Skip to main content

Linking ADHD, Impulsivity, and Drug Abuse: A Neuropsychological Perspective

  • Chapter
  • First Online:
Book cover Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 9))

Abstract

In this chapter, we consider the relevance of impulsivity as both a psychological construct and endophenotype underlying attention-deficit/hyperactivity disorder (ADHD) and drug addiction. The case for executive dysfunction in ADHD and drug addiction is critically reviewed in the context of dissociable cognitive control processes mediated by the dorsolateral prefrontal cortex (DLPFC), the orbital and ventral medial prefrontal cortex (VMPFC). We argue that such neuroanatomical divisions within the prefrontal cortex are likely to account for the multidimensional basis of impulsivity conceptually categorized in terms of “motoric” and “choice” impulsivity. The relevance of this distinction for the etiology of ADHD and drug addiction is integrated within a novel theoretical framework. This scheme embraces animal learning theory to help explain the heterogeneity of impulse control disorders, which are exemplified by ADHD as a vulnerability disorder for drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-CSRTT:

5-Choice serial reaction time task

5-HT:

5-Hydroxytryptamine (serotonin)

ADHD:

Attention deficit hyperactivity disorder

CR:

Conditioned reinforcer

DA:

Dopamine

DAT:

Dopamine transporter

DLPFC:

Dorsolateral prefrontal cortex

DRL:

Differential response to low rates of reinforcement

fMRI:

Functional magnetic resonance imaging

IFG:

Inferior frontal gyrus

IL:

Infralimbic (cortex)

mPFC:

Medial prefrontal cortex

NAcb:

Nucleus accumbens

O:

Outcome

OFC:

Orbitofrontal cortex

PET:

Positron emission tomography

PIT:

Pavlovian to instrumental transfer

R:

Response

RD :

Response followed by a delayed outcome

RI :

Response followed by an immediate outcome

S:

Stimulus

SN:

Substantia nigra

SSRT:

Stop-signal reaction time

SST:

Stop-signal task

TMS:

Transcranial magnetic stimulation

VMPFC:

Ventromedial prefrontal cortex

VTA:

Ventral tegmental area

References

  • Abikoff H, Courtney ME, Szeibel PJ, Koplewicz HS (1996) The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children. J Learn Disabil 29:238–246

    PubMed  CAS  Google Scholar 

  • Adams JB, Heath AJ, Young SE, Hewitt JK, Corley RP, Stallings MC (2003) Relationships between personality and preferred substance and motivations for use among adolescent substance abusers. Am J Drug Alcohol Abuse 29:691–712

    PubMed  Google Scholar 

  • Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82:463–496

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Anker JJ, Perry JL, Gliddon LA, Carroll ME (2009) Impulsivity predicts the escalation of cocaine self-administration in rats. Pharmacol Biochem Behav 93:343–348

    PubMed  CAS  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116

    PubMed  CAS  Google Scholar 

  • Bari A, Robbins TW, Dalley JW (2011) Impulsivity. In: Olmstead M (ed) Animal models of drug addiction, Neuromethods (in press) DOI 10.1007/978-1-60761-934-5_14. Springer Science + Business Media, LLC 2011

  • Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94

    PubMed  CAS  Google Scholar 

  • Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320:1352–1355

    PubMed  CAS  Google Scholar 

  • Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199:89–102

    PubMed  Google Scholar 

  • Beveridge TJR, Gill KE, Hanlon CA, Porrino LJ (2008) Review. Parallel studies of cocaine-related neural and cognitive impairment in humans and monkeys. Philos Trans R Soc Lond B Biol Sci 363:3257–3266

    PubMed  Google Scholar 

  • Bolla KI, Cadet JL, London ED (1998) The neuropsychiatry of chronic cocaine abuse. J Neuropsychiatry Clin Neurosci 10:280–289

    PubMed  CAS  Google Scholar 

  • Caprioli D, Celentano M, Dubla A, Lucantonio F, Nencini P, Badiani A (2009) Ambience and drug choice: cocaine- and heroin-taking as a function of environmental context in humans and rats. Biol Psychiatry 65:893–899

