Skip to main content

Mouse Mutagenesis and Disease Models for Neuropsychiatric Disorders

  • Chapter
  • First Online:
Molecular and Functional Models in Neuropsychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

In this chapter, mutant mouse resources which have been developed by classical genetics as well as by modern large-scale mutagenesis projects are summarized. Various spontaneous and induced mouse mutations have been archived since the rediscovery of Mendel’s genetics in 1900. Moreover, genome-wide, large-scale mutagenesis efforts have recently been expanding the available mutant mouse resources. Forward genetics projects using ENU mutagenesis in the mouse were started in the mid-1990s. The widespread adoption of reverse genetics, using knockouts and conditional mutagenesis based on gene-targeting technology, followed. ENU mutagenesis has now evolved to provide a further resource for reverse genetics, with multiple point mutations in a single gene and this new approach is described. Researchers now have various options to obtain mutant mice: point mutations, transgenic mouse strains, and constitutional or conditional knockout mice. The established mutant strains have already contributed to modeling human diseases by elucidating the underlying molecular mechanisms as well as by providing preclinical applications. Examples of mutant mice, focusing on neurological and behavioral models for human diseases, are reviewed. Human diseases caused by a single gene or a small number of major genes have been well modeled by corresponding mutant mice. Current evidence suggests that quantitative traits based on polygenes are likely to be associated with a range of psychiatric diseases, and these are now coming within the range of modeling by mouse mutagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

CD:

2-Hydroxypropyl-b-cyclodextrin

CNS:

Central nervous system

DA:

Dopamine

DAAO:

d-amino acid oxidase

EA:

Episodic ataxia

EMMA:

European Mutant Mouse Archive

ENU:

N-ethyl-N-nitrosourea

EUCOMM:

European Conditional Mouse Mutagenesis

FST:

Forced swim test

FXTAS:

Fragile X tremor/ataxia syndrome

G0, G1, G2:

Generation-0, Generation-1, Generation-2

GAG:

Glycosaminoglycan

GSL:

Glycosphingolipid

HD:

Huntington’s disease

HRM:

High-resolution melting

IMSR:

International Mouse Strain Resource

KO:

Knockout

KOMP:

Knockout mouse mutagenesis project

L100P:

Leu100Pro

LI:

Latent inhibition

MEB:

Muscle–eye–brain disease

MPS:

Mucopolysaccharidosis

NMDAR:

N-methyl-d-aspartate receptor

NorCOMM:

North American Conditional Mouse Mutagenesis

NPC:

Niemann–Pick C disease

NSAID:

Nonsteroidal anti-inflammatory drug

OMIM:

Online Mendelian inheritance in man

PD:

Parkinson’s disease

PPI:

Prepulse inhibition

PS:

Presenilin

Q31L:

Glu31Leu

RIKEN BRC:

RIKEN BioResource Center

SCA:

Spinocerebellar ataxia

TAF:

TBP-associated factor

TBP:

TATA-binding protein

TFTC:

TBP-free TAF-containing complex

TGCE:

Temperature gradient capillary electrophoresis

References

  • Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645

    PubMed  CAS  Google Scholar 

  • Austin CP, Battey JF, Bradley A et al (2004) The knockout mouse project. Nat Genet 36:921–924

    PubMed  CAS  Google Scholar 

  • Auwerx J, Avner P, Baldock R et al (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927

    PubMed  CAS  Google Scholar 

  • Baek RC, Kasperzyk JL, Platt FM et al (2008) N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int 52:1125–1133

    PubMed  CAS  Google Scholar 

  • Basu AC, Tsai GE, Ma CL et al (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727

    PubMed  CAS  Google Scholar 

  • Baudry M, Yao Y, Simmons D et al (2003) Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 184:887–903

    PubMed  CAS  Google Scholar 

  • Beck M (2007) New therapeutic options for lysosomal storage disorders: Enzyme replacement, small molecules and gene therapy. Hum Genet 121:1–22

    PubMed  CAS  Google Scholar 

  • Bennett CD, Campbell MN, Cook CJ et al (2003) The LightTyper: high-throughput genotyping using fluorescent melting curve analysis. Biotechniques 34:1288–1295

    PubMed  CAS  Google Scholar 

  • Bhattacharyya R, Gliddon B, Beccari T et al (2001) A novel missense mutation in lysosomal sulfamidase is the basis of MPS III A in a spontaneous mouse mutant. Glycobiology 11:99–103

