Skip to main content

Transgenic Animal Models of Huntington’s Disease

  • Chapter
  • First Online:
Book cover Molecular and Functional Models in Neuropsychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

Huntington’s disease (HD) is a devastating neurodegenerative disorder that currently has no cure. In order to develop effective treatment, an understanding of HD pathogenesis and the evaluation of therapeutic efficacy of novel medications with the aid of animal models are critical steps. Transgenic animals sharing similar genetic defects that lead to HD have provided important discoveries in HD mechanisms that cell models are not able to replicate, which include psychiatric impairment, cognitive behavioral impact, and motor functions. Although transgenic HD rodent models have been widely used in HD research, it is clear that an animal model with comparable physiology to man, similar genetic defects that lead to HD, and the ability to develop similar cognitive and behavioral impairments is critical for explaining HD pathogenesis and the development of cures. Compared to HD rodents, HD transgenic nonhuman primates have not only developed comparable neuropathology but also present HD clinical features such as rigidity, seizure, dystonia, bradykinesia, and chorea that no other animal model has been able to replicate. Distinctive degenerating neurons and the accumulation of neuropil aggregates observed in HD monkey brain strongly support the hypothesis that the unique neuropathogenic events seen in HD monkey brain recapitulate HD in man. The latest development of transgenic HD primates has opened a new era of animal modeling that better represents human genetic disorders such as HD, which will accelerate the development of diagnostic tools and identifying novel biomarkers through longitudinal studies including gene expression and metabolite profiling, and noninvasive imaging. Furthermore, novel treatments with predictable efficacy in human patients can be developed using HD monkeys because of comparable neuropathology and clinical features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuhatzira L, Makedonski K, Galil YP, Gak E, Ben Zeev B, Razin A, Shemer R (2005) Splicing mutation associated with Rett syndrome and an experimental approach for genetic diagnosis. Hum Genet 118:91–98

    PubMed  CAS  Google Scholar 

  • Acehan D, Xu Y, Stokes DL, Schlame M (2007) Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. Lab Invest 87:40–48

    PubMed  CAS  Google Scholar 

  • Acevedo-Torres K, Berrios L, Rosario N, Dufault V, Skatchkov S, Eaton MJ, Torres-Ramos CA, Ayala-Torres S (2009) Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington’s disease. DNA Repair 8:126–136

    PubMed  CAS  Google Scholar 

  • Bae BI, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward SD, Moran TH, Montell C, Ross CA, Snyder SH, Sawa A (2005) p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron 47:29–41

    PubMed  CAS  Google Scholar 

  • Beaumont K, Maurin Y, Reisine TD, Fields JZ, Spokes E, Bird ED, Yamamura HI (1979) Huntington’s disease and its animal model: alterations in kainic acid binding. Life Sci 24:809–816

    PubMed  CAS  Google Scholar 

  • Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708

    PubMed  CAS  Google Scholar 

  • Bergman M, Salman H, Beloosesky Y, Djaldetti M, Bessler H (2002) Are peripheral blood cells from patients with Alzheimer disease more sensitive to apoptotic stimuli? Alzheimer Dis Assoc Disord 16:156–160

    PubMed  CAS  Google Scholar 

  • Bett JS, Cook C, Petrucelli L, Bates GP (2009) The ubiquitin-proteasome reporter GFPu does not accumulate in neurons of the R6/2 transgenic mouse model of Huntington’s disease. PLoS One 4:e5128

    PubMed  Google Scholar 

  • Black DH, Saliki JT, Eberle R (2002) Development of a green fluorescent protein reporter cell line to reduce biohazards associated with detection of infectious Cercopithecine herpesvirus 1 (monkey B virus) in clinical specimens. Comp Med 52:534–542

    PubMed  CAS  Google Scholar 

  • Block F, Kunkel M, Schwarz M (1993) Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats. Neurosci Lett 149:126–128

