Advertisement

Molecular Pathology and Cytogenetics of Endometrial Carcinoma, Carcinosarcoma, and Uterine Sarcomas

  • Jose Palacios
  • Paola Dal CinEmail author
Part of the Current Clinical Oncology book series (CCO)

Abstract

Molecular pathology and genetics are the subjects of increasing focus since they are providing a link between etiologic factors and the heterogeneity of clinicopathologic manifestations that have been covered in the preceding chapters. In endometrial cancer, two divergent pathways have been delineated that may be thought as analogous to the hormone-dependent and -independent subtypes in cancers of breast and prostate. Most hormone dependent EC are EEC, which from a molecular point of view can be classified into different subgroups: (a) ultramutated, due to POLE mutations; (b) hypermutated tumors with MSI, most frequently due to MLH1 promoter, but also seen in Lynch syndrome; and (c) MSS EC with low mutation rate, the most frequent subgroup of EEC. Hormone-independent tumors are represented by serous carcinomas, characterized by a high rate of mutations in p53 that produce genomic instability with extensive somatic copy number alterations. Knowledge on alterations in sarcomas will hopefully lead to advances in diagnosis and therapy that are urgently needed in women where spread beyond the uterus has occurred.

Keywords

Molecular pathways Microsatellite instability PTEN inactivation β-catenin Cytogenetics 

References

  1. 1.
    Yeramian A, Moreno-Bueno G, Dolcet X, et al. Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene. 2013;32(4):403–13.PubMedGoogle Scholar
  2. 2.
    Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.Google Scholar
  3. 3.
    Church DN, Stelloo E, Nout RA, et al. Prognostic significance of POLE proofreading mutations in endometrial cancer. J Natl Cancer Inst. 2014;107(1):402.PubMedGoogle Scholar
  4. 4.
    Hussein YR, Weigelt B, Levine DA, et al. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol. 2015;28(4):505–14.PubMedGoogle Scholar
  5. 5.
    Meng B, Hoang LN, McIntyre JB, et al. POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol. 2014;134(1):15–9.PubMedGoogle Scholar
  6. 6.
    Billingsley CC, Cohn DE, Mutch DG, Stephens JA, Suarez AA, Goodfellow PJ. Polymerase ɛ (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. Cancer. 2015;121(3):386–94.PubMedGoogle Scholar
  7. 7.
    Haraldsdottir S, Hampel H, Tomsic J, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147(6):1308–1316.e1.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.PubMedGoogle Scholar
  9. 9.
    Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tafe LJ, Riggs ER, Tsongalis GJ. Lynch syndrome presenting as endometrial cancer. Clin Chem. 2014;60(1):111–21.PubMedGoogle Scholar
  11. 11.
    Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.PubMedGoogle Scholar
  12. 12.
    Wijnen J, de Leeuw W, Vasen H, et al. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet. 1999;23(2):142–4.PubMedGoogle Scholar
  13. 13.
    Karamurzin Y, Rutgers JK. DNA mismatch repair deficiency in endometrial carcinoma. Int J Gynecol Pathol. 2009;28(3):239–55.PubMedGoogle Scholar
  14. 14.
    Esteller M, Catasus L, Matias-Guiu X, et al. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol. 1999;155(5):1767–72.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kanaya T, Kyo S, Maida Y, et al. Frequent hypermethylation of MLH1 promoter in normal endometrium of patients with endometrial cancers. Oncogene. 2003;22(15):2352–60.PubMedGoogle Scholar
  16. 16.
    Hardisson D, Moreno-Bueno G, Sanchez L, et al. Tissue microarray immunohistochemical expression analysis of mismatch repair (hMLH1 and hMSH2 genes) in endometrial carcinoma and atypical endometrial hyperplasia: relationship with microsatellite instability. Mod Pathol. 2003;16(11):1148–58.PubMedGoogle Scholar
  17. 17.
