Skip to main content

Abstract

The evolutionary approach to human anxiety is based on the defensive responses that nonhuman animals show to fear-provoking stimuli. Studies performed mostly on rodents have related areas such as the medial prefrontal cortex, amygdaloid and hypothalamic nuclei, hipoccampal formation, and midbrain central gray to these responses. It is clear, however, that animals show different and sometimes opposite responses according to the threatening stimulus. These responses include immediate reactions such as freezing or flight, behavioral inhibition or avoidance, which are organized by at least partially distinct brain systems. As discussed in this chapter, several pieces of evidence indicate that these brain systems are similar in rodents and primates. In addition, recent neuroimaging studies also suggest dysfunctions in these systems are probably related to anxiety disorders in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACg:

Anterior cingulate

AID:

Dorsal agranular insular cortex

AIV:

Ventral agranular insular cortex

BLA:

Basolateral amygdala

BNST:

Bed nucleus of the stria terminalis

CA1:

Ammon’s horn 1

CeA:

Central nucleus of the amygdala

DLPFC:

Lateral/dorsolateral prefrontal cortex

DMH:

Dorsomedial hypothalamic nucleus

HAP:

Hypothalamus–pituitary–adrenal

IL:

Infralimbic cortex

LH:

Lateral hypothalamus

MO:

Medial orbital cortex

mPFC:

Medial prefrontal cortex

OCD:

Obsessive-compulsive disorder

OMPFC:

Orbito-medial prefrontal cortex

PAG:

Periaqueductal gray

PFC:

Prefrontal cortex

PL:

Prelimbic cortex

PTSD:

Post-traumatic stress disorder

PVN:

Paraventricular nucleus

SSDR:

Species-specific defensive reaction

VLO:

Ventral lateral orbital cortex

vmPFC:

Ventromedial prefrontal cortex

VO:

Ventral orbital cortex

References

  • Anglada-Figueroa D, Quirk GJ (2005) Lesions of the basal amygdala block expression of conditioned fear but not extinction. J Neurosci 25:9680–9685

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus–memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  PubMed  CAS  Google Scholar 

  • Berdoy M, Webster JP, Macdonald DW (1995) Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology 111:403–409

    Article  PubMed  Google Scholar 

  • Berkowitz RL, Coplan JD, Reddy DP, Gorman JM (2007) The human dimension: how the prefrontal cortex modulates the subcortical fear response. Rev Neurosci 18:191–207

    PubMed  Google Scholar 

  • Bertoglio LJ, Joca SR, Guimarães FS (2006) Further evidence that anxiety and memory are regionally dissociated within the hippocampus. Behav Brain Res 175:183–188

    Article  PubMed  Google Scholar 

  • Bishop SL (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11:307–316

    Article  PubMed  Google Scholar 

  • Blanchard DC, Li CI, Hubbard D, Markham CM, Yang M, Takahashi LK, Blanchard RJ (2003) Dorsal premammillary nucleus differentially modulates defensive behaviors induced different threat stimuli in rats. Neurosci Lett 345:145–148

    Article  PubMed  CAS  Google Scholar 

  • Blanchard DC, Canteras NS, Markham CM, Pentkowski NS, Blanchard RJ (2005) Lesions of structures showing FOS expression to cat presentation: effects on responsivity to a Cat, Cat odor, and nonpredator threat. Neurosci Biobehav Rev 29:1243–1253

    Article  PubMed  Google Scholar 

  • Bolles RC (1970) Species-specific defense reactions and avoidance learning. Psychol Rev 77:32–48

    Article  Google Scholar 

  • Boshuisen ML, Ter Horst GJ, Paans AM, Reinders AA, den Boer JA (2002) rCBF differences between panic disorder patients and control subjects during anticipatory anxiety and rest. Biol Psychiatry 52:126–135

    Article  PubMed  Google Scholar 

  • Burns LH, Annett L, Kelley AE, Everitt BJ, Robbins TW (1996) Effects of lesions to amygdala, ventral subiculum, medial prefrontal cortex, and nucleus accumbens on the reaction to novelty: implication for limbic-striatalinteractions. Behav Neurosci 110:60–73