    PubMed  CAS  Google Scholar 

  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79:1246–1249

    PubMed  CAS  Google Scholar 

  • Borison RL, Diamond BI (1979) Kainic acid animal model predicts therapeutic agents in Huntington’s chorea. Trans Am Neurol Assoc 104:67–69

    PubMed  CAS  Google Scholar 

  • Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, Krainc D (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci USA 102:11023–11028

    PubMed  CAS  Google Scholar 

  • Borrell-Pages M, Zala D, Humbert S, Saudou F (2006) Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 63:2642–2660

    PubMed  CAS  Google Scholar 

  • Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 106(52):22480–22485

    PubMed  CAS  Google Scholar 

  • Bradford JW, Li S, Li XJ (2010a) Polyglutamine toxicity in non-neuronal cells. Cell Res 20(4):400–407

    PubMed  CAS  Google Scholar 

  • Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S, Li XJ (2010b) Mutant huntingtin in glial cells exacerbates neurological symptoms of huntington disease mice. J Biol Chem 285(14):10653–10661

    PubMed  CAS  Google Scholar 

  • Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92:7105–7109

    PubMed  CAS  Google Scholar 

  • Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA 101:10458–10463

    PubMed  CAS  Google Scholar 

  • Bugos O, Bhide M, Zilka N (2009) Beyond the rat models of human neurodegenerative disorders. Cell Mol Neurobiol 29:859–869

    PubMed  Google Scholar 

  • Burns LH, Pakzaban P, Deacon TW, Brownell AL, Tatter SB, Jenkins BG, Isacson O (1995) Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience 64:1007–1017

    PubMed  CAS  Google Scholar 

  • Butland SL, Devon RS, Huang Y, Mead CL, Meynert AM, Neal SJ, Lee SS, Wilkinson A, Yang GS, Yuen MM, Hayden MR, Holt RA, Leavitt BR, Ouellette BF (2007) CAG-encoded polyglutamine length polymorphism in the human genome. BMC Genomics 8:126

    PubMed  Google Scholar 

  • Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257

    PubMed  CAS  Google Scholar 

  • Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW, Penney JB, Bates GP, Young AB (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci USA 95:6480–6485

    PubMed  CAS  Google Scholar 

  • Chan AW (2004) Transgenic nonhuman primates for neurodegenerative diseases. Reprod Biol Endocrinol 2:39

    PubMed  Google Scholar 

  • Chan EY, Luthi-Carter R, Strand A, Solano SM, Hanson SA, DeJohn MM, Kooperberg C, Chase KO, DiFiglia M, Young AB, Leavitt BR, Cha JH, Aronin N, Hayden MR, Olson JM (2002) Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington’s disease. Hum Mol Genet 11:1939–1951

    PubMed  CAS  Google Scholar 

  • Chapman SC, Lawson A, Macarthur WC, Wiese RJ, Loechel RH, Burgos-Trinidad M, Wakefield JK, Ramabhadran R, Mauch TJ, Schoenwolf GC (2005) Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132:935–940

    PubMed  CAS  Google Scholar 

  • Chen-Plotkin AS, Sadri-Vakili G, Yohrling GJ, Braveman MW, Benn CL, Glajch KE, DiRocco DP, Farrell LA, Krainc D, Gines S, MacDonald ME, Cha JH (2006) Decreased association of the transcription factor Sp1 with genes downregulated in Huntington’s disease. Neurobiol Dis 22:233–241

    PubMed  CAS  Google Scholar 

  • Chiang MC, Chen HM, Lee YH, Chang HH, Wu YC, Soong BW, Chen CM, Wu YR, Liu CS, Niu DM, Wu JY, Chen YT, Chern Y (2007) Dysregulation of C/EBPa by mutant Huntingtin causes the urea cycle deficiency in Huntington’s disease. Hum Mol Genet 16(5):483–498

    PubMed  CAS  Google Scholar 

  • Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y (2009) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington’s disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet 18:2929–2942

