Heller A, Seiden LS (1979) Age-dependent effects of 6-hydroxydopamine on locomotor activity in the rat. Brain Res 164:195–205

    PubMed  CAS  Google Scholar 

  • Evenden J, Meyerson B (1999) The behavior of spontaneously hypertensive and Wistar Kyoto rats under a paced fixed consecutive number schedule of reinforcement. Pharmacol Biochem Behav 63:71–82

    PubMed  CAS  Google Scholar 

  • Fan X, Hess EJ (2007) D2-like dopamine receptors mediate the response to amphetamine in a mouse model of ADHD. Neurobiol Dis 26:201–211

    PubMed  CAS  Google Scholar 

  • Fan X, Xu M, Hess EJ (2010) D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol Dis 37:228–236

    PubMed  CAS  Google Scholar 

  • Fauchey V, Jaber M, Caron MG, Bloch B, Le Moine C (2000) Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur J Neurosci 12:19–26

    PubMed  CAS  Google Scholar 

  • Ferguson SA, Gough BJ, Cada AM (2003) In vivo basal and amphetamine-induced striatal dopamine and metabolite levels are similar in the spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley male rats. Physiol Behav 80:109–114

    PubMed  CAS  Google Scholar 

  • Fisher AS, Stewart RJ, Yan TC, Hunt SP, Stanford SC (2007) Disruption of noradrenergic transmission and the behavioural response to a novel environment in NK1R−/− mice. Eur J Neurosci 25:1195–1204

    PubMed  Google Scholar 

  • Fox AT, Hand DJ, Reilly MP (2008) Impulsive choice in a rodent model of attention-deficit/hyperactivity disorder. Behav Brain Res 187:146–152

    PubMed  Google Scholar 

  • Froger N, Gardier AM, Moratalla R, Alberti I, Lena I, Boni C, De Felipe C, Rupniak NM, Hunt SP, Jacquot C, Hamon M, Lanfumey L (2001) 5-hydroxytryptamine (5-HT)1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressant-induced desensitization. J Neurosci 21:8188–8197

    PubMed  CAS  Google Scholar 

  • Fujita S, Okutsu H, Yamaguchi H, Nakamura S, Adachi K, Saigusa T, Koshikawa N (2003) Altered pre- and postsynaptic dopamine receptor functions in spontaneously hypertensive rat: an animal model of attention-deficit hyperactivity disorder. J Oral Sci 45:75–83

    PubMed  CAS  Google Scholar 

  • Fuller RW, Hemrick-Luecke SK, Wong DT, Pearson D, Threlkeld PG, Hynes MD III (1983) Altered behavioral response to a D2 agonist, LY141865, in spontaneously hypertensive rats exhibiting biochemical and endocrine responses similar to those in normotensive rats. J Pharmacol Exp Ther 227:354–359

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 26:148–153

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    PubMed  CAS  Google Scholar 

  • Garnock-Jones KP, Keating GM (2010) Spotlight on atomoxetine in attention-deficit hyperactivity disorder in children and adolescents. CNS Drugs 24:85–88

    PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    PubMed  CAS  Google Scholar 

  • Gong L, Kostrzewa RM, Fuller RW, Perry KW (1992) Supersensitization of the oral response to SKF 38393 in neonatal 6-OHDA-lesioned rats is mediated through a serotonin system. J Pharmacol Exp Ther 261:1000–1007

    PubMed  CAS  Google Scholar 

  • Gong L, Kostrzewa RM, Perry KW, Fuller RW (1993) Dose-related effects of a neonatal 6-OHDA lesion on SKF 38393- and m-chlorophenylpiperazine-induced oral activity responses of rats. Brain Res Dev Brain Res 76:233–238

    PubMed  CAS  Google Scholar 

  • Heal DJ, Smith SL, Kulkarni RS, Rowley HL (2008) New perspectives from microdialysis studies in freely-moving, spontaneously hypertensive rats on the pharmacology of drugs for the treatment of ADHD. Pharmacol Biochem Behav 90:184–197