    PubMed  CAS  Google Scholar 

  • Cardinal RN, Cheung THC (2005) Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci 6:9

    PubMed  Google Scholar 

  • Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl) 152:362–375

    CAS  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292:2499–2501

    PubMed  CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    PubMed  Google Scholar 

  • Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3:617–628

    PubMed  CAS  Google Scholar 

  • Castellanos FX, Sonuga-Barke EJS, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 57:1416–1423

    PubMed  Google Scholar 

  • Castellanos FX, Sonuga-Barke EJS, Milham MP, Tannock R (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci (Regul Ed) 10:117–123

    Google Scholar 

  • Chambers CD, Bellgrove MA, Stokes MG, Henderson TR, Garavan H, Robertson IH, Morris AP, Mattingley JB (2006) Executive ‘brake failure’ following deactivation of human frontal lobe. J Cogn Neurosci 18:444–455

    PubMed  Google Scholar 

  • Cheung THC, Cardinal RN (2005) Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neurosci 6:36

    PubMed  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    PubMed  CAS  Google Scholar 

  • Colwill RM, Rescorla RA (1990) Evidence for the hierarchical structure of instrumental learning. Anim Learn Behav 18:71–82

    Google Scholar 

  • Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci 25:962–970

    PubMed  CAS  Google Scholar 

  • Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur J Neurosci 26:3141–3149

    PubMed  Google Scholar 

  • Crombag HS, Galarce EM, Holland PC (2008) Pavlovian influences on goal-directed behavior in mice: the role of cue-reinforcer relations. Learn Mem 15:299–303

    PubMed  Google Scholar 

  • Dalley JW, Everitt BJ (2009) Dopamine receptors in the learning, memory and drug reward circuitry. Semin Cell Dev Biol 20:403–410

    PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    PubMed  CAS  Google Scholar 

  • Dalley JW, Theobald DEH, Berry D, Milstein JA, Lääne K, Everitt BJ, Robbins TW (2005) Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsychopharmacology 30:525–537

    PubMed  CAS  Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ESJ, Theobald DEH, Lääne K, Peña Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron J, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    PubMed  CAS  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250–260

    PubMed  CAS  Google Scholar 

  • Daniel R, Pollmann S (2010) Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning. J Neurosci 30:47–55

    PubMed  CAS  Google Scholar 

  • de Wit H (2009) Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol 14:22–31

    PubMed  Google Scholar 

  • Di Ciano P, Everitt BJ (2003) Differential control over drug-seeking behavior by drug-associated conditioned reinforcers and discriminative stimuli predictive of drug availability. Behav Neurosci 117:952–960

    PubMed  Google Scholar 

  • Dickinson A (1985) Actions and habits: the development of behavioural autonomy. Philos Trans R Soc Lond B Biol Sci 308:67–78

    Google Scholar 

  • Dickinson A, Watt A, Griffiths WJH (1992) Free-operant acquisition with delayed reinforcement. Q J Exp Psychol B 45:241–258

    Google Scholar 

  • Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer ANM, De Vries TJ (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63:301–308

    PubMed  CAS  Google Scholar 

  • Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34:50–72

    PubMed  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117:1302–1317

    PubMed  CAS  Google Scholar 

  • Eagle DM, Baunez C, Hutcheson DM, Lehmann O, Shah AP, Robbins TW (2008) Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb Cortex 18:178–188

    PubMed  Google Scholar 

  • Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ (2009) High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychiatry 65:851–856

    PubMed  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361

    CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135

    PubMed  Google Scholar 

  • Figner B, Knoch D, Johnson EJ, Krosch AR, Lisanby SH, Fehr E, Weber EU (2010) Lateral prefrontal cortex and self-control in intertemporal choice. Nat Neurosci 13:538–539

    PubMed  CAS  Google Scholar 

  • Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35:591–604

    PubMed  Google Scholar 

  • Flagel SB, Robinson TE, Clark JJ, Clinton SM, Watson SJ, Seeman P, Phillips PEM, Akil H (2010) An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology 35:388–400

