Skip to main content

Animal Models of Epigenetic Regulation in Neuropsychiatric Disorders

  • Chapter
  • First Online:
Molecular and Functional Models in Neuropsychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

Epigenetics describes the phenomenon of heritable changes in gene regulation that are governed by non-Mendelian processes, primarily through biochemical modifications to chromatin structure that occur during cell development and differentiation. Numerous lines of evidence link abnormal levels of chromatin modifications (either to DNA, histones, or both) in patients with a wide variety of diseases including cancer, psychiatry, neurodegeneration, metabolic and inflammatory disorders. Drugs that target the proteins controlling chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents with single target pharmacologies that are susceptible to biochemical pathway degeneracy. Here, we summarize recent research linking epigenetic dysregulation with diseases in neurosciences, the application of relevant animal models, and the potential for small molecule modulator development to facilitate target discovery, validation and translation into clinical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-OG:

2-Oxo-glutarate

AAV:

Adeno-associated virus

BDNF:

Brain-derived neurotrophic factor

BET:

Bromodomain and extra C-terminal domain protein

CaMK:

Ca2+/calmodulin-dependent protein kinase

CDK5:

Cyclin-dependent kinase 5

ChIP:

Chromatin immunoprecipitation

CoA:

Coenzyme A

CpG:

Short stretches of DNA in which the frequency of C and G base pairs are higher than other regions

CREB:

cAMP response element binding protein

CRH:

Corticotrophin releasing hormone

CTCL:

Cutaneous T-cell lymphoma

DNMT:

DNA methyltransferase

FAD:

Flavin adenine dinucleotide

FPC:

Frontopolar cortex

FRET:

Forster resonance energy transfer

GABA:

Gamma-aminobutyric acid

GR:

Glucocorticoid receptor

H3K9Me2:

Histone H3 dimethylated at lysine-9 ε-nitrogen

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

HSV:

Herpes simplex virus

IKB:

IκB transcription factor

IKK:

IκB kinase

JMJD:

Jumonji (demethylase) domain

KDM:

Lysine demethylase

KO:

Knockout

LG:

Licking and grooming

LSL:

Lox P-stop-Lox P cassette

LTP:

Long-term potentiation

MAOI:

Monoamine oxidase inhibitor

MBD:

Methyl-CpG-binding domain protein

MBT:

Maligant brain tumour domain

MeCP2:

Methyl CpG binding protein 2

miRNA:

MicroRNA

NAc:

Nucleus accumbens

NFκB:

Nuclear factor-kappaB

NGFIA:

Nerve growth factor inducible protein A

PHD:

Plant homeodomain

PRMT:

Arginine methyltransferase

PTGS:

Post-transcriptional gene silencing

SAHA:

Suberoyl-aniline hydroxamic acid

SirT:

Sirtuin (NAD+-dependent histone deacetylase)

SUMO:

Small ubiquitin-like modifier

TSA:

Trichostatin A

TSS:

Transcription start site

WT:

Wild-type

References

  • Adams-Cioaba MA, Min J (2009) Structure and function of histone methylation binding proteins. Biochem Cell Biol 87(1):93–105

    PubMed  CAS  Google Scholar 

  • Adcock IM (2007) HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 150(7):829–831

    PubMed  CAS  Google Scholar 

  • Ahmed SH, Koob GF (1997) Cocaine- but not food-seeking behavior is reinstated by stress after extinction. Psychopharmacology (Berl) 132(3):289–295

    CAS  Google Scholar 

  • Alexander VM, Roy M et al (2010) Azacytidine induces cell cycle arrest and suppression of neuroendocrine markers in carcinoids. Int J Clin Exp Med 3(2):95–102

    PubMed  CAS  Google Scholar 

  • Amir RE, Van den Veyver IB et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436(7054):1103–1106

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    PubMed  CAS  Google Scholar 

  • Barrot M, Olivier JD et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci USA 99(17):11435–11440

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    PubMed  CAS  Google Scholar 

  • Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400

    PubMed  CAS  Google Scholar 

  • Berton O, McClung CA et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311(5762):864–868

    PubMed  CAS  Google Scholar 

  • Biswas SK, Lewis CE (2010) NF-{kappa}B as a central regulator of macrophage function in tumors. J Leukoc Biol 88(5):877–884

    Google Scholar 

  • Blackledge NP, Klose R (2010) Histone lysine methylation: an epigenetic modification? Epigenomics 2(1):151–161