    PubMed  CAS  Google Scholar 

  • Heffner TG, Seiden LS (1982) Possible involvement of serotonergic neurons in the reduction of locomotor hyperactivity caused by amphetamine in neonatal rats depleted of brain dopamine. Brain Res 244:81–90

    PubMed  CAS  Google Scholar 

  • Herpfer I, Hunt SP, Stanford SC (2005) A comparison of neurokinin 1 receptor knock-out (NK1−/−) and wildtype mice: exploratory behaviour and extracellular noradrenaline concentration in the cerebral cortex of anaesthetized subjects. Neuropharmacology 48:706–719

    PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, Luthman J, Ferre S (1994) Unilateral neonatal intracerebroventricular 6-hydroxydopamine administration in rats: II. Effects on extracellular monoamine, acetylcholine and adenosine levels monitored with in vivo microdialysis. Psychopharmacology (Berl) 116:451–456

    CAS  Google Scholar 

  • Hess EJ, Collins KA, Copeland NG, Jenkins NA, Wilson MC (1994) Deletion map of the coloboma (Cm) locus on mouse chromosome 2. Genomics 21:257–261

    PubMed  CAS  Google Scholar 

  • Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16:3104–3111

    PubMed  CAS  Google Scholar 

  • Howes LG, Rowe PR, Summers RJ, Louis WJ (1984) Age related changes of catecholamines and their metabolites in central nervous system regions of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Clin Exp Hypertens A 6:2263–2277

    PubMed  CAS  Google Scholar 

  • Hynes MD, Langer DH, Hymson DL, Pearson DV, Fuller RW (1985) Differential effects of selected dopaminergic agents on locomotor activity in normotensive and spontaneously hypertensive rats. Pharmacol Biochem Behav 23:445–448

    PubMed  CAS  Google Scholar 

  • Ikegami M, Ichitani Y, Takahashi T, Iwasaki T (2006) Compensatory increase in extracellular dopamine in the nucleus accumbens of adult rats with neonatal 6-hydroxydopamine treatment. Nihon Shinkei Seishin Yakurigaku Zasshi 26:111–117

    PubMed  CAS  Google Scholar 

  • Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B, Bloch B, Caron MG (1999) Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci 11:3499–3511

    PubMed  CAS  Google Scholar 

  • Jackson D, Abercrombie ED (1992) In vivo neurochemical evaluation of striatal serotonergic hyperinnervation in rats depleted of dopamine at infancy. J Neurochem 58:890–897

    PubMed  CAS  Google Scholar 

  • Jentsch JD (2005) Impaired visuospatial divided attention in the spontaneously hypertensive rat. Behav Brain Res 157:323–330

    PubMed  Google Scholar 

  • Johnson BJ, Bruno JP (1990) D1 and D2 receptor contributions to ingestive and locomotor behavior are altered after dopamine depletions in neonatal rats. Neurosci Lett 118:120–123

    PubMed  CAS  Google Scholar 

  • Jones MD, Hess EJ (2003) Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav 75:209–216

    PubMed  CAS  Google Scholar 

  • Jones CR, Palacios JM, Hoyer D, Buhler FR (1990) Receptor modification in the brains of spontaneously hypertensive and Wistar-Kyoto rats: regionally specific and selective increase in cerebellar beta 2-adrenoceptors. Br J Clin Pharmacol 30(Suppl 1):174S–177S

    PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    PubMed  CAS  Google Scholar 

  • Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, White FJ, Caron MG (1999) Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci 2:649–655

    PubMed  CAS  Google Scholar 

  • Jones MD, Williams ME, Hess EJ (2001a) Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav 68:669–676

    PubMed  CAS  Google Scholar 

  • Jones MD, Williams ME, Hess EJ (2001b) Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res Mol Brain Res 96:114–121

    PubMed  CAS  Google Scholar 

  • Kirouac GJ, Ganguly PK (1993) Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neuroscience 52:135–141