    PubMed  Google Scholar 

  • Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akers CA, Clinton SM, Phillips PEM, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469:53–57

    Google Scholar 

  • Fuster JM (2000) Prefrontal neurons in networks of executive memory. Brain Res Bull 52:331–336

    PubMed  CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    PubMed  Google Scholar 

  • Groenewegen HJ, Mulder AB, Beijer AVJ, Wright CI, Lopes da Silva FH, Pennartz CMA (1999) Hippocampal and amygdaloid interactions in the nucleus accumbens. Psychobiology 27:149–164

    Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    PubMed  Google Scholar 

  • Hester R, Garavan H (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci 24:11017–11022

    PubMed  CAS  Google Scholar 

  • Holland PC, Bouton ME (1999) Hippocampus and context in classical conditioning. Curr Opin Neurobiol 9:195–202

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl) 146:373–390

    CAS  Google Scholar 

  • Johansen EB, Killeen PR, Russell VA, Tripp G, Wickens JR, Tannock R, Williams J, Sagvolden T (2009) Origins of altered reinforcement effects in ADHD. Behav Brain Funct 5:7

    PubMed  Google Scholar 

  • Kalivas PW, O'Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33:166–180

    PubMed  CAS  Google Scholar 

  • Kirby KN, Petry NM (2004) Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99:461–471

    PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    PubMed  Google Scholar 

  • Lambek R, Tannock R, Dalsgaard S, Trillingsgaard A, Damm D, Thomsen PH (2010) Validating neuropsychological subtypes of ADHD: how do children with and without an executive function deficit differ? J Child Psychol Psychiatry 51:895–904

    PubMed  Google Scholar 

  • Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21:2799–2807

    PubMed  CAS  Google Scholar 

  • Lijffijt M, Kenemans JL, Verbaten MN, van Engeland H (2005) A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J Abnorm Psychol 114:216–222

    PubMed  Google Scholar 

  • Liu S, Heitz RP, Bradberry CW (2009) A touch screen based Stop Signal Response Task in rhesus monkeys for studying impulsivity associated with chronic cocaine self-administration. J Neurosci Methods 177:67–72

    PubMed  Google Scholar 

  • Logan GD (1994) On the ability to inhibit thought and action: a users’ guide to the stop signal paradigm. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory, and language. Academic Press, San Diego, CA US, pp 189–239

    Google Scholar 

  • Luman M, Tripp G, Scheres A (2010) Identifying the neurobiology of altered reinforcement sensitivity in ADHD: a review and research agenda. Neurosci Biobehav Rev 34:744–754

    PubMed  Google Scholar 

  • Marco-Pallarés J, Mohammadi B, Samii A, Münte TF (2010) Brain activations reflect individual discount rates in intertemporal choice. Brain Res 1320:123–129

    PubMed  Google Scholar 

  • McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507

    PubMed  CAS  Google Scholar 

  • McClure SM, Ericson KM, Laibson DI, Loewenstein G, Cohen JD (2007) Time discounting for primary rewards. J Neurosci 27:5796–5804

    PubMed  CAS  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65

    PubMed  CAS  Google Scholar 

  • Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158:1783–1793

    PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    PubMed  CAS  Google Scholar 

  • Nigg JT, Wong MM, Martel MM, Jester JM, Puttler LI, Glass JM, Adams KM, Fitzgerald HE, Zucker RA (2006) Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. J Am Acad Child Adolesc Psychiatry 45:468–475

    PubMed  Google Scholar 

  • Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, Robbins TW (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126

    PubMed  CAS  Google Scholar 

  • Pearce JM, Hall G (1979) The influence of context-reinforcer associations on instrumental performance. Anim Learn Behav 7:504–508

    Google Scholar 

  • Perry JL, Carroll ME (2008) The role of impulsive behavior in drug abuse. Psychopharmacology (Berl) 200:1–26

    CAS  Google Scholar 

  • Perry JL, Larson EB, German JP, Madden GJ, Carroll ME (2005) Impulsivity (delay discounting) as a predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology (Berl) 178:193–201