    Google Scholar 

  • Borrelli E, Nestler EJ et al (2008) Decoding the epigenetic language of neuronal plasticity. Neuron 60(6):961–974

    PubMed  CAS  Google Scholar 

  • Bradner JE, West N et al (2009) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6(3):238–243

    Google Scholar 

  • Brami-Cherrier K, Roze E et al (2009) Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. J Neurochem 108(6):1323–1335

    PubMed  CAS  Google Scholar 

  • Brown P, Hunger SP et al (2009) Novel targeted drug therapies for the treatment of childhood acute leukemia. Expert Rev Hematol 2(9):145

    PubMed  CAS  Google Scholar 

  • Budden SS, Dorsey HC et al (2005) Clinical profile of a male with Rett syndrome. Brain Dev 27(Suppl 1):S69–S71

    PubMed  Google Scholar 

  • Carlezon WA Jr, Thome J et al (1998) Regulation of cocaine reward by CREB. Science 282(5397):2272–2275

    PubMed  CAS  Google Scholar 

  • Carney RM, Wolpert CM et al (2003) Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol 28(3):205–211

    PubMed  Google Scholar 

  • Cavalleri GL, Walley NM et al (2007) A multicenter study of BRD2 as a risk factor for juvenile myoclonic epilepsy. Epilepsia 48(4):706–712

    PubMed  CAS  Google Scholar 

  • Champagne DL, Bagot RC et al (2008) Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci 28(23):6037–6045

    PubMed  CAS  Google Scholar 

  • Chen RZ, Akbarian S et al (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27(3):327–331

    PubMed  CAS  Google Scholar 

  • Chen GG, Chak EC et al (2003a) Glioma apoptosis induced by macrophages involves both death receptor-dependent and independent pathways. J Lab Clin Med 141(3):190–199

    PubMed  CAS  Google Scholar 

  • Chen WG, Chang Q et al (2003b) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302(5646):885–889

    PubMed  CAS  Google Scholar 

  • Collins AL, Levenson JM et al (2004) Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet 13(21):2679–2689

    PubMed  CAS  Google Scholar 

  • Collins RE, Northrop JP et al (2008) The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules. Nat Struct Mol Biol 15(3):245–250

    PubMed  CAS  Google Scholar 

  • Covington HE 3rd, Maze I et al (2009) Antidepressant actions of histone deacetylase inhibitors. J Neurosci 29(37):11451–11460

    PubMed  CAS  Google Scholar 

  • Culhane JC, Wang D et al (2010) Comparative analysis of small molecules and histone substrate analogues as LSD1 lysine demethylase inhibitors. J Am Chem Soc 132(9):3164–3176

    PubMed  CAS  Google Scholar 

  • Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17(5):363–369

    PubMed  CAS  Google Scholar 

  • Davis CD, Uthus EO (2004) DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 229(10):988–995

    CAS  Google Scholar 

  • Dayer AG, Bottani A et al (2007) MECP2 mutant allele in a boy with Rett syndrome and his unaffected heterozygous mother. Brain Dev 29(1):47–50

    PubMed  Google Scholar 

  • Dhalluin C, Carlson JE et al (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496

    PubMed  CAS  Google Scholar 

  • Dong E, Agis-Balboa RC et al (2005) Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proc Natl Acad Sci USA 102(35):12578–12583

    PubMed  CAS  Google Scholar 

  • Dong J, Jimi E et al (2010) Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev 24(16):1709–1717

    PubMed  CAS  Google Scholar 

  • Edwards AM, Bountra C et al (2009) Open access chemical and clinical probes to support drug discovery. Nat Chem Biol 5(7):436–440

    PubMed  CAS  Google Scholar 

  • Erb S, Shaham Y et al (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology (Berl) 128(4):408–412

    CAS  Google Scholar 

  • Escoubet-Lozach L, Lin IL et al (2009) Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res 69(18):7347–7356

    PubMed  CAS  Google Scholar 

  • Fan G, Hutnick L (2005) Methyl-CpG binding proteins in the nervous system. Cell Res 15(4):255–261

    PubMed  CAS  Google Scholar 

  • Feng J, Sun G et al (2009) Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One 4(7):e6121

    PubMed  Google Scholar 

  • Ferraris DV (2010) Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 53(12):4561–4584

    Google Scholar 

  • Florence B, Faller DV (2001) You bet-cha: a novel family of transcriptional regulators. Front Biosci 6:D1008–D1018