    PubMed  CAS  Google Scholar 

  • Kirouac GJ, Ganguly PK (1995) Cholecystokinin-induced release of dopamine in the nucleus accumbens of the spontaneously hypertensive rat. Brain Res 689:245–253

    PubMed  CAS  Google Scholar 

  • Kostrzewa RM, Gong L, Brus R (1993) Serotonin (5-HT) systems mediate dopamine (DA) receptor supersensitivity. Acta Neurobiol Exp (Wars) 53:31–41

    CAS  Google Scholar 

  • Kostrzewa RM, Brus R, Kalbfleisch JH, Perry KW, Fuller RW (1994) Proposed animal model of attention deficit hyperactivity disorder. Brain Res Bull 34:161–167

    PubMed  CAS  Google Scholar 

  • Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF (2003) Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8:309–315

    PubMed  CAS  Google Scholar 

  • Le Fur G, Guilloux F, Uzan A (1983) Evidence for an increase in [3H]spiperone binding in hypothalamic nuclei during the development of spontaneous hypertension in the rat. Clin Exp Hypertens A 5:1537–1542

    PubMed  Google Scholar 

  • Li B, Arime Y, Hall FS, Uhl GR, Sora I (2010) Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice. Eur J Pharmacol 628:104–107

    PubMed  CAS  Google Scholar 

  • Lim DK, Ito Y, Hoskins B, Rockhold RW, Ho IK (1989) Comparative studies of muscarinic and dopamine receptors in three strains of rat. Eur J Pharmacol 165:279–287

    PubMed  CAS  Google Scholar 

  • Linthorst AC, Van den Buuse M, De Jong W, Versteeg DH (1990) Electrically stimulated [3H]dopamine and [14C]acetylcholine release from nucleus caudatus slices: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res 509:266–272

    PubMed  CAS  Google Scholar 

  • Linthorst AC, De Lang H, De Jong W, Versteeg DH (1991) Effect of the dopamine D2 receptor agonist quinpirole on the in vivo release of dopamine in the caudate nucleus of hypertensive rats. Eur J Pharmacol 201:125–133

    PubMed  CAS  Google Scholar 

  • Linthorst AC, Broekhoven MH, De Jong W, Van Wimersma Greidanus TB, Versteeg DH (1992) Effect of SCH 23390 and quinpirole on novelty-induced grooming behaviour in spontaneously hypertensive rats and Wistar-Kyoto rats. Eur J Pharmacol 219:23–28

    PubMed  CAS  Google Scholar 

  • Linthorst AC, De Jong W, De Boer T, Versteeg DH (1993) Dopamine D1 and D2 receptors in the caudate nucleus of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats. Brain Res 602:119–125

    PubMed  CAS  Google Scholar 

  • Liu LL, Yang J, Lei GF, Wang GJ, Wang YW, Sun RP (2008) Atomoxetine increases histamine release and improves learning deficits in an animal model of attention-deficit hyperactivity disorder: the spontaneously hypertensive rat. Basic Clin Pharmacol Toxicol 102:527–532

    PubMed  CAS  Google Scholar 

  • Loupe PS, Zhou X, Davies MI, Schroeder SR, Tessel RE, Lunte SM (2002) Fixed ratio discrimination training increases in vivo striatal dopamine in neonatal 6-OHDA-lesioned rats. Pharmacol Biochem Behav 74:61–71

    PubMed  CAS  Google Scholar 

  • Lubow RE, Josman ZE (1993) Latent inhibition deficits in hyperactive children. J Child Psychol Psychiatry 34:959–973

    PubMed  CAS  Google Scholar 

  • Luque JM, Guillamon A, Hwang BH (1991) Quantitative autoradiographic study on tyrosine hydroxylase mRNA with in situ hybridization and alpha 2 adrenergic receptor binding in the locus coeruleus of the spontaneously hypertensive rat. Neurosci Lett 131:163–166