    McConechy MK, Talhouk A, Li-Chang HH, et al. Detection of DNA mismatch repair (MMR) deficiencies by immunohistochemistry can effectively diagnose the microsatellite instability (MSI) phenotype in endometrial carcinomas. Gynecol Oncol. 2015; pii: S0090-8258(15)00584-3.Google Scholar
  18. 18.
    Schwartz S, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1999;59(12):2995–3002.PubMedGoogle Scholar
  19. 19.
    Catasus L, Matias-Guiu X, Machin P, et al. Frameshift mutations at coding mononucleotide repeat microsatellites in endometrial carcinoma with microsatellite instability. Cancer. 2000;88(10):2290–7.PubMedGoogle Scholar
  20. 20.
    Furlan D, Casati B, Cerutti R, et al. Genetic progression in sporadic endometrial and gastrointestinal cancers with high microsatellite instability. J Pathol. 2002;197(5):603–9.PubMedGoogle Scholar
  21. 21.
    Shia J, Black D, Hummer AJ, Boyd J, Soslow RA. Routinely assessed morphological features correlate with microsatellite instability status in endometrial cancer. Hum Pathol. 2008;39(1):116–25.PubMedGoogle Scholar
  22. 22.
    Peiffer SL, Herzog TJ, Tribune DJ, Mutch DG, Gersell DJ, Goodfellow PJ. Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 1995;55(9):1922–6.PubMedGoogle Scholar
  23. 23.
    Risinger JI, Hayes AK, Berchuck A, Barrett JC. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 1997;57(21):4736–8.PubMedGoogle Scholar
  24. 24.
    Moreno-Bueno G, Hardisson D, Sarrio D, et al. Abnormalities of E- and P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol. 2003;199(4):471–8.PubMedGoogle Scholar
  25. 25.
    Sun H, Enomoto T, Fujita M, et al. Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol. 2001;115(1):32–8.PubMedGoogle Scholar
  26. 26.
    Mutter GL, Lin MC, Fitzgerald JT, et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92(11):924–30.PubMedGoogle Scholar
  27. 27.
    Orbo A, Kaino T, Arnes M, Kopp M, Eklo K. Genetic derangements in the tumor suppressor gene PTEN in endometrial precancers as prognostic markers for cancer development: a population-based study from northern Norway with long-term follow-up. Gynecol Oncol. 2004;95(1):82–8.PubMedGoogle Scholar
  28. 28.
    Brachtel EF, Sanchez-Estevez C, Moreno-Bueno G, Prat J, Palacios J, Oliva E. Distinct molecular alterations in complex endometrial hyperplasia (CEH) with and without immature squamous metaplasia (squamous morules). Am J Surg Pathol. 2005;29(10):1322–9.PubMedGoogle Scholar
  29. 29.
    Mutter GL, Ince TA, Baak JP, Kust GA, Zhou XP, Eng C. Molecular identification of latent precancers in histologically normal endometrium. Cancer Res. 2001;61(11):4311–4.PubMedGoogle Scholar
  30. 30.
    Bussaglia E, del Rio E, Matias-Guiu X, Prat J. PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum Pathol. 2000;31(3):312–7.PubMedGoogle Scholar
  31. 31.
    Koul A, Willen R, Bendahl PO, Nilbert M, Borg A. Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis. Cancer. 2002;94(9):2369–79.PubMedGoogle Scholar
  32. 32.
    Risinger JI, Hayes K, Maxwell GL, et al. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998;4(12):3005–10.PubMedGoogle Scholar
  33. 33.
    Maxwell GL, Risinger JI, Hayes KA, et al. Racial disparity in the frequency of PTEN mutations, but not microsatellite instability, in advanced endometrial cancers. Clin Cancer Res. 2000;6(8):2999–3005.PubMedGoogle Scholar
  34. 34.