    Article  PubMed  CAS  Google Scholar 

  • Butler T, Pan H, Tuescher O, Engelien A, Goldstein M, Epstein J, Weisholtz D, Root JC, Protopopescu X, Cunningham-Bussel AC, Chang L, Xie X-H, Chen Q, Phelps EA, Ledouz JE, Stern E, Silbersweig DA (2007) Human fear-related motor circuitry. Neuroscience 150:1–7

    Article  PubMed  CAS  Google Scholar 

  • Campeau S, Davis M (1995) Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 15:2301–2311

    PubMed  CAS  Google Scholar 

  • Canteras NS (2002) The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol Biochem Behav 71:481–491

    Article  PubMed  CAS  Google Scholar 

  • Canteras NS, Goto M (1999) Fos-like immunoreactivity in the periaqueductal gray of rats exposed to a natural predator. Neuroreport 10:413–418

    Article  PubMed  CAS  Google Scholar 

  • Canteras NS, Chiavegatto S, Valle LE Ribeiro do, Swanson LW (1997) Severe reduction of defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res Bull 44:297–305

    Article  PubMed  CAS  Google Scholar 

  • Canteras NS, Ribeiro-Barbosa ER, Comoli E (2001) Tracing from the dorsal premammillary nucleus prosencephalic systems involved in the organization of innate fear responses. Neurosci Biobehav Rev 25:661–668

    Article  PubMed  CAS  Google Scholar 

  • Carrive P, Leung P, Harris J, Paxinos G (1997) Conditioned fear to context is associated with increased Fos expression in the caudal ventrolateral region of the midbrain periaqueductal gray. Neuroscience 78:165–177

    Article  PubMed  CAS  Google Scholar 

  • Churchill L, Zahm DS, Duffy P, Kalivas PW (1996) The mediodorsal nucleus of the thalamus in rats–II. Behavioral and neurochemical effects of GABA agonists. Neuroscience 70:103–112

    Article  PubMed  CAS  Google Scholar 

  • Coutureau E, Galani R, Jarrard LE, Cassel JC (2000) Selective lesions of the entorhinal cortex, the hippocampus, or the fimbria-fornix in rats: a comparison of effects on spontaneous and amphetamine-induced locomotion. Exp Brain Res 131:381–392

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1872) The expression of the emotions in man and animals. University of Chicago Press, Chicago, 1965 reprint from the 1872 original

    Book  Google Scholar 

  • De Oca BM, Fanselow MS (2004) Amygdala and periaqueductal gray lesions partially attenuate unconditional defensive responses in rats exposed to a cat. Integr Physiol Behav Sci 39:318–333

    Article  PubMed  Google Scholar 

  • Deakin JWF, Graeff FG (1991) 5-HT and mechanisms of defence. J Psychopharmacol 5:305–315

    Article  PubMed  CAS  Google Scholar 

  • Degroot A, Treit D (2004) Anxiety is functionally segregated within the septo-hippocampal system. Brain Res 1001:60–71

    Article  PubMed  CAS  Google Scholar 

  • Dielenberg RA, Hunt GE, McGregor IS (2001) ‘‘When a rat smells a cat’’: the distribution of c-fos expression in rat brain following exposure to a predator odor. Neuroscience 104:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–1488

    Article  PubMed  Google Scholar 

  • Fanselow MS (1994) Neural organization of the defensive behavior system responsible for fear. Psychonomic Bull Rev 1:429–438

    Article  Google Scholar 

  • Fuster JM (2000a) Executive frontal functions. Exp Brain Res 133(66–70):2000a

    Google Scholar 

  • Fuster JM (2000b) The prefrontal cortex–an update: time is of the essence. Neuron 30:319–333

    Article  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177

    Article  PubMed  Google Scholar 

  • Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24:3810–3815

    Article  PubMed  CAS  Google Scholar 

  • Gray JA (1970) Sodium amobarbital, the hippocampal theta rhythm, and the partial reinforcement extinction effect. Psychol Rev 77:465–480

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, McNaughton N (2000) The neuropsychology of anxiety, 2nd edn. Oxford Medical Publications, Oxford

    Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  PubMed  Google Scholar 

  • Izquierdo A, Wellmann CL, Holmes A (2006) Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 26:5733–5738