    PubMed  CAS  Google Scholar 

  • Bhaumik M, Muller VJ, Rozaklis T et al (1999) A mouse model for mucopolysaccharidosis type III A (Sanfilippo Syndrome). Glycobiology 9:1389–1396

    PubMed  CAS  Google Scholar 

  • Bountra C, Oppermann U, Heightman TD (2011) Animal models of epigenetic regulation in neuropsychiatric disorders. In: Current topics in behavioural neuroscience. Springer, Heidelberg. doi: 10.1007/7854_2010_104

    Google Scholar 

  • Brilliant MH, Gondo Y, Eicher EM (1991) Direct molecular identification of the mouse pink-eyed unstable mutation by genome scanning. Science 252:566–569

    PubMed  CAS  Google Scholar 

  • Burmeister M, McInnis MG, Zöllner S (2008) Psychiatric genetics: progress amid controversy. Nat Rev Genet 9:527–540

    PubMed  CAS  Google Scholar 

  • Cardone M, Polito VA, Pepe S et al (2006) Correction of Hunter syndrome in the MPSII mouse model by Aav2/8-mediated gene delivery. Hum Mol Genet 15:1225–1236

    PubMed  CAS  Google Scholar 

  • Chikaraishi DM, Deeb SS, Sueoka N (1978) Sequence complexity of nuclear RNAs in adult rat tissues. Cell 13:111–120

    PubMed  CAS  Google Scholar 

  • Chishti MA, Yang DS, Janus C et al (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570

    PubMed  CAS  Google Scholar 

  • Chumakov I, Blumenfeld M, Guerassimenko O et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680

    PubMed  CAS  Google Scholar 

  • Clapcote SJ, Roder JC (2006) Deletion polymorphism of Disc1 is common to all 129 mouse substrains: implications for gene-targeting studies of brain function. Genetics 173:2407–2410

    PubMed  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK et al (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    PubMed  CAS  Google Scholar 

  • Cohen-Tannoudji M, Marchand P, Akli S et al (1995) Disruption of murine Hexa gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay-Sachs disease. Mamm Genome 6:844–849

    PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384

    PubMed  CAS  Google Scholar 

  • Cressant A, Desmaris N, Verot L et al (2004) Improved behavior and neuropathology in the mouse model of Sanfilippo type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum. J Neurosci 24:10229–10239

    PubMed  CAS  Google Scholar 

  • Davidson CD, Ali NF, Micsenyi MC et al (2009) Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One 4:e6951

    PubMed  Google Scholar 

  • Di Domenico C, Villani GR, Di Napoli D et al (2009) Intracranial gene delivery of LV-NAGLU vector corrects neuropathology in murine MPS IIIB. Am J Med Genet A 149A:1209–1218

    PubMed  Google Scholar 

  • Doetschman T, Maeda N, Smithies O (1988) Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci USA 85:8583–8587

    PubMed  CAS  Google Scholar 

  • Dutch-Belgian Fragile X Consortium (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  • Duyao MP, Auerbach AB, Ryan A et al (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269:407–410

    PubMed  CAS  Google Scholar 

  • Elliot-Smith E, Speak AO, Lloyd-Evans E et al (2008) Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol Genet Metab 94:204–211

    PubMed  CAS  Google Scholar 

  • Emison ES, Garcia-Barcelo M, Grice EA et al (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 87:60–74

    PubMed  CAS  Google Scholar 

  • Fernandez-Gonzalez A, La Spada AR, Treadaway J et al (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295:1904–1906

    PubMed  CAS  Google Scholar 

  • Friedman MJ, Shah AG, Fang Z-H et al (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: Implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528

    PubMed  CAS  Google Scholar 

  • Fu H, Kang L, Jennings JS et al (2007) Significantly increased lifespan and improved behavioral performances by rAAV gene delivery in adult mucopolysaccharidosis IIIB mice. Gene Ther 14:1065–1077

    PubMed  CAS  Google Scholar 

  • Gao Q, Yeung ES (2000) High-throughput detection of unknown mutations by using multiplexed capillary electrophoresis with poly(vinylpyrrolidone) solution. Anal Chem 72:2499–2506

    PubMed  CAS  Google Scholar 

  • Gardner JM, Nakatsu Y, Gondo Y et al (1992) The mouse pink-eyed dilution gene: association with human Prader-Willi and Angelman syndromes. Science 257:1121–1124