    Salvesen HB, Stefansson I, Kretzschmar EI, et al. Significance of PTEN alterations in endometrial carcinoma: a population-based study of mutations, promoter methylation and PTEN protein expression. Int J Oncol. 2004;25(6):1615–23.PubMedGoogle Scholar
  35. 35.
    Konopka B, Paszko Z, Janiec-Jankowska A, Goluda M. Assessment of the quality and frequency of mutations occurrence in PTEN gene in endometrial carcinomas and hyperplasias. Cancer Lett. 2002;178(1):43–51.PubMedGoogle Scholar
  36. 36.
    Pallares J, Bussaglia E, Martinez-Guitarte JL, et al. Immunohistochemical analysis of PTEN in endometrial carcinoma: a tissue microarray study with a comparison of four commercial antibodies in correlation with molecular abnormalities. Mod Pathol. 2005;18(5):719–27.PubMedGoogle Scholar
  37. 37.
    Eritja N, Santacana M, Maiques O, Gonzalez-Tallada X, Dolcet X, Matias-Guiu X. Modeling glands with PTEN deficient cells and microscopic methods for assessing PTEN loss: endometrial cancer as a model. Methods. 2015;77–78:31–40.PubMedGoogle Scholar
  38. 38.
    Rudd ML, Price JC, Fogoros S, Godwin AK, Sgroi DC, Merino MJ, Bell DW. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin Cancer Res. 2011;17(6):1331–40.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–73.PubMedGoogle Scholar
  40. 40.
    Velasco A, Bussaglia E, Pallares J, et al. PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations. Hum Pathol. 2006;37(11):1465–72.PubMedGoogle Scholar
  41. 41.
    Catasus L, Gallardo A, Cuatrecasas M, Prat J. Concomitant PI3K-AKT and p53 alterations in endometrial carcinomas are associated with poor prognosis. Mod Pathol. 2009;22(4):522–9.PubMedGoogle Scholar
  42. 42.
    Kang S, Seo SS, Chang HJ, Yoo CW, Park SY, Dong SM. Mutual exclusiveness between PIK3CA and KRAS mutations in endometrial carcinoma. Int J Gynecol Cancer. 2008;18(6):1339–43.PubMedGoogle Scholar
  43. 43.
    Konopka B, Janiec-Jankowska A, Kwiatkowska E, et al. PIK3CA mutations and amplification in endometrioid endometrial carcinomas: relation to other genetic defects and clinicopathologic status of the tumors. Hum Pathol. 2011;42(11):1710–9.PubMedGoogle Scholar
  44. 44.
    Urick ME, Rudd ML, Godwin AK, Sgroi D, Merino M, Bell DW. PIK3R1 (p85alpha) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 2011;71(12):4061–7.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Carpten JD, Faber AL, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448(7152):439–44.PubMedGoogle Scholar
  46. 46.
    Shoji K, Oda K, Nakagawa S, et al. The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer. 2009;10(1):145–8.Google Scholar
  47. 47.
    Cohen Y, Shalmon B, Korach J, Barshack I, Fridman E, Rechavi G. AKT1 pleckstrin homology domain E17K activating mutation in endometrial carcinoma. Gynecol Oncol. 2010;116(1):88–91.PubMedGoogle Scholar
  48. 48.
    Dutt A, Salvesen HB, Greulich H, Sellers WR, Beroukhim R, Meyerson M. Somatic mutations are present in all members of the AKT family in endometrial carcinoma. Br J Cancer. 2009;101(7):1218–9.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Schlosshauer PW, Pirog EC, Levine RL, Ellenson LH. Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma. Mod Pathol. 2000;13(10):1066–71.PubMedGoogle Scholar
  50. 50.
    Moreno-Bueno G, Hardisson D, Sanchez C, et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene. 2002;21(52):7981–90.PubMedGoogle Scholar
  51. 51.
    Fukuchi T, Sakamoto M, Tsuda H, Maruyama K, Nozawa S, Hirohashi S. Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 1998;58(16):3526–8.PubMedGoogle Scholar
  52. 52.