    PubMed  CAS  Google Scholar 

  • Luthman J, Fredriksson A, Lewander T, Jonsson G, Archer T (1989a) Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology (Berl) 99:550–557

    CAS  Google Scholar 

  • Luthman J, Fredriksson A, Sundstrom E, Jonsson G, Archer T (1989b) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 33:267–277

    PubMed  CAS  Google Scholar 

  • Luthman J, Brodin E, Sundstrom E, Wiehager B (1990a) Studies on brain monoamine and neuropeptide systems after neonatal intracerebroventricular 6-hydroxydopamine treatment. Int J Dev Neurosci 8:549–560

    PubMed  CAS  Google Scholar 

  • Luthman J, Lindqvist E, Young D, Cowburn R (1990b) Neonatal dopamine lesion in the rat results in enhanced adenylate cyclase activity without altering dopamine receptor binding or dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein (DARPP-32) immunoreactivity. Exp Brain Res 83:85–95

    PubMed  CAS  Google Scholar 

  • Luthman J, Friedemann M, Bickford P, Olson L, Hoffer BJ, Gerhardt GA (1993a) In vivo electrochemical measurements and electrophysiological studies of rat striatum following neonatal 6-hydroxydopamine treatment. Neuroscience 52:677–687

    PubMed  CAS  Google Scholar 

  • Luthman J, Friedemann MN, Hoffer BJ, Gerhardt GA (1993b) In vivo electrochemical measurements of exogenous dopamine clearance in normal and neonatal 6-hydroxydopamine-treated rat striatum. Exp Neurol 122:273–282

    PubMed  CAS  Google Scholar 

  • Luthman J, Lindqvist E, Ogren SO (1995) Hyperactivity in neonatally dopamine-lesioned rats requires residual activity in mesolimbic dopamine neurons. Pharmacol Biochem Behav 51:159–163

    PubMed  CAS  Google Scholar 

  • Luthman J, Friedemann MN, Hoffer BJ, Gerhardt GA (1997) In vivo electrochemical measurements of serotonin clearance in rat striatum: effects of neonatal 6-hydroxydopamine-induced serotonin hyperinnervation and serotonin uptake inhibitors. J Neural Transm 104:379–397

    PubMed  CAS  Google Scholar 

  • Masuo Y, Ishido M, Morita M, Oka S, Niki E (2004) Motor activity and gene expression in rats with neonatal 6-hydroxydopamine lesions. J Neurochem 91:9–19

    PubMed  CAS  Google Scholar 

  • Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S, Taylor E, Asherson P (2002) Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 114:269–271

    PubMed  Google Scholar 

  • Miller FE, Heffner TG, Kotake C, Seiden LS (1981) Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion. Brain Res 229:123–132

    PubMed  CAS  Google Scholar 

  • Molina-Holgado E, Dewar KM, Descarries L, Reader TA (1994) Altered dopamine and serotonin metabolism in the dopamine-denervated and serotonin-hyperinnervated neostriatum of adult rat after neonatal 6-hydroxydopamine. J Pharmacol Exp Ther 270:713–721

    PubMed  CAS  Google Scholar 

  • Moran-Gates T, Zhang K, Baldessarini RJ, Tarazi FI (2005) Atomoxetine blocks motor hyperactivity in neonatal 6-hydroxydopamine-lesioned rats: implications for treatment of attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 8:439–444

    PubMed  CAS  Google Scholar 

  • Myers MM, Whittemore SR, Hendley ED (1981) Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats (SHR). Brain Res 220:325–338

    PubMed  CAS  Google Scholar 

  • Myers MM, Musty RE, Hendley ED (1982) Attenuation of hyperactivity in the spontaneously hypertensive rat by amphetamine. Behav Neural Biol 34:42–54

    PubMed  CAS  Google Scholar 

  • Nowak P, Bortel A, Dabrowska J, Oswiecimska J, Drosik M, Kwiecinski A, Opara J, Kostrzewa RM, Brus R (2007) Amphetamine and mCPP effects on dopamine and serotonin striatal in vivo microdialysates in an animal model of hyperactivity. Neurotox Res 11:131–144