    PubMed  CAS  Google Scholar 

  • Chopra V, Fox JH, Lieberman G, Dorsey K, Matson W, Waldmeier P, Housman DE, Kazantsev A, Young AB, Hersch S (2007) A small-molecule therapeutic lead for Huntington’s disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc Natl Acad Sci USA 104:16685–16689

    PubMed  CAS  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427

    PubMed  CAS  Google Scholar 

  • Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71

    PubMed  CAS  Google Scholar 

  • Coyle JT (1979) An animal model for Huntington’s disease. Biol Psychiatry 14:251–276

    PubMed  CAS  Google Scholar 

  • Crocker SF, Costain WJ, Robertson HA (2006) DNA microarray analysis of striatal gene expression in symptomatic transgenic Huntington’s mice (R6/2) reveals neuroinflammation and insulin associations. Brain Res 1088:176–186

    PubMed  CAS  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    PubMed  CAS  Google Scholar 

  • Diekmann H, Anichtchik O, Fleming A, Futter M, Goldsmith P, Roach A, Rubinsztein DC (2009) Decreased BDNF levels are a major contributor to the embryonic phenotype of huntingtin knockdown zebrafish. J Neurosci 29:1343–1349

    PubMed  CAS  Google Scholar 

  • DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel JP, Carraway R, Reeves SA et al (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–1081

    PubMed  CAS  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    PubMed  CAS  Google Scholar 

  • Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583

    PubMed  CAS  Google Scholar 

  • Donaldson ZR, Yang SH, Chan AW, Young LJ (2009) Production of germline transgenic prairie voles (Microtus ochrogaster) using lentiviral vectors. Biol Reprod 81(6):1189–1195

    PubMed  CAS  Google Scholar 

  • Dragatsis I, Efstratiadis A, Zeitlin S (1998) Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development 125:1529–1539

    PubMed  CAS  Google Scholar 

  • Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 296:2238–2243

    PubMed  CAS  Google Scholar 

  • Estrada Sanchez AM, Mejia-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265–276

    PubMed  CAS  Google Scholar 

  • Fernandes HB, Baimbridge KG, Church J, Hayden MR, Raymond LA (2007) Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington’s disease. J Neurosci 27:13614–13623

    PubMed  CAS  Google Scholar 

  • Ferrante RJ, Ryu H, Kubilus JK, D'Mello S, Sugars KL, Lee J, Lu P, Smith K, Browne S, Beal MF, Kristal BS, Stavrovskaya IG, Hewett S, Rubinsztein DC, Langley B, Ratan RR (2004) Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J Neurosci 24:10335–10342

    PubMed  CAS  Google Scholar 

  • Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849

    PubMed  CAS  Google Scholar 

  • Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ, Beal MF (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem 280:556–563

    PubMed  CAS  Google Scholar 

  • Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    PubMed  CAS  Google Scholar 

  • Gellerich FN, Gizatullina Z, Nguyen HP, Trumbeckaite S, Vielhaber S, Seppet E, Zierz S, Landwehrmeyer B, Riess O, von Horsten S, Striggow F (2008) Impaired regulation of brain mitochondria by extramitochondrial Ca2+ in transgenic Huntington disease rats. J Biol Chem 283:30715–30724

    PubMed  CAS  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera HRA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    PubMed  CAS  Google Scholar 

  • Giorgini F, Moller T, Kwan W, Zwilling D, Wacker JL, Hong S, Tsai LC, Cheah CS, Schwarcz R, Guidetti P, Muchowski PJ (2008) Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem 283:7390–7400

    PubMed  CAS  Google Scholar 

  • Gondo Y, Murata T, Makino S, Fukumura R, Ishitsuka Y (2011) Mouse mutagenesis and disease models for Neuropsychiatric disorders. In: Current topics in behavioural neurosciences. Springer, Heidelberg. doi: 10.1007/7854_2010_106

    Google Scholar 

  • Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant Huntington. Cell 125:1179–1191