    Liu Y, Patel L, Mills GB, Lu KH, et al. Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma. J Natl Cancer Inst. 2014;106(9). pii: dju245.Google Scholar
  53. 53.
    Saegusa M, Hashimura M, Yoshida T, Okayasu I. Beta-catenin mutations and aberrant nuclear expression during endometrial tumorigenesis. Br J Cancer. 2001;84(2):209–17.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Sasaki H, Nishii H, Takahashi H, et al. Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma. Cancer Res. 1993;53(8):1906–10.PubMedGoogle Scholar
  55. 55.
    Garcia-Dios DA, Lambrechts D, Coenegrachts L, et al. High-throughput interrogation of PIK3CA, PTEN, KRAS, FBXW7 and TP53 mutations in primary endometrial carcinoma. Gynecol Oncol. 2013;128(2):327–34.PubMedGoogle Scholar
  56. 56.
    Lagarda H, Catasus L, Arguelles R, Matias-Guiu X, Prat J. K-ras mutations in endometrial carcinomas with microsatellite instability. J Pathol. 2001;193(2):193–9.PubMedGoogle Scholar
  57. 57.
    Ito K, Watanabe K, Nasim S, et al. K-ras point mutations in endometrial carcinoma: effect on outcome is dependent on age of patient. Gynecol Oncol. 1996;63(2):238–46.PubMedGoogle Scholar
  58. 58.
    Alomari A, Abi-Raad R, Buza N, Hui P. Frequent KRAS mutation in complex mucinous epithelial lesions of the endometrium. Mod Pathol. 2014;27(5):675–80.PubMedGoogle Scholar
  59. 59.
    Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418(6901):934.PubMedGoogle Scholar
  60. 60.
    Feng YZ, Shiozawa T, Miyamoto T, et al. BRAF mutation in endometrial carcinoma and hyperplasia: correlation with KRAS and p53 mutations and mismatch repair protein expression. Clin Cancer Res. 2005;11(17):6133–8.PubMedGoogle Scholar
  61. 61.
    He M, Breese V, Hang S, Zhang C, Xiong J, Jackson C. BRAF V600E mutations in endometrial adenocarcinoma. Diagn Mol Pathol. 2013;22(1):35–40.PubMedGoogle Scholar
  62. 62.
    Salvesen HB, Kumar R, Stefansson I, et al. Low frequency of BRAF and CDKN2A mutations in endometrial cancer. Int J Cancer. 2005;115(6):930–4.PubMedGoogle Scholar
  63. 63.
    Pappa KI, Choleza M, Markaki S, et al. Consistent absence of BRAF mutations in cervical and endometrial cancer despite KRAS mutation status. Gynecol Oncol. 2006;100(3):596–600.PubMedGoogle Scholar
  64. 64.
    Byron SA, Gartside M, Powell MA, et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One. 2012;7(2):e30801.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Gatius S, Velasco A, Azueta A, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10.PubMedGoogle Scholar
  66. 66.
    Pollock PM, Gartside MG, Dejeza LC, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Byron SA, Gartside MG, Wellens CL, et al. Inhibition of activated fibroblast growth factor receptor 2 in endometrial cancer cells induces cell death despite PTEN abrogation. Cancer Res. 2008;68(17):6902–7.PubMedGoogle Scholar
  68. 68.
    Sif S, Saurin AJ, Imbalzano AN, Kingston RE. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 2001;15(5):603–18.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene. 2009;28(14):1653–68.PubMedGoogle Scholar
  70. 70.
    Jones S, Wang TL, Shih IM, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Maeda D, Mao TL, Fukayama M, Nakagawa S, et al. Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci. 2010;11(12):5120–8.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Guan B, Mao TL, Panuganti PK, et al. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol. 2011;35(5):625–32.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wiegand KC, Lee AF, Al-Agha OM, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33.PubMedGoogle Scholar
  75. 75.