    Article  PubMed  CAS  Google Scholar 

  • Javanmard M, Shlik J, Kennedy SH, Vaccarino FJ, Houle S, Bradwejn J (1999) Neuroanatomic correlates of CCK-4-induced panic attacks in healthy humans: a comparison of two time points. Biol Psychiatry 45:872–882

    Article  PubMed  CAS  Google Scholar 

  • Jinks AL, McGregor IS (1997) Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Res 772:181–190

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Churchill L, Romanides A (1999) Involvement of the pallidal-thalamocortical circuit in adaptive behavior. Ann NY Acad Sci 877:64–70

    Article  PubMed  CAS  Google Scholar 

  • Lacroix L, Broersen LM, Weiner I, Feldon J (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 84:431–442

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Leonard CM (1972) The connections of the dorsomedial nuclei. Brain Behav Evol 6:524–541

    Article  PubMed  CAS  Google Scholar 

  • Li CI, Maglinao TL, Takahashi LK (2004) Medial amygdala modulation of predator odor induced unconditioned fear in the rat. Behav Neurosci 118:324–332

    Article  PubMed  Google Scholar 

  • Maaswinkel H, Gispen WH, Spruijt BM (1996) Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat. Behav Brain Res 79:51–59

    Article  PubMed  CAS  Google Scholar 

  • Maren S (2007) The threatened brain. Science 317:1043–1044

    Article  PubMed  CAS  Google Scholar 

  • Markham CM, Blanchard DC, Canteras NS, Cuyno CD, Blanchard RJ (2004) Modulation of predatory odor processing following lesions to the dorsal premammillary nucleus. Neurosci Lett 372:22–26

    Article  PubMed  CAS  Google Scholar 

  • Martinez RCR, Carvalho-Netto EF, Amaral VCS, Nunes-de-Souza RL, Canteras NS, Martinez RCR, Carvalho-Netto EF, Amaral VCS, Nunes-de-Souza RL, Canteras NS (2008) Investigation of the hypothalamic defensive system in the mouse. Behav Brain Res 192:185–190

    Article  PubMed  Google Scholar 

  • McDonald AJ (1988) Cortical pathways to mammalian amygdala. Prog Neurobiol 55:257–332

    Article  Google Scholar 

  • McGregor IS, Hargreaves GA, Apfelbach R, Hunt GE (2004) Neural correlates of cat odor-induced anxiety in rats: region-specific effects of the benzodiazepine midazolam. J Neurosci 24:4134–4144

    Article  PubMed  CAS  Google Scholar 

  • McNaughton N, Corr PJ (2004) A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci Biobehav Rev 28:285–305

    Article  PubMed  Google Scholar 

  • Milad MR, Rauch SL (2007) The role of the orbitofrontal cortex in anxiety disorders. Ann NY Acad Sci 1121:546–561

    Article  PubMed  Google Scholar 

  • Milad MR, Rauch SL, Pitman RK, Quirk GJ (2006) Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73:61–71

    Article  PubMed  Google Scholar 

  • Mitchell SN, Sharrott A, Cooper J, Greenslade RG (2000) Ventral subiculum administration of the somatostatin receptor agonist MK-678 increases dopamine levels in the nucleus accumbens. Eur J Pharmacol 395:43–46

    Article  PubMed  CAS  Google Scholar 

  • Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour B, Dolan RJ, Frith CD (2007) When fear is near: threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science 317:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Morgane PJ, Galler JR, Mokler DJ (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75:143–160

    Article  PubMed  Google Scholar 

  • Morris JS (2002) How do you feel. Trends Cogn Sci 6:317–319

    Article  Google Scholar 

  • Muller J, Corodimas KP, Fridel Z, LeDoux JE (1997) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci 111:683–691

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Kishi K, Kato S (2007) Insular cortex and neuropsychiatric disorders: a review of recent literature. Eur Psychiatry 22:387–394

    Article  PubMed  CAS  Google Scholar 

  • Nascimento Häckl LP, Carobrez AP (2007) Distinct ventral and dorsal hippocampus AP5 anxiolytic effects revealed in the elevated plus-maze task in rats. Neurobiol Learn Mem 88:177–185

    Article  PubMed  Google Scholar 

  • Oddie SD, Bland BH (1998) Hippocampal formation theta activity and movement selection. Neurosci Biobehav Rev 22:221–231