    PubMed  CAS  Google Scholar 

  • Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LS (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40

    PubMed  CAS  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    PubMed  CAS  Google Scholar 

  • Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534

    PubMed  CAS  Google Scholar 

  • Hashem VI, Pytlos MJ, Klysik EA, Tsuji K, Khajavi M, Ashizawa T, Sinden RR (2004) Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res 32:6334–6346

    PubMed  CAS  Google Scholar 

  • Heng MY, Tallaksen-Greene SJ, Detloff PJ, Albin RL (2007) Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington’s disease. J Neurosci 27:8989–8998

    PubMed  CAS  Google Scholar 

  • Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    PubMed  CAS  Google Scholar 

  • Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, Wolf E, Pfeifer A (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod 71:405–409

    PubMed  CAS  Google Scholar 

  • Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet 24:217–233

    PubMed  CAS  Google Scholar 

  • Isacson O, Hantraye P, Maziere M, Sofroniew MV, Riche D (1990) Apomorphine-induced dyskinesias after excitotoxic caudate-putamen lesions and the effects of neural transplantation in non-human primates. Prog Brain Res 82:523–533

    PubMed  CAS  Google Scholar 

  • Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117

    PubMed  CAS  Google Scholar 

  • Johnson MA, Rajan V, Miller CE, Wightman RM (2006) Dopamine release is severely compromised in the R6/2 mouse model of Huntington’s disease. J Neurochem 97:737–746

    PubMed  CAS  Google Scholar 

  • Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ (2008) A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 29:438–445

    PubMed  CAS  Google Scholar 

  • Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, Kazemi-Esfarjani P, Lynn FC, Wellington C, Metzler M, Goldberg YP, Kanazawa I, Gietz RD, Hayden MR (1997) HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 16:44–53

    PubMed  CAS  Google Scholar 

  • Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA 98:12784–12789

    PubMed  CAS  Google Scholar 

  • Kim YJ, Sapp E, Cuiffo BG, Sobin L, Yoder J, Kegel KB, Qin ZH, Detloff P, Aronin N, DiFiglia M (2006) Lysosomal proteases are involved in generation of N-terminal huntingtin fragments. Neurobiol Dis 22:346–356

    PubMed  CAS  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    PubMed  CAS  Google Scholar 

  • Kung VW, Hassam R, Morton AJ, Jones S (2007) Dopamine-dependent long term potentiation in the dorsal striatum is reduced in the R6/2 mouse model of Huntington’s disease. Neuroscience 146:1571–1580

    PubMed  CAS  Google Scholar 

  • Lee WT, Chang C (2004) Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington’s disease. Prog Neurobiol 72:87–110

    PubMed  CAS  Google Scholar 

  • Levine MS, Cepeda C, Hickey MA, Fleming SM, Chesselet MF (2004) Genetic mouse models of Huntington’s and Parkinson’s diseases: illuminating but imperfect. Trends Neurosci 27:691–697

    PubMed  CAS  Google Scholar 

  • Li SH, Li XJ (2004) Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154

    PubMed  Google Scholar 

  • Li S, Li XJ (2006) Multiple pathways contribute to the pathogenesis of Huntington disease. Mol Neurodegener 1:19

    PubMed  Google Scholar 

  • Li XJ, Li SH, Sharp AH, Nucifora FC Jr, Schilling G, Lanahan A, Worley P, Snyder SH, Ross CA (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378:398–402

    PubMed  CAS  Google Scholar 

  • Li JY, Plomann M, Brundin P (2003) Huntington’s disease: a synaptopathy? Trends Mol Med 9:414–420

    PubMed  CAS  Google Scholar 

  • Li Y, Lin L, Jin P (2008) The microRNA pathway and fragile X mental retardation protein. Biochim Biophys Acta 1779(11):702–705

    PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    PubMed  CAS  Google Scholar 

  • Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren S, Li XJ, Albin RL, Detloff PJ (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10:137–144