    PubMed  CAS  Google Scholar 

  • Oke AF, Adams RN (1978) Selective attention dysfunctions in adult rats neonatally treated with 6-hydoxydopamine. Pharmacol Biochem Behav 9:429–432

    PubMed  CAS  Google Scholar 

  • Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG (2002) A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res 130:171–179

    PubMed  CAS  Google Scholar 

  • Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE, Wilson MC (1997) Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 68:176–186

    PubMed  CAS  Google Scholar 

  • Radja F, Descarries L, Dewar KM, Reader TA (1993) Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res 606:273–285

    PubMed  CAS  Google Scholar 

  • Raison S, Weissmann D, Rousset C, Pujol JF, Descarries L (1995) Changes in steady-state levels of tryptophan hydroxylase protein in adult rat brain after neonatal 6-hydroxydopamine lesion. Neuroscience 67:463–475

    PubMed  CAS  Google Scholar 

  • Russell VA (2000) The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev 24:133–136

    PubMed  CAS  Google Scholar 

  • Russell VA (2002) Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder – the spontaneously hypertensive rat. Behav Brain Res 130:191–196

    PubMed  CAS  Google Scholar 

  • Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J (1998) Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of Attention-Deficit Hyperactivity Disorder. Behav Brain Res 94:163–171

    PubMed  CAS  Google Scholar 

  • Russell V, Allie S, Wiggins T (2000) Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder – the spontaneously hypertensive rat. Behav Brain Res 117:69–74

    PubMed  CAS  Google Scholar 

  • Sadile AG (2000) Multiple evidence of a segmental defect in the anterior forebrain of an animal model of hyperactivity and attention deficit. Neurosci Biobehav Rev 24:161–169

    PubMed  CAS  Google Scholar 

  • Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct 2:41

    PubMed  Google Scholar 

  • Sagvolden T, Metzger MA, Schiorbeck HK, Rugland AL, Spinnangr I, Sagvolden G (1992) The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol 58:103–112

    PubMed  CAS  Google Scholar 

  • Sagvolden T, Aase H, Zeiner P, Berger D (1998) Altered reinforcement mechanisms in attention-deficit/hyperactivity disorder. Behav Brain Res 94:61–71

    PubMed  CAS  Google Scholar 

  • Santarelli L, Gobbi G, Debs PC, Sibille ET, Blier P, Hen R, Heath MJ (2001) Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci USA 98:1912–1917

    PubMed  CAS  Google Scholar 

  • Shaywitz BA, Klopper JH, Yager RD, Gordon JW (1976a) Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine. Nature 261:153–155

    PubMed  CAS  Google Scholar 

  • Shaywitz BA, Yager RD, Klopper JH (1976b) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191:305–308

    PubMed  CAS  Google Scholar 

  • Shaywitz BA, Klopper JH, Gordon JW (1978) Methylphenidate in 6-hydroxydopamine-treated developing rat pups. Effects on activity and maze performance. Arch Neurol 35:463–469

    PubMed  CAS  Google Scholar 

  • Shen HW, Hagino Y, Kobayashi H, Shinohara-Tanaka K, Ikeda K, Yamamoto H, Yamamoto T, Lesch KP, Murphy DL, Hall FS, Uhl GR, Sora I (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29:1790–1799

    PubMed  CAS  Google Scholar 

  • Snyder AM, Zigmond MJ, Lund RD (1986) Sprouting of serotoninergic afferents into striatum after dopamine-depleting lesions in infant rats: a retrograde transport and immunocytochemical study. J Comp Neurol 245:274–281

    PubMed  CAS  Google Scholar 

  • Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, Lesch KP, Murphy DL, Uhl GR (1998) Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci U S A 95:7699–7704

    PubMed  CAS  Google Scholar 

  • Spielewoy C, Roubert C, Hamon M, Nosten-Bertrand M, Betancur C, Giros B (2000) Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behav Pharmacol 11:279–290