    PubMed  CAS  Google Scholar 

  • Fog CK, Jensen KT et al (2007) Chromatin-modifying proteins in cancer. APMIS 115(10):1060–1089

    PubMed  CAS  Google Scholar 

  • Francis D, Diorio J et al (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286(5442):1155–1158

    PubMed  CAS  Google Scholar 

  • Fuks F, Hurd PJ et al (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278(6):4035–4040

    PubMed  CAS  Google Scholar 

  • Giacometti E, Luikenhuis S et al (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci USA 104(6):1931–1936

    PubMed  CAS  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    PubMed  CAS  Google Scholar 

  • Grayson DR, Kundakovic M et al (2008) Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 77(2):126–135

    Google Scholar 

  • Green TA, Alibhai IN et al (2006) Induction of inducible cAMP early repressor expression in nucleus accumbens by stress or amphetamine increases behavioral responses to emotional stimuli. J Neurosci 26(32):8235–8242

    PubMed  CAS  Google Scholar 

  • Greiner D, Bonaldi T et al (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1(3):143–145

    PubMed  CAS  Google Scholar 

  • Grozinger CM, Chao ED et al (2001) Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276(42):38837–38843

    PubMed  CAS  Google Scholar 

  • Guan JS, Haggarty SJ et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60

    PubMed  CAS  Google Scholar 

  • Guy J, Hendrich B et al (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27(3):322–326

    PubMed  CAS  Google Scholar 

  • Guy J, Gan J et al (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147

    PubMed  CAS  Google Scholar 

  • Hahnen E, Hauke J et al (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17(2):169–184

    PubMed  CAS  Google Scholar 

  • Hammond SM, Caudy AA et al (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2(2):110–119

    PubMed  CAS  Google Scholar 

  • Hassa PO, Haenni SS et al (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829

    PubMed  CAS  Google Scholar 

  • Hassan YI, Zempleni J (2008) A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr Rev 66(12):721–725

    PubMed  Google Scholar 

  • Healy S, Heightman TD et al (2009) Nonenzymatic biotinylation of histone H2A. Protein Sci 18(2):314–328

    PubMed  CAS  Google Scholar 

  • Heidbreder C (2011) Advances in animal models of drug addiction. Springer, Heidelberg. doi:10.1007/7854_2010_107

    Google Scholar 

  • Heltweg B, Gatbonton T et al (2006) Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 66(8):4368–4377

    PubMed  CAS  Google Scholar 

  • Hooker J, Kim SW et al (2010) Histone deacetylase inhibitor MS-275 exhibits poor brain penetration: pharmacokinetic studies of [11C]MS-275 using positron emission tomography. ACS Chem Neurosci 1(1):65–73

    PubMed  CAS  Google Scholar 

  • Hrzenjak A, Moinfar F et al (2010) Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo. Mol Cancer 9:49

    PubMed  Google Scholar 

  • Huang B, Yang XD et al (2009) Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol 29(5):1375–1387

    PubMed  CAS  Google Scholar 

  • Huang Y, Pastor WA et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5(1):e8888

    PubMed  Google Scholar 

  • Hyman SE, Malenka RC et al (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    PubMed  CAS  Google Scholar 

  • Jan MM, Dooley JM et al (1999) Male Rett syndrome variant: application of diagnostic criteria. Pediatr Neurol 20(3):238–240

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    PubMed  CAS  Google Scholar 

  • Kim IA, Kim IH et al (2010) HDAC inhibitor-mediated radiosensitization in human carcinoma cells: a general phenomenon? J Radiat Res (Tokyo) 51(3):257–263

    CAS  Google Scholar 

  • Klauck SM, Lindsay S et al (2002) A mutation hot spot for nonspecific X-linked mental retardation in the MECP2 gene causes the PPM-X syndrome. Am J Hum Genet 70(4):1034–1037

    PubMed  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97

    PubMed  CAS  Google Scholar 

  • Koob G, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164(8):1149–1159

    PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  • Kovacheva VP, Mellott TJ et al (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem 282(43):31777–31788

    PubMed  CAS  Google Scholar 

  • Kriaucionis S, Bird A (2003) DNA methylation and Rett syndrome. Hum Mol Genet 12 Spec No 2:R221–R227

    PubMed  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930

    PubMed  CAS  Google Scholar 

  • Kubicek S, O’Sullivan RJ et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481

    PubMed  CAS  Google Scholar 

  • Kumar A, Choi KH et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48(2):303–314

    PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D et al (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    PubMed  CAS  Google Scholar 