    PubMed  CAS  Google Scholar 

  • Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428–10437

    PubMed  CAS  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    PubMed  CAS  Google Scholar 

  • Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18:297–300

    PubMed  CAS  Google Scholar 

  • Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL, Trottier Y (2002) Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 10:259–269

    PubMed  CAS  Google Scholar 

  • Luthi-Carter R, Hanson SA, Strand AD, Bergstrom DA, Chun W, Peters NL, Woods AM, Chan EY, Kooperberg C, Krainc D, Young AB, Tapscott SJ, Olson JM (2002) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum Mol Genet 11:1911–1926

    PubMed  CAS  Google Scholar 

  • Maat-Schieman M, Roos R, Losekoot M, Dorsman J, Welling-Graafland C, Hegeman-Kleinn I, Broeyer F, Breuning M, van Duinen S (2007) Neuronal intranuclear and neuropil inclusions for pathological assessment of Huntington’s disease. Brain Pathol 17:31–37

    PubMed  CAS  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    PubMed  CAS  Google Scholar 

  • Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schutz G (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54

    PubMed  CAS  Google Scholar 

  • Marsh JL, Pallos J, Thompson LM (2003) Fly models of Huntington’s disease. Hum Mol Genet 12(Sp No 2):R187–R193

    Google Scholar 

  • Maynard CJ, Bottcher C, Ortega Z, Smith R, Florea BI, Diaz-Hernandez M, Brundin P, Overkleeft HS, Li JY, Lucas JJ, Dantuma NP (2009) Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. Proc Natl Acad Sci USA 106:13986–13991

    PubMed  CAS  Google Scholar 

  • McBride JL, During MJ, Wuu J, Chen EY, Leurgans SE, Kordower JH (2003) Structural and functional neuroprotection in a rat model of Huntington’s disease by viral gene transfer of GDNF. Exp Neurol 181:213–223

    PubMed  CAS  Google Scholar 

  • McCampbell A, Taye AA, Whitty L, Penney E, Steffan JS, Fischbeck KH (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci USA 98:15179–15184

    PubMed  CAS  Google Scholar 

  • Meldrum A, Page KJ, Everitt BJ, Dunnett SB (2000) Age-dependence of malonate-induced striatal toxicity. Exp Brain Res 134:335–343

    PubMed  CAS  Google Scholar 

  • Morocz M, Kalman J, Juhasz A, Sinko I, McGlynn AP, Downes CS, Janka Z, Rasko I (2002) Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer’s disease. Neurobiol Aging 23:47–53

    PubMed  CAS  Google Scholar 

  • Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL, Dawson TM, Ross CA (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291:2423–2428

    PubMed  CAS  Google Scholar 

  • Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8:544–554

    PubMed  CAS  Google Scholar 

  • Orr AL, Huang S, Roberts MA, Reed JC, Li S, Li XJ (2008) Sex-dependent effect of BAG1 in ameliorating motor deficits of Huntington disease transgenic mice. J Biol Chem 283:16027–16036

    PubMed  CAS  Google Scholar 

  • Pal A, Severin F, Lommer B, Shevchenko A, Zerial M (2006) Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol 172:605–618

    PubMed  CAS  Google Scholar 

  • Pal A, Severin F, Hopfner S, Zerial M (2008) Regulation of endosome dynamics by Rab5 and Huntingtin-HAP40 effector complex in physiological versus pathological conditions. Methods Enzymol 438:239–257

    PubMed  CAS  Google Scholar 

  • Palfi S, Ferrante RJ, Brouillet E, Beal MF, Dolan R, Guyot MC, Peschanski M, Hantraye P (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J Neurosci 16:3019–3025

    PubMed  CAS  Google Scholar 

  • Palfi S, Brouillet E, Jarraya B, Bloch J, Jan C, Shin M, Conde F, Li XJ, Aebischer P, Hantraye P, Deglon N (2007) Expression of mutated huntingtin fragment in the putamen is sufficient to produce abnormal movement in non-human primates. Mol Ther 15:1444–1451