    Article  PubMed  CAS  Google Scholar 

  • Pare D, Smith Y (1998) Intrinsic circuitry of the amygdaloid complex: common principles of organization in rats and cats. Trends Neurosci 21:240–241

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier, New York

    Google Scholar 

  • Pentkowski NS, Blanchard DC, Lever C, Litvin Y, Blanchard RJ (2006) Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur J Neurosci 23:2185–2196

    Article  PubMed  Google Scholar 

  • Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev 38:247–289

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20:517–523

    Article  PubMed  Google Scholar 

  • Price JL (2007) Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann NY Acad Sci 1121:54–71

    Article  PubMed  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    Article  PubMed  Google Scholar 

  • Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human Neuroimaging research – past, present, and future. Biol Psychiatry 60:376–382

    Article  PubMed  Google Scholar 

  • Resstel LB, Corrêa FM (2006) Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Auton Neurosci 126–127:130–138

    Article  PubMed  Google Scholar 

  • Resstel LB, Joca SR, Guimarães FG, Corrêa FM (2006) Involvement of medial prefrontal cortex neurons in behavioral and cardiovascular responses to contextual fear conditioning. Neuroscience 143:377–385

    Article  PubMed  CAS  Google Scholar 

  • Risold PY, Swanson LW (1996) Structural evidence for functional domains in the rat hippocampus. Science 272:1484–1486

    Article  PubMed  CAS  Google Scholar 

  • Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Publ Assoc Nerv Ment Dis 27:210–232

    Google Scholar 

  • Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E, Ohnishi T, Matsuda H, Yasuda A, Sato A, Diksic M, Kuboki T (2006) Changes in cerebral glucose utilization in patients with panic disorder treated with cognitive-behavioral therapy. Neuroimage 33:218–226

    Article  PubMed  Google Scholar 

  • Sandford JJ, Argyropoulos SV, Nutt DJ (2000) The psychobiology of anxiolytic drugs. Part IÇ basic neurobiology. Pharmacol Ther 88:197–212

    Article  PubMed  CAS  Google Scholar 

  • Sewards TV, Sewards MA (2003) Representations of motivational drives in mesial cortex, medial thalamus, hypothalamus and midbrain. Brain Res Bull 61:25–49

    Article  PubMed  Google Scholar 

  • Shah AA, Treit D (2003) Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res 969:183–194

    Article  PubMed  CAS  Google Scholar 

  • Singewald N, Sharp T (2000) Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by Fos immunocytochemistry. Neuroscience 98:759–770

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1987) The hypothalamus. In: Hökfelt T, Björklund A, Swanson LW (eds) Handbook of chemical neuroanatomy. Integrated systems, vol 5. Elsevier, Amsterdam, pp 1–124

    Google Scholar 

  • Swanson CJ, Kalivas PW (2000) Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J Pharmacol Exp Ther 292:406–414

    PubMed  CAS  Google Scholar 

  • Van Eden CG, Buijs RM (2000) Functional neuroanatomy of the prefrontal cortex: autonomic interactions. Prog Brain Res 126:49–62

    Article  PubMed  Google Scholar 

  • Verberne AJ, Owens NC (1998) Cortical modulation of the cardiovascular system. Prog Neurobiol 54:149–168

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    Article  PubMed  CAS  Google Scholar 

  • Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA 104:6442–6447

    Article  PubMed  CAS  Google Scholar 

  • Wall PM, Blanchard RJ, Yang M, Blanchard DC (2004) Differential effects of infralimbic vs. ventromedial orbital PFC lidocaine infusions in CD-1 mice on defensive responding in the mouse defense test battery and rat exposure test. Brain Res 1020:73–85

    Article  PubMed  CAS  Google Scholar 

  • Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26:12387–12396

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the Brazilian agencies Capes, FAPESP, CNPq and FAPESC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Silveira Guimarães .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Canteras, N.S., Resstel, L.B., Bertoglio, L.J., de Pádua Carobrez, A., Guimarães, F.S. (2009). Neuroanatomy of Anxiety. In: Stein, M., Steckler, T. (eds) Behavioral Neurobiology of Anxiety and Its Treatment. Current Topics in Behavioral Neurosciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2009_7

Download citation

Publish with us

Policies and ethics