    PubMed  CAS  Google Scholar 

  • Stachowiak MK, Bruno JP, Snyder AM, Stricker EM, Zigmond MJ (1984) Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Res 291:164–167

    PubMed  CAS  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    PubMed  CAS  Google Scholar 

  • Towle AC, Criswell HE, Maynard EH, Lauder JM, Joh TH, Mueller RA, Breese GR (1989) Serotonergic innervation of the rat caudate following a neonatal 6-hydroxydopamine lesion: an anatomical, biochemical and pharmacological study. Pharmacol Biochem Behav 34:367–374

    PubMed  CAS  Google Scholar 

  • Tsuda K, Tsuda S, Masuyama Y, Goldstein M (1990) Norepinephrine release and neuropeptide Y in medulla oblongata of spontaneously hypertensive rats. Hypertension 15:784–790

    PubMed  CAS  Google Scholar 

  • van den Buuse M, de Jong W (1989) Differential effects of dopaminergic drugs on open-field behavior of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats. J Pharmacol Exp Ther 248:1189–1196

    PubMed  Google Scholar 

  • van den Buuse M, Linthorst AC, Versteeg DH, de Jong W (1991) Role of brain dopamine systems in the development of hypertension in the spontaneously hypertensive rat. Clin Exp Hypertens A 13:653–659

    PubMed  Google Scholar 

  • van den Buuse M, Jones CR, Wagner J (1992) Brain dopamine D-2 receptor mechanisms in spontaneously hypertensive rats. Brain Res Bull 28:289–297

    PubMed  Google Scholar 

  • Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102

    PubMed  CAS  Google Scholar 

  • Yamada S, Ashizawa N, Nakayama K, Tomita T, Hayashi E (1989) Decreased density of alpha 2-adrenoceptors in medulla oblongata of spontaneously hypertensive rats. J Cardiovasc Pharmacol 13:440–446

    PubMed  CAS  Google Scholar 

  • Yan TC, Hunt SP, Stanford SC (2009) Behavioural and neurochemical abnormalities in mice lacking functional tachykinin-1 (NK1) receptors: a model of attention deficit hyperactivity disorder. Neuropharmacology 57:627–635

    PubMed  CAS  Google Scholar 

  • Yan TC, McQuillin A, Thapar A, Asherson P, Hunt SP, Stanford SC, Gurling H (2010) NK1 (TACR1) receptor gene ‘knockout’ mouse phenotype predicts genetic association with ADHD. J Psychopharmacol 24:27–38

    PubMed  Google Scholar 

  • Yousfi-Alaoui MA, Hospital S, Garcia-Sanz A, Badia A, Clos MV (2001) Presynaptic modulation of K+-evoked [3H]dopamine release in striatal and frontal cortical synaptosomes of normotensive and spontaneous-hypertensive rats. Neurochem Res 26:1271–1275

    PubMed  CAS  Google Scholar 

  • Zhang K, Davids E, Tarazi FI, Baldessarini RJ (2002a) Serotonin transporter binding increases in caudate-putamen and nucleus accumbens after neonatal 6-hydroxydopamine lesions in rats: implications for motor hyperactivity. Brain Res Dev Brain Res 137:135–138

    PubMed  CAS  Google Scholar 

  • Zhang K, Tarazi FI, Davids E, Baldessarini RJ (2002b) Plasticity of dopamine D4 receptors in rat forebrain: temporal association with motor hyperactivity following neonatal 6-hydroxydopamine lesioning. Neuropsychopharmacology 26:625–633

    PubMed  CAS  Google Scholar 

  • Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A 98:1982–1987

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen J. Hess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fan, X., Bruno, K.J., Hess, E.J. (2011). Rodent Models of ADHD. In: Stanford, C., Tannock, R. (eds) Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment. Current Topics in Behavioral Neurosciences, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_121

Download citation

Publish with us

Policies and ethics