    PubMed  CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736

    PubMed  CAS  Google Scholar 

  • Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31:159–173

    PubMed  CAS  Google Scholar 

  • Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457–1470

    PubMed  CAS  Google Scholar 

  • Peters A, Rosene DL, Moss MB, Kemper TL, Abraham CR, Tigges J, Albert MS (1996) Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol 55:861–874

    PubMed  CAS  Google Scholar 

  • Phan J, Hickey MA, Zhang P, Chesselet MF, Reue K (2009) Adipose tissue dysfunction tracks disease progression in two Huntington’s disease mouse models. Hum Mol Genet 18:1006–1016

    PubMed  CAS  Google Scholar 

  • Presty SK, Bachevalier J, Walker LC, Struble RG, Price DL, Mishkin M, Cork LC (1987) Age differences in recognition memory of the rhesus monkey (Macaca mulatta). Neurobiol Aging 8:435–440

    PubMed  CAS  Google Scholar 

  • Qurashi A, Chang S, Peng J (2007) Role of microRNA pathway in mental retardation. ScientificWorldJournal 7:146–154

    PubMed  Google Scholar 

  • Ramaswamy S, McBride JL, Han I, Berry-Kravis EM, Zhou L, Herzog CD, Gasmi M, Bartus RT, Kordower JH (2009) Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 34:40–50

    PubMed  CAS  Google Scholar 

  • Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121:1649–1660

    PubMed  CAS  Google Scholar 

  • Rong J, McGuire JR, Fang ZH, Sheng G, Shin JY, Li SH, Li XJ (2006) Regulation of intracellular trafficking of huntingtin-associated protein-1 is critical for TrkA protein levels and neurite outgrowth. J Neurosci 26:6019–6030

    PubMed  CAS  Google Scholar 

  • Rong J, Li SH, Li XJ (2007) Regulation of intracellular HAP1 trafficking. J Neurosci Res 85:3025–3029

    PubMed  CAS  Google Scholar 

  • Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747

    PubMed  CAS  Google Scholar 

  • Rossi S, Prosperetti C, Picconi B, De Chiara V, Mataluni G, Bernardi G, Calabresi P, Centonze D (2006) Deficits of glutamate transmission in the striatum of toxic and genetic models of Huntington’s disease. Neurosci Lett 410:6–10

    PubMed  CAS  Google Scholar 

  • Ryu JK, Kim SU, McLarnon JG (2004) Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington’s disease. Exp Neurol 187:150–159

    PubMed  CAS  Google Scholar 

  • Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA, Smith KM, Ferrante RJ (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci USA 103:19176–19181

    PubMed  CAS  Google Scholar 

  • Sadri-Vakili G, Bouzou B, Benn CL, Kim MO, Chawla P, Overland RP, Glajch KE, Xia E, Qiu Z, Hersch SM, Clark TW, Yohrling GJ, Cha JH (2007) Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum Mol Genet 16:1293–1306

    PubMed  CAS  Google Scholar 

  • Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

    PubMed  CAS  Google Scholar 

  • Savas JN, Makusky A, Ottosen S, Baillat D, Then F, Krainc D, Shiekhattar R, Markey SP, Tanese N (2008) Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci USA 105:10820–10825

    PubMed  CAS  Google Scholar 

  • Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2009) Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis 33:20–27

    PubMed  CAS  Google Scholar 

  • Schaefer A, O'Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, Greengard P (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    PubMed  CAS  Google Scholar 

  • Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407

    PubMed  CAS  Google Scholar 

  • Schilling G, Klevytska A, Tebbenkamp AT, Juenemann K, Cooper J, Gonzales V, Slunt H, Poirer M, Ross CA, Borchelt DR (2007) Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models. J Neuropathol Exp Neurol 66:313–320

    PubMed  CAS  Google Scholar 

  • Schwarcz R, Bennett JP Jr, Coyle JT (1977) Inhibitors of GABA metabolism: implications for Huntington’s disease. Ann Neurol 2:299–303