  • Lam CW, Yeung WL et al (2000) Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome. J Med Genet 37(12):E41

    PubMed  CAS  Google Scholar 

  • Langereis JD, Raaijmakers HA et al (2010) Abrogation of NF-{kappa}B signaling in human neutrophils induces neutrophil survival through sustained p38-MAPK activation. J Leukoc Biol 88:655–664

    PubMed  CAS  Google Scholar 

  • Lau OD, Kundu TK et al (2000) HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 5(3):589–595

    PubMed  CAS  Google Scholar 

  • Lee MG, Wynder C et al (2006) Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol 13(6):563–567

    PubMed  CAS  Google Scholar 

  • Lee JH, Choy ML et al (2010) Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci USA 107(33):14639–14644

    PubMed  CAS  Google Scholar 

  • Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6(2):108–118

    PubMed  CAS  Google Scholar 

  • Li X, Chen BD (2009) Histone deacetylase inhibitor M344 inhibits cell proliferation and induces apoptosis in human THP-1 leukemia cells. Am J Biomed Sci 1(4):352–363

    PubMed  CAS  Google Scholar 

  • Li E, Bestor TH et al (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69(6):915–926

    PubMed  CAS  Google Scholar 

  • Lister R, Pelizzola M et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    PubMed  CAS  Google Scholar 

  • Liu D, Diorio J et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277(5332):1659–1662

    PubMed  CAS  Google Scholar 

  • Liu F, Chen X et al (2009) Discovery of a 2, 4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J Med Chem 52(24):7950–7953

    PubMed  CAS  Google Scholar 

  • Loenarz C, Schofield CJ (2009) Oxygenase catalyzed 5-methylcytosine hydroxylation. Chem Biol 16(6):580–583

    PubMed  CAS  Google Scholar 

  • Luthi-Carter R, Taylor DM et al (2010) SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci USA 107(17):7927–7932

    PubMed  CAS  Google Scholar 

  • Ma X, Ezzeldin HH et al (2009) Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69(14):1911–1934

    PubMed  CAS  Google Scholar 

  • Maiwald R, Bonte A et al (2002) De novo MECP2 mutation in a 46, XX male patient with Rett syndrome. Neurogenetics 4(2):107–108

    PubMed  Google Scholar 

  • Mantelingu K, Reddy BA et al (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14(6):645–657

    PubMed  CAS  Google Scholar 

  • Manzo F, Tambaro FP et al (2009) Histone acetyltransferase inhibitors and preclinical studies. Expert Opin Ther Pat 19(6):761–774

    PubMed  CAS  Google Scholar 

  • Masuyama T, Matsuo M et al (2005) Classic Rett syndrome in a boy with R133C mutation of MECP2. Brain Dev 27(6):439–442

    PubMed  Google Scholar 

  • Maze I, Covington HE 3rd et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216

    PubMed  CAS  Google Scholar 

  • McGill BE, Bundle SF et al (2006) Enhanced anxiety and stress-induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 103(48):18267–18272

    PubMed  CAS  Google Scholar 

  • McGowan PO, Kato T (2008) Epigenetics in mood disorders. Environ Health Prev Med 13(1):16–24

    PubMed  CAS  Google Scholar 

  • McGowan PO, Meaney MJ et al (2008) Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res 1237:12–24

    PubMed  CAS  Google Scholar 

  • McGowan PO, Sasaki A et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348

    PubMed  CAS  Google Scholar 

  • Merali Z, Du L et al (2004) Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J Neurosci 24(6):1478–1485

    PubMed  CAS  Google Scholar 

  • Metzger E, Wissmann M et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439

    PubMed  CAS  Google Scholar 

  • Metzger E, Yin N et al (2008) Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10(1):53

    PubMed  CAS  Google Scholar 

  • Milani D, Pantaleoni C et al (2005) Another patient with MECP2 mutation without classic Rett syndrome phenotype. Pediatr Neurol 32(5):355–357

    PubMed  Google Scholar 

  • Minsky N, Shema E et al (2008) Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 10(4):483–488

    PubMed  CAS  Google Scholar 

  • Mitsubishi/Tanabe (Int. Pat. Appl. WO09/084693)

    Google Scholar 

  • Moretti P, Bouwknecht JA et al (2005) Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 14(2):205–220

    PubMed  CAS  Google Scholar 

  • Need AC, Ge D et al (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 5(2):e1000373