    CAS  Google Scholar 

  • Piazza PV, Deminière JM, Le Moal M, Simon H (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513

    PubMed  CAS  Google Scholar 

  • Plessen KJ, Bansal R, Zhu H, Whiteman R, Amat J, Quackenbush GA, Martin L, Durkin K, Blair C, Royal J, Hugdahl K, Peterson BS (2006) Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 63:795–807

    PubMed  Google Scholar 

  • Plichta MM, Vasic N, Wolf RC, Lesch K, Brummer D, Jacob C, Fallgatter AJ, Grön G (2009) Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 65:7–14

    PubMed  Google Scholar 

  • Porrino LJ, Smith HR, Nader MA, Beveridge TJ (2007) The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry 31:1593–1600

    PubMed  CAS  Google Scholar 

  • Reed P, Reilly S (1990) Context extinction following conditioning with delayed reward enhances subsequent instrumental responding. J Exp Psychol Anim Behav Process 16:48–55

    PubMed  CAS  Google Scholar 

  • Robbins TW (1996) Dissociating executive functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1463–1470, discussion 1470–1471

    PubMed  CAS  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380

    CAS  Google Scholar 

  • Roberts AC, Robbins TW, Weiskrantz L (eds) (1998) The prefrontal cortex: executive and cognitive functions. Oxford University Press, New York, NY US

    Google Scholar 

  • Robinson TE, Flagel SB (2009) Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biol Psychiatry 65:869–873

    PubMed  Google Scholar 

  • Robinson ESJ, Eagle DM, Economidou D, Theobald DEH, Mar AC, Murphy ER, Robbins TW, Dalley JW (2009) Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in ‘waiting’ versus ‘stopping’. Behav Brain Res 196:310–316

    PubMed  CAS  Google Scholar 

  • Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    PubMed  CAS  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    PubMed  CAS  Google Scholar 

  • Roiser JP, Cannon DM, Gandhi SK, Taylor Tavares J, Erickson K, Wood S, Klaver JM, Clark L, Zarate CA, Sahakian BJ, Drevets WC (2009) Hot and cold cognition in unmedicated depressed subjects with bipolar disorder. Bipolar Disord 11:178–189

    PubMed  Google Scholar 

  • Saunders BT, Robinson TE (2010) A cocaine cue acts as an incentive stimulus in some but not others: implications for addiction. Biol Psychiatry 67:730–736

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10:885–892

    PubMed  CAS  Google Scholar 

  • Shackman AJ, McMenamin BW, Maxwell JS, Greischar LL, Davidson RJ (2009) Right dorsolateral prefrontal cortical activity and behavioral inhibition. Psychol Sci 20:1500–1506

    PubMed  Google Scholar 

  • Sher KJ, Bartholow BD, Wood MD (2000) Personality and substance use disorders: a prospective study. J Consult Clin Psychol 68:818–829

    PubMed  CAS  Google Scholar 

  • Shors TJ (2004) Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends Neurosci 27:250–256

    PubMed  CAS  Google Scholar 

  • Sikström S, Söderlund G (2007) Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychological Rev 114:1047–1075

    Google Scholar 

  • Solanto MV (2002) Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 130:65–71

    PubMed  CAS  Google Scholar 

  • Solanto MV, Abikoff H, Sonuga-Barke E, Schachar R, Logan GD, Wigal T, Hechtman L, Hinshaw S, Turkel E (2001) The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multimodal treatment study of AD/HD. J Abnorm Child Psychol 29:215–228

    PubMed  CAS  Google Scholar 

  • Sonuga-Barke EJ (1994) On dysfunction and function in psychological theories of childhood disorder. J Child Psychol Psychiatry 35:801–815

    PubMed  CAS  Google Scholar 

  • Sonuga-Barke EJS (2003) The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev 27:593–604

    PubMed  Google Scholar 

  • Sonuga-Barke EJS (2005) Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 57:1231–1238

    PubMed  Google Scholar 

  • Sonuga-Barke EJ, Taylor E, Sembi S, Smith J (1992) Hyperactivity and delay aversion–I. the effect of delay on choice. J Child Psychol Psychiatry 33:387–398