    PubMed  CAS  Google Scholar 

  • Sharp AH, Loev SJ, Schilling G, Li SH, Li XJ, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A et al (1995) Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron 14:1065–1074

    PubMed  CAS  Google Scholar 

  • Sharp FR, Xu H, Lit L, Walker W, Apperson M, Gilbert DL, Glauser TA, Wong B, Hershey A, Liu DZ, Pinter J, Zhan X, Liu X, Ran R (2006) The future of genomic profiling of neurological diseases using blood. Arch Neurol 63:1529–1536

    PubMed  Google Scholar 

  • Shehadeh J, Fernandes HB, Zeron Mullins MM, Graham RK, Leavitt BR, Hayden MR, Raymond LA (2006) Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis 21:392–403

    PubMed  CAS  Google Scholar 

  • Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S, Kimura T, Koide R, Nozaki K, Sano Y, Ishiguro H, Sakoe K, Ooshima T, Sato A, Ikeuchi T, Oyake M, Sato T, Aoyagi Y, Hozumi I, Nagatsu T, Takiyama Y, Nishizawa M, Goto J, Kanazawa I, Davidson I, Tanese N, Takahashi H, Tsuji S (2000) Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet 26:29–36

    PubMed  CAS  Google Scholar 

  • Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171(6):1001–1012

    PubMed  CAS  Google Scholar 

  • Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, Li XJ, Simpson EM, Gutekunst CA, Leavitt BR, Hayden MR (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567

    PubMed  CAS  Google Scholar 

  • Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA (2004) Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc Natl Acad Sci USA 101:7181–7186

    PubMed  CAS  Google Scholar 

  • Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97:6763–6768

    PubMed  CAS  Google Scholar 

  • Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743

    PubMed  CAS  Google Scholar 

  • Strand AD, Aragaki AK, Shaw D, Bird T, Holton J, Turner C, Tapscott SJ, Tabrizi SJ, Schapira AH, Kooperberg C, Olson JM (2005) Gene expression in Huntington’s disease skeletal muscle: a potential biomarker. Hum Mol Genet 14:1863–1876

    PubMed  CAS  Google Scholar 

  • Strehlow AN, Li JZ, Myers RM (2007) Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet 16:391–409

    PubMed  CAS  Google Scholar 

  • Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238

    PubMed  CAS  Google Scholar 

  • Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, Young M, Faber PW, MacDonald ME, McPhaul MJ, Brady ST (2003) Neuropathogenic forms of Huntington and androgen receptor inhibit fast axonal transport. Neuron 40:41–52

    PubMed  CAS  Google Scholar 

  • Tabchy A, Housman D (2006) Huntington’s disease: a transcriptional report card from the peripheral blood: can it measure disease progression in Huntington’s disease? Eur J Hum Genet 14:649–650

    PubMed  CAS  Google Scholar 

  • Temel Y, Cao C, Vlamings R, Blokland A, Ozen H, Steinbusch HW, Michelsen KA, von Horsten S, Schmitz C, Visser-Vandewalle V (2006) Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci Lett 406:138–141

    PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  • Toneff T, Mende-Mueller L, Wu Y, Hwang SR, Bundey R, Thompson LM, Chesselet MF, Hook V (2002) Comparison of huntingtin proteolytic fragments in human lymphoblast cell lines and human brain. J Neurochem 82:84–92

    PubMed  Google Scholar 

  • Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL (1995) Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 10:104–110

    PubMed  CAS  Google Scholar 

  • Tsang TM, Woodman B, McLoughlin GA, Griffin JL, Tabrizi SJ, Bates GP, Holmes E (2006) Metabolic characterization of the R6/2 transgenic mouse model of Huntington’s disease by high-resolution MAS 1H NMR spectroscopy. J Proteome Res 5:483–492