    PubMed  Google Scholar 

  • Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9(2):158–163

    PubMed  CAS  Google Scholar 

  • Ng SS, Kavanagh KL et al (2007) Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448(7149):87

    PubMed  CAS  Google Scholar 

  • Niculescu MD, Craciunescu CN et al (2006) Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J 20(1):43–49

    PubMed  CAS  Google Scholar 

  • Nuber UA, Kriaucionis S et al (2005) Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum Mol Genet 14(15):2247–2256

    PubMed  CAS  Google Scholar 

  • Outeiro TF, Kontopoulos E et al (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317(5837):516–519

    PubMed  CAS  Google Scholar 

  • Pacholec M, Bleasdale JE et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285(11):8340–8351

    PubMed  CAS  Google Scholar 

  • Pagans S, Pedal A et al (2005) SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 3(2):e41

    PubMed  Google Scholar 

  • Palmieri D, Lockman PR et al (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15(19):6148–6157

    PubMed  CAS  Google Scholar 

  • Paris M, Porcelloni M et al (2008) Histone deacetylase inhibitors: from bench to clinic. J Med Chem 51(6):1505

    PubMed  CAS  Google Scholar 

  • Penn NW, Suwalski R et al (1972) The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J 126(4):781–790

    PubMed  CAS  Google Scholar 

  • Perez Fidalgo JA, Roda D et al (2009) Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system. Clin Transl Oncol 11(12):787

    PubMed  CAS  Google Scholar 

  • Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465(7299):721–727

    PubMed  CAS  Google Scholar 

  • Pogribny IP, Ross SA et al (2006) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593(1–2):80–87

    PubMed  CAS  Google Scholar 

  • Poulter MO, Du L et al (2008) GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry 64(8):645–652

    PubMed  CAS  Google Scholar 

  • Quinn AM, Bedford MT et al (2009) A homogeneous method for investigation of methylation-dependent protein–protein interactions in epigenetics. Nucleic Acids Res 38(2):e11

    PubMed  Google Scholar 

  • Renthal W, Maze I et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529

    PubMed  CAS  Google Scholar 

  • Renthal W, Carle TL et al (2008) Delta FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci 28(29):7344–7349

    PubMed  CAS  Google Scholar 

  • Renthal W, Kumar A et al (2009) Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62(3):335–348

    PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    PubMed  CAS  Google Scholar 

  • Rose NR, Ng SS et al (2008) Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem 51(22):7053–7056

    PubMed  CAS  Google Scholar 

  • Rose NR, Woon EC et al (2010) Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches. J Med Chem 53(4):1810–1818

    PubMed  CAS  Google Scholar 

  • Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann N Y Acad Sci 983:197–207

    PubMed  CAS  Google Scholar 

  • Ross SA, Milner JA (2007) Epigenetic modulation and cancer: effect of metabolic syndrome? Am J Clin Nutr 86(3):s872–s877

    PubMed  Google Scholar 

  • Russo SJ, Mazei-Robison MS et al (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56(Suppl 1):73–82

    PubMed  CAS  Google Scholar 

  • Sachchidanand, Resnick-Silverman L et al (2006) Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem Biol 13(1):81–90

    PubMed  CAS  Google Scholar 

  • Sakurai M, Rose NR et al (2010) A miniaturized screen for inhibitors of Jumonji histone demethylases. Mol Biosyst 6(2):357–364

    PubMed  CAS  Google Scholar 

  • Schroeder FA, Lin CL et al (2007) Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62(1):55–64

    PubMed  CAS  Google Scholar 

  • Shahbazian M, Young J et al (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35(2):243–254

    PubMed  CAS  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100(23):13225

    PubMed  CAS  Google Scholar 

  • Sleutels F, Zwart R et al (2002) The non-coding air RNA is required for silencing autosomal imprinted genes. Nature 415(6873):810–813

    PubMed  CAS  Google Scholar 

  • Slyshenkov VS, Shevalye AA et al (2002) Protective role of l-methionine against free radical damage of rat brain synaptosomes. Acta Biochim Pol 49(4):907–916

    PubMed  CAS  Google Scholar 

  • Smiraglia DJ, Rush LJ et al (2001) Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 10(13):1413–1419

    PubMed  CAS  Google Scholar 

  • Stimson L, Rowlands MG et al (2005) Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 4(10):1521–1532

    PubMed  CAS  Google Scholar 

  • Stipanovich A, Valjent E et al (2008) A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature 453(7197):879–884

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    PubMed  CAS  Google Scholar 