    PubMed  CAS  Google Scholar 

  • Sonuga-Barke E, Bitsakou P, Thompson M (2010) Beyond the dual pathway model: evidence for the dissociation of timing, inhibitory, and delay-related impairments in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49:345–355

    PubMed  Google Scholar 

  • Stephens DN, Duka T, Crombag HS, Cunningham CL, Heilig M, Crabbe JC (2010) Reward sensitivity: issues of measurement, and achieving consilience between human and animal phenotypes. Addict Biol 15:145–168

    PubMed  Google Scholar 

  • Taylor JR, Robbins TW (1986) 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology (Berl) 90:390–397

    CAS  Google Scholar 

  • van Gaalen MM, Brueggeman RJ, Bronius PFC, Schoffelmeer ANM, Vanderschuren LJMJ (2006) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology (Berl) 187:73–85

    CAS  Google Scholar 

  • Verdejo-García A, Lawrence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev 32:777–810

    PubMed  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G, Newcorn J, Telang F, Solanto MV, Fowler JS, Logan J, Ma Y, Schulz K, Pradhan K, Wong C, Swanson JM (2007) Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 64:932–940

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G, Kollins SH, Wigal TL, Newcorn JH, Telang F, Fowler JS, Zhu W, Logan J, Ma Y, Pradhan K, Wong C, Swanson JM (2009) Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA 302:1084–1091

    PubMed  CAS  Google Scholar 

  • Voorn P, Vanderschuren LJMJ, Groenewegen HJ, Robbins TW, Pennartz CMA (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:468–474

    PubMed  CAS  Google Scholar 

  • Williams J (2010) Attention-deficit/hyperactivity disorder and discounting: multiple minor traits and states. In: Madden GJ, Bickel WK (eds) Impulsivity: the behavioral and neurological science of discounting. Washington DC, US. pp 323–357

    Google Scholar 

  • Wills TA, Vaccaro D, McNamara G (1994) Novelty seeking, risk taking, and related constructs as predictors of adolescent substance use: an application of Cloninger’s theory. J Subst Abuse 6:1–20

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DEH, Cardinal RN, Robbins TW (2004) Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    PubMed  Google Scholar 

  • Wong MM, Nigg JT, Zucker RA, Puttler LI, Fitzgerald HE, Jester JM, Glass JM, Adams K (2006) Behavioral control and resiliency in the onset of alcohol and illicit drug use: a prospective study from preschool to adolescence. Child Dev 77:1016–1033

    PubMed  Google Scholar 

  • Zeeb FD, Floresco SB, Winstanley CA (2010) Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology (Berl) 211:87–98

    CAS  Google Scholar 

  • Zuckerman M (1990) The psychophysiology of sensation seeking. J Pers 58:313–345

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Wellcome Trust Programme Grant (089589/Z/09/Z) awarded to T.W. Robbins, B. J. Everitt, A. C. Roberts, B.J. Sahakian, and JWD, MRC grants to B.J. Everitt (G0600196) and JWD (G0401068, G0701500) and by the European Community’s Sixth Framework Programme (“Imagen” LSNM-CT-2007-037286). GPU was supported by a Marie Curie Intra-European Fellowship (PIEF-GA-2009-237608) awarded by the European Commission. This review reflects only the authors’ views and the European Community is not liable for any use that may be made of the information contained therein. The authors thank Andrea Bari for insightful discussions. Figure 1 was adapted from best-lemming, brain, Google SketchUp 3D warehouse, http://sketchup.google.com/3dwarehouse/details?mid=bdde6508945af6e2a4dd6527f4a3f142 (accessed 8 July, 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Dalley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urcelay, G.P., Dalley, J.W. (2011). Linking ADHD, Impulsivity, and Drug Abuse: A Neuropsychological Perspective. In: Stanford, C., Tannock, R. (eds) Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment. Current Topics in Behavioral Neurosciences, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2011_119

Download citation

Publish with us

Policies and ethics