    PubMed  CAS  Google Scholar 

  • Vamos E, Voros K, Zadori D, Vecsei L, Klivenyi P (2009) Neuroprotective effects of probenecid in a transgenic animal model of Huntington’s disease. J Neural Transm 116:1079–1086

    PubMed  CAS  Google Scholar 

  • van der Burg JM, Bacos K, Wood NI, Lindqvist A, Wierup N, Woodman B, Wamsteeker JI, Smith R, Deierborg T, Kuhar MJ, Bates GP, Mulder H, Erlanson-Albertsson C, Morton AJ, Brundin P, Petersen A, Bjorkqvist M (2008) Increased metabolism in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 29:41–51

    PubMed  Google Scholar 

  • Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 25:4169–4180

    PubMed  Google Scholar 

  • Van Raamsdonk JM, Metzler M, Slow E, Pearson J, Schwab C, Carroll J, Graham RK, Leavitt BR, Hayden MR (2007a) Phenotypic abnormalities in the YAC128 mouse model of Huntington disease are penetrant on multiple genetic backgrounds and modulated by strain. Neurobiol Dis 26:189–200

    PubMed  Google Scholar 

  • Van Raamsdonk JM, Warby SC, Hayden MR (2007b) Selective degeneration in YAC mouse models of Huntington disease. Brain Res Bull 72:124–131

    PubMed  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    PubMed  CAS  Google Scholar 

  • von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, Bader M, Pabst R, Kobbe P, Krotova J, Stiller D, Kask A, Vaarmann A, Rathke-Hartlieb S, Schulz JB, Grasshoff U, Bauer I, Vieira-Saecker AM, Paul M, Jones L, Lindenberg KS, Landwehrmeyer B, Bauer A, Li XJ, Riess O (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617–624

    Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    PubMed  CAS  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    PubMed  CAS  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    PubMed  CAS  Google Scholar 

  • Walker LC, Kitt CA, Struble RG, Wagster MV, Price DL, Cork LC (1988) The neural basis of memory decline in aged monkeys. Neurobiol Aging 9:657–666

    PubMed  CAS  Google Scholar 

  • Wang CE, Tydlacka S, Orr AL, Yang SH, Graham RK, Hayden MR, Li S, Chan AW, Li XJ (2008) Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington’s disease. Hum Mol Genet 17:2738–2751

    PubMed  CAS  Google Scholar 

  • Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J, Bredesen D, Hersch SM, Leavitt BR, Roy S, Nicholson DW, Hayden MR (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22:7862–7872

    PubMed  CAS  Google Scholar 

  • Whitelaw CB, Radcliffe PA, Ritchie WA, Carlisle A, Ellard FM, Pena RN, Rowe J, Clark AJ, King TJ, Mitrophanous KA (2004) Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett 571:233–236

    PubMed  CAS  Google Scholar 

  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O'Kane CJ, Floto RA, Rubinsztein DC (2008) Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4:295–305

    PubMed  CAS  Google Scholar 

  • Woodman B, Butler R, Landles C, Lupton MK, Tse J, Hockly E, Moffitt H, Sathasivam K, Bates GP (2007) The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull 72:83–97

    PubMed  CAS  Google Scholar 

  • Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

    PubMed  CAS  Google Scholar 

  • Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109:1427–1439

    PubMed  CAS  Google Scholar 

  • Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314(14):2618–33

    PubMed  CAS  Google Scholar 

  • Zadori D, Geisz A, Vamos E, Vecsei L, Klivenyi P (2009) Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington’s disease. Pharmacol Biochem Behav 94(1):148–53

    PubMed  CAS  Google Scholar 

  • Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    PubMed  CAS  Google Scholar 

  • Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley N, Cattaneo E (2007) Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci 27:6972–6983

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by NCRR/NIH grant R24RR01882 and YNPRC is supported by NIH grants RR-00165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. S. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, SH., Chan, A.W.S. (2011). Transgenic Animal Models of Huntington’s Disease. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_105

Download citation

Publish with us

Policies and ethics