    PubMed  CAS  Google Scholar 

  • Giasson B, Duda JE, Quinn SM et al (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521–533

    PubMed  CAS  Google Scholar 

  • Gondo Y (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9:803–810

    PubMed  CAS  Google Scholar 

  • Gondo Y, Gardner JM, Nakatsu Y et al (1993) High-frequency genetic reversion mediated by a DNA duplication: the mouse pink-eyed unstable mutation. Proc Natl Acad Sci USA 90:297–301

    PubMed  CAS  Google Scholar 

  • Gondo Y, Fukumura R, Murata T et al (2009) Next-generation gene targeting in the mouse for functional genomics. BMB Rep 42:315–323

    PubMed  CAS  Google Scholar 

  • Götz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544

    PubMed  Google Scholar 

  • Hahn CN, del Pilar, Martin M et al (1997) Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum Mol Genet 6:205–211

    Google Scholar 

  • Haldane JBS, Sprunt AD, Haldane NM (1915) Reduplication in mice. J Genet 5:133–135

    Google Scholar 

  • Heldermon CD, Hennig AK, Ohlemiller KK et al (2007) Development of sensory, motor and behavioral deficits in the murine model of Sanfilippo syndrome type B. PLoS One 2:e772

    PubMed  Google Scholar 

  • Helmlinger D, Hardy S, Abou-Sleymane G et al (2006) Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol 4:e67

    PubMed  Google Scholar 

  • Hemsley KM, Beard H, King BM et al (2008) Effect of high dose, repeated intra-CSF injection of sulphamidase on neuropathology in MPS IIIA mice. Genes Brain Behav 7:740–753

    CAS  Google Scholar 

  • Hemsley KM, Luck AJ, Crawley AC et al (2009) Examination of intravenous and intra-CSF protein delivery for treatment of neurological disease. Eur J Neurosci 29:1197–1214

    PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R et al (2005) D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585

    PubMed  CAS  Google Scholar 

  • Herson PS, Virk M, Rustay NR et al (2003) A mouse model of episodic ataxia type-1. Nat Neurosci 6:378–383

    PubMed  CAS  Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S et al (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104:14501–14506

    PubMed  CAS  Google Scholar 

  • Hitotsumachi S, Carpenter DA, Russell WL (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc Natl Acad Sci USA 82:6619–6621

    PubMed  CAS  Google Scholar 

  • Holcomb L, Gordon MN, McGowan E et al (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    PubMed  CAS  Google Scholar 

  • Huang JD, Mermall V, Strobel MC et al (1998) Molecular genetic dissection of mouse unconventional Myosin-VA: tail region mutations. Genetics 148:1963–1972

    PubMed  CAS  Google Scholar 

  • Inoue M, Sakuraba Y, Motegi H et al (2004) A series of maturity onset diabetes of the young, type 2 (MODY2) mouse models generated by a large-scale ENU mutagenesis program. Hum Mol Genet 13:1147–1157

    PubMed  CAS  Google Scholar 

  • International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • International Mouse Knockout Consortium (2007) A mouse for all reasons. Cell 128:9–13

    Google Scholar 

  • Itier J-M, Ibanez P, Mena MA et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291

    PubMed  CAS  Google Scholar 

  • Jakobkiewicz-Banecka J, Wegrzyn A, Wegrzyn G (2007) Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases. J Appl Genet 48:383–388

    PubMed  Google Scholar 

  • Jen JC, Graves TD, Hess EJ et al (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130:2484–2493

    PubMed  CAS  Google Scholar 

  • Jenkins NA, Copeland NG, Taylor BA et al (1981) Dilute (d) coat color mutation of DBA/2J mice is associated with the site of integration of an ecoctropic MuLV genome. Nature 293:370–374

    PubMed  CAS  Google Scholar 

  • Jenkins NA, Copeland NG, Taylor BA et al (1982) Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J Virol 43:26–36

    PubMed  CAS  Google Scholar 

  • Jiang C, Wan X, He Y et al (2005) Age-dependent dopaminergic dysfunction in Nurr1 knockout mice. Exp Neurol 191:154–162

    PubMed  CAS  Google Scholar 

  • Kamiya A, Kubo K, Tomoda T et al (2005) A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 7:1167–1178

    PubMed  Google Scholar 

  • Kasperzyk JL, d'Azzo A, Platt FM et al (2005) Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 46:744–751