  • Suganuma T, Workman JL (2008) Crosstalk among histone modifications. Cell 135(4):604–607

    PubMed  CAS  Google Scholar 

  • Swinney DC, Xu YZ et al (2002) A small molecule ubiquitination inhibitor blocks NF-kappa B-dependent cytokine expression in cells and rats. J Biol Chem 277(26):23573

    PubMed  CAS  Google Scholar 

  • Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    PubMed  CAS  Google Scholar 

  • Tahiliani M, Koh KP et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935

    PubMed  CAS  Google Scholar 

  • Takai N, Narahara H (2010) Histone deacetylase inhibitor therapy in epithelial ovarian cancer. J Oncol 2010:458431

    PubMed  Google Scholar 

  • Tan J, Cang S et al (2010) Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 3:5

    PubMed  Google Scholar 

  • Taverna SD, Li H et al (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040

    PubMed  CAS  Google Scholar 

  • Tremolizzo L, Carboni G et al (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99(26):17095–17100

    PubMed  CAS  Google Scholar 

  • Tremolizzo L, Doueiri MS et al (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57(5):500–509

    PubMed  CAS  Google Scholar 

  • Tsankova NM, Berton O et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    PubMed  CAS  Google Scholar 

  • Tsankova N, Renthal W et al (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367

    PubMed  CAS  Google Scholar 

  • Tueting P, Doueiri MS et al (2006) Reelin down-regulation in mice and psychosis endophenotypes. Neurosci Biobehav Rev 30(8):1065–1077

    PubMed  CAS  Google Scholar 

  • Van den Veyver IB (2002) Genetic effects of methylation diets. Annu Rev Nutr 22:255–282

    PubMed  Google Scholar 

  • Voso MT, Santini V et al (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15(15):5002–5007

    PubMed  CAS  Google Scholar 

  • Waddington CH (1957) The strategy of the Genes: a Discussion of Some Aspects of Theoretical Biology. Allen and Unwin, London

    Google Scholar 

  • Wang H, Dymock BW (2009) New patented histone deacetylase inhibitors. Expert Opin Ther Pat 19(12):1727–1757

    PubMed  CAS  Google Scholar 

  • Watson P, Black G et al (2001) Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J Med Genet 38(4):224–228

    PubMed  CAS  Google Scholar 

  • Weaver IC, Cervoni N et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    PubMed  CAS  Google Scholar 

  • Weaver IC, Champagne FA et al (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25(47):11045–11054

    PubMed  CAS  Google Scholar 

  • Weaver IC, Meaney MJ et al (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci USA 103(9):3480–3485

    PubMed  CAS  Google Scholar 

  • Wigle TJ, Herold JM et al (2010) Screening for inhibitors of low-affinity epigenetic peptide–protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins. J Biomol Screen 15(1):62–71

    PubMed  CAS  Google Scholar 

  • Wyatt A, Benedict RG, Davis J (1971) Biochemical and sleep studies of schizophrenia: a review of the literature – 1960–1970. Schizophr Bull 4:10–44

    Google Scholar 

  • Yang M, Culhane JC et al (2007) Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine. Biochemistry 46(27):8058–8065

    PubMed  CAS  Google Scholar 

  • Yoshida M, Kijima M et al (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265(28):17174–17179

    PubMed  CAS  Google Scholar 

  • Zhou Z, Hong EJ et al (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52(2):255–269

    PubMed  CAS  Google Scholar 

  • Zhu X, Ma Y et al (2010) Novel agents and regimens for acute myeloid leukemia: 2009 ASH annual meeting highlights. J Hematol Oncol 3:17

    PubMed  Google Scholar 

  • Zippo A, Serafini R et al (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138(6):1122

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Structural Genomics Consortium (a registered charity; number 1097737) receives funds from the Canadian Institutes for Health Research, the Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Karolinska Institutet, the Knut and Alice Wallenberg Foundation, the Ontario Innovation Trust, the Ontario Ministry for Research and Innovation, Merck and Co., Inc., the Novartis Research Foundation, the Swedish Agency for Innovation Systems, the Swedish Foundation for Strategic Research and the Wellcome Trust. The work was supported by the NIHR Biomedical Research Unit Oxford. We gratefully acknowledge the assistance of Ms J. Zapisek and Ms. M. Kalinowska in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chas Bountra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bountra, C., Oppermann, U., Heightman, T.D. (2011). Animal Models of Epigenetic Regulation in Neuropsychiatric Disorders. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_104

Download citation

Publish with us

Policies and ethics