    PubMed  CAS  Google Scholar 

  • Kimura M, Inoko H, Katsuki M et al (1985) Molecular genetic analysis of myelin-deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein. J Neurochem 44:692–696

    PubMed  CAS  Google Scholar 

  • King DP, Zhao Y, Sangoram AM et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    PubMed  CAS  Google Scholar 

  • Koike H, Arguello PA, Kvajo M et al (2006) Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci USA 103:3693–3697

    PubMed  CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. In: Current topics in behavioural neuroscience. Springer, Heidelberg. doi: 10.1007/7854_2010_108

    Google Scholar 

  • Kurihara LJ, Kikuchi T, Wada K et al (2001) Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum Mol Genet 10:1963–1970

    PubMed  CAS  Google Scholar 

  • Kwon HJ, Abi-Mosleh L, Wang ML et al (2009) Structure of N-terminal domain of Npc1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137:1213–1224

    PubMed  Google Scholar 

  • La Spada AR, Fu YH, Sopher BL et al (2001) Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31:913–927

    PubMed  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A et al (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    PubMed  CAS  Google Scholar 

  • Lacorazza HD, Flax JD, Snyder EY et al (1996) Expression of human Beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs Disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2:424–429

    PubMed  CAS  Google Scholar 

  • Lau AA, Hopwood JJ, Kremer EJ et al (2010) SGSH gene transfer in mucopolysaccharidosis type IIIA mice using canine adenovirus vectors. Mol Genet Metab 100:166–175

    Google Scholar 

  • Le WD, Xu P, Jankovic J et al (2002) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33:85–89

    PubMed  Google Scholar 

  • Lee JP, Jeyakumar M, Gonzalez R et al (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13:439–447

    PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G et al (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452

    PubMed  CAS  Google Scholar 

  • Li HH, Yu WH, Rozengurt N et al (1999) Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding alpha-N-acetylglucosaminidase. Proc Natl Acad Sci USA 96:14505–14510

    PubMed  CAS  Google Scholar 

  • Li Q, Liu Z, Monroe H et al (2002) Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23:1499–1511

    PubMed  CAS  Google Scholar 

  • Li Y, Liu W, Oo TF et al (2009) Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 12:826–828

    PubMed  CAS  Google Scholar 

  • Lin X, Parisiadou L, Gu XL et al (2009) Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant α-synuclein. Neuron 64:807–827

    PubMed  CAS  Google Scholar 

  • Little CC, Bagg HJ (1923) The occurrence of two heritable types of abnormality among the descendants of X-rayed mice. Am J Roentgenol Radiat Ther 10:975–989

    CAS  Google Scholar 

  • Liu J, Ball SL, Yang Y et al (2006) A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1, 2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 123:228–240

    PubMed  CAS  Google Scholar 

  • Liu Z, Wang X, Yu Y et al (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci USA 105:2693–2698

    PubMed  CAS  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X et al (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    PubMed  CAS  Google Scholar 

  • Loftus SK, Morris JA, Carstea ED et al (1997) Murine model of Niemann-Pick C disease: Mutation in a cholesterol homeostasis gene. Science 277:232–235

    PubMed  CAS  Google Scholar 

  • Lyon MF, King TR, Gondo Y et al (1992) Genetic and molecular analysis of recessive alleles at the pink-eyed dilution (p) locus of the mouse. Proc Natl Acad Sci USA 89:6968–6972

    PubMed  CAS  Google Scholar 

  • Lyon MF, Rastan S, Brown SDM (1996) Genetic variants and strains of the laboratory mouse. New York, Oxford

    Google Scholar 

  • Ma L, Liu Y, Ky B et al (2002) Cloning and characterization of Disc1, the mouse ortholog of DISC1 (Disrupted-in-Schizophrenia 1). Genomics 80:662–672

    PubMed  CAS  Google Scholar 

  • Matsuda J, Suzuki O, Oshima A et al (1997) Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconj J 14:729–736

    PubMed  CAS  Google Scholar 

  • Matsuda J, Suzuki O, Oshima A et al (2003) Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci USA 100:15912–15917

    PubMed  CAS  Google Scholar 

  • Mattick JS (2009) The genetic signatures of noncoding RNAs. PLoS Genet 5:e1000459

    PubMed  Google Scholar 

  • McGowan E, Eriksen J, Hutton M (2006) A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 22:281–289

    PubMed  CAS  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC et al (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–713

    PubMed  CAS  Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S et al (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9:1415–1423

    PubMed  CAS  Google Scholar 

  • Millar JK, Pickard BS, Mackie S et al (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310:1187–1191

    PubMed  CAS  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y et al (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    PubMed  CAS  Google Scholar 

  • Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324

    PubMed  CAS  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H et al (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl- d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Google Scholar 

  • Muenzer J, Lamsa JC, Garcia A et al (2002) Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter Syndrome): a preliminary report. Acta Paediatr Suppl 91:98–99

    PubMed  CAS  Google Scholar 

  • Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 73:208–212

    PubMed  CAS  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    PubMed  CAS  Google Scholar 

  • Murphy K, Hafez M, Philips J et al (2003) Evaluation of temperature gradient capillary electrophoresis for detection of the factor v leiden mutation: coincident identification of a novel polymorphism in factor v. Mol Diagn 7:35–40

    PubMed  Google Scholar 

  • Nakatsu Y, Gondo Y, Brilliant MH (1992) The p locus is closely linked to the mouse homolog of a gene from the Prader-Willi chromosomal region. Mamm Genome 2:69–71

    PubMed  CAS  Google Scholar 

  • Nakatsu Y, Tyndale RF, DeLorey TM et al (1993) A cluster of three GABAA receptor subunit genes is deleted in a neurological mutant of the mouse p locus. Nature 364:448–450

    PubMed  CAS  Google Scholar 

  • Nasir J, O’Kusky FSB et al (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811–823

    PubMed  CAS  Google Scholar 

  • Norflus F, Tifft CJ, McDonald MP et al (1998) Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J Clin Invest 101:1881–1888

    PubMed  CAS  Google Scholar 

  • Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm Genome 11:478–483

    PubMed  CAS  Google Scholar 

  • Nuytemans K, Theuns J, Cruts M et al (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31:763–780

    PubMed  CAS  Google Scholar 

  • O’Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL (2011) Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. In: Current topics in behavioral neurosciences. Springer, Heidelberg. doi: 10.1007/7854_2010_111

    Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK et al (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    PubMed  CAS  Google Scholar 

  • Paisán-Ruíz JS, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44:595–600

    PubMed  Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE et al (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615

    PubMed  CAS  Google Scholar 

  • Phaneuf D, Wakamatsu N, Huang JQ et al (1996) Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum Mol Genet 5:1–14

    PubMed  CAS  Google Scholar 

  • Polito VA, Cosma MP (2009) IDS crossing of the blood-brain barrier corrects CNS defects in MPSII mice. Am J Hum Genet 85:296–301

    PubMed  CAS  Google Scholar 

  • Porteous DJ, Millar JK (2006) Disrupted in schizophrenia 1: building brains and memories. Trends Mol Med 12:255–261

    PubMed  CAS  Google Scholar 

  • Pulver AE (2000) Search for schizophrenia susceptibility genes. Biol Psychiatry 47:221–230

    PubMed  CAS  Google Scholar 

  • Roach A, Boylan K, Horvath S et al (1983) Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice. Cell 34:799–806

    PubMed  CAS  Google Scholar 

  • Roberts AL, Thomas BJ, Wilkinson AS et al (2006) Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA. Pediatr Res 60:309–314

    PubMed  CAS  Google Scholar 

  • Roberts AL, Rees MH, Klebe S et al (2007) Improvement in behaviour after substrate deprivation therapy with rhodamine B in a mouse model of MPS IIIA. Mol Genet Metab 92:115–121

    PubMed  CAS  Google Scholar 

  • Robertson E, Bradley A, Kuehn M et al (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448

    PubMed  CAS  Google Scholar 

  • Robinson AJ, Zhao G, Rathjen J et al (2010) Embryonic stem cell-derived glial precursors as a vehicle for sulfamidase production in the MPS-IIIA mouse brain. Cell Transplant. doi:10.3727/096368910X498944

    PubMed  Google Scholar 

  • Rogers DC, Peters J, Martin JE et al (2001) SHIRPA, a protocol for behavioral assessment: validation for longitudinal study of neurological dysfunction in mice. Neurosci Lett 22:89–92

    Google Scholar 

  • Russell WL, Kelly EM, Hunsicker PR et al (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA 76:5818–5819

    PubMed  CAS  Google Scholar 

  • Russell WL, Hunsicker PR, Raymer GD et al (1982) Dose-response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci USA 79:3589–3591

    PubMed  CAS  Google Scholar 

  • Sakuraba Y, Sezutsu H, Takahasi KR et al (2005) Molecular characterization of ENU mouse mutagenesis and archives. Biochem Biophys Res Commun 336:609–616

    PubMed  CAS  Google Scholar 

  • Sands MS, Davidson BL (2006) Gene therapy for lysosomal storage diseases. Mol Ther 13:839–849

    PubMed  CAS  Google Scholar 

  • Sango K, Yamanaka S, Hoffmann A et al (1995) Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11:170–176

    PubMed  CAS  Google Scholar 

  • Schumacher J, Jamra RA, Freudenberg J et al (2004) Examination of G72 and d-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 9:203–207

    PubMed  CAS  Google Scholar 

  • Sleat DE, Wiseman JA, El-Banna M et al (2004) Genetic evidence for nonredundant functional cooperativity between Npc1 and Npc2 in lipid transport. Proc Natl Acad Sci USA 101:5886–5891

    PubMed  CAS  Google Scholar 

  • Smart SL, Lopantsev V, Zhang CL et al (1998) Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20:809–819

    PubMed  CAS  Google Scholar 

  • Smith D, Wallom KL, Williams IM et al (2009) Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol Dis 36:242–251

    PubMed  CAS  Google Scholar 

  • St Clair D, Blackwood D, Muir W et al (1990) Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336:13–16

    PubMed  CAS  Google Scholar 

  • Su L-K Kinzler, KW VB et al (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670

    PubMed  CAS  Google Scholar 

  • Takaura N, Yagi T, Maeda M et al (2003) Attenuation of ganglioside GM1 accumulation in the brain of GM1 gangliosidosis mice by neonatal intravenous gene transfer. Gene Ther 10:1487–1493

    PubMed  CAS  Google Scholar 

  • Thaker GK, Carpenter WT Jr (2001) Advances in schizophrenia. Nat Med 7:667–671

    PubMed  CAS  Google Scholar 

  • Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428

    PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    PubMed  CAS  Google Scholar 

  • Tong Y, Pisani A, Martella G et al (2009) R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc Natl Acad Sci USA 106:14622–14627

    PubMed  CAS  Google Scholar 

  • Van Dam D, Errijgers V, Kooy RF et al (2005) Cognitive decline, neuromotor and behavioural disturbances in a mouse model for fragile-X-associated tremor/ataxia syndrome (FXTAS). Behav Brain Res 162:233–239

    PubMed  Google Scholar 

  • Vitaterna MH, King DP, Chang AM et al (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    PubMed  CAS  Google Scholar 

  • Wang T, Parris J, Li L et al (2006) The carboxiypeptide-like substrate-binding site in Nna1 is essential for the rescue of the Purkinje cell degeneration (pcd) phenotype. Mol Cell Neurosci 33:200–213

    PubMed  CAS  Google Scholar 

  • Watase K, Weeber EJ, Xu B et al (2002) A long CAG repeat in the mouse Sca1 locus replicates Sca1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34:905–919

    PubMed  CAS  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN et al (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    PubMed  CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M et al (1999a) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725

    PubMed  CAS  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999b) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414

    PubMed  CAS  Google Scholar 

  • Yamanaka S, Johnson MD, Grinberg A et al (1994) Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc Natl Acad Sci USA 91:9975–9979

    PubMed  CAS  Google Scholar 

  • Yao C, El Khoury R, Wang W et al (2010) LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease. Neurobiol Dis 40:73–81

    PubMed  CAS  Google Scholar 

  • Yu Y, Bradley A (2001) Engineering chromosomal rearrangements in mice. Nat Rev Genet 2:780–790

    PubMed  CAS  Google Scholar 

  • Zervas M, Somers KL, Thrall MA et al (2001) Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol 11:1283–1287

    PubMed  CAS  Google Scholar 

  • Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is partly supported by Grant-in-Aid for Scientific Research (A) to 21240043 Y. G., for Grants-in-Aid for Young Scientists (B) to 20790196 R. F. and 21700454 S. M. from the Ministry of Education, Science, Sports and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Gondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gondo, Y., Murata, T., Makino, S., Fukumura, R., Ishitsuka, Y. (2011). Mouse Mutagenesis and Disease Models for Neuropsychiatric Disorders. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_106

Download citation

Publish with us

Policies and ethics