    McConechy MK, Ding J, Cheang MC, et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. 2012;228(1):20–30.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Allo G, Bernardini MQ, Wu RC, et al. ARID1A loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol. 2014;27(2):255–61.PubMedGoogle Scholar
  77. 77.
    Bosse T, ter Haar NT, Seeber LM, et al. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer. Mod Pathol. 2013;26(11):1525–35.PubMedGoogle Scholar
  78. 78.
    Risinger JI, Dent GA, Ignar-Trowbridge D, et al. p53 gene mutations in human endometrial carcinoma. Mol Carcinog. 1992;5(4):250–3.PubMedGoogle Scholar
  79. 79.
    Enomoto T, Fujita M, Inoue M, et al. Alterations of the p53 tumor suppressor gene and its association with activation of the c-K-ras-2 protooncogene in premalignant and malignant lesions of the human uterine endometrium. Cancer Res. 1993;53(8):1883–8.PubMedGoogle Scholar
  80. 80.
    Kihana T, Hamada K, Inoue Y, et al. Mutation and allelic loss of the p53 gene in endometrial carcinoma. Incidence and outcome in 92 surgical patients. Cancer. 1995;76(1):72–8.PubMedGoogle Scholar
  81. 81.
    Swisher EM, Peiffer-Schneider S, Mutch DG, et al. Differences in patterns of TP53 and KRAS2 mutations in a large series of endometrial carcinomas with or without microsatellite instability. Cancer. 1999;85(1):119–26.PubMedGoogle Scholar
  82. 82.
    Sakuragi N, Watari H, Ebina Y, et al. Functional analysis of p53 gene and the prognostic impact of dominant-negative p53 mutation in endometrial cancer. Int J Cancer. 2005;116(4):514–9.PubMedGoogle Scholar
  83. 83.
    Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57(18):3935–40.PubMedGoogle Scholar
  84. 84.
    Kovalev S, Marchenko ND, Gugliotta BG, Chalas E, Chumas J, Moll UM. Loss of p53 function in uterine papillary serous carcinoma. Hum Pathol. 1998;29(6):613–9.PubMedGoogle Scholar
  85. 85.
    Darvishian F, Hummer AJ, Thaler HT, et al. Serous endometrial cancers that mimic endometrioid adenocarcinomas: a clinicopathologic and immunohistochemical study of a group of problematic cases. Am J Surg Pathol. 2004;28(12):1568–78.PubMedGoogle Scholar
  86. 86.
    Le Gallo M, O'Hara AJ, Rudd ML, et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 2012;44(12):1310–5.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhao S, Choi M, Overton JD, et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci U S A. 2013;110(8):2916–21.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Fleming GF, Sill MW, Darcy KM, et al. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2010;116(1):15–20.Google Scholar
  89. 89.
    Buza N, English DP, Santin AD, Hui P. Toward standard HER2 testing of endometrial serous carcinoma: 4-year experience at a large academic center and recommendations for clinical practice. Mod Pathol. 2013;26(12):1605–12.PubMedGoogle Scholar
  90. 90.
    Mitelman F, Johansson B, Mertens F, editors. (2008). Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman.
  91. 91.
    Micci F, Teixeira MR, Haugom L, Kristensen G, Abeler VM, Heim S. Genomic aberrations in carcinomas of the uterine corpus. Genes Chromosomes Cancer. 2004;40(3):229–46.PubMedGoogle Scholar
  92. 92.
    Kildal W, Micci F, Risberg B, et al. Genomic imbalances in endometrial adenocarcinomas - comparison of DNA ploidy, karyotyping and comparative genomic hybridization. Mol Oncol. 2012;6(1):98–107.PubMedGoogle Scholar
  93. 93.
    Lopez-Garcia MA, Palacios J. Pathologic and molecular features of uterine carcinosarcomas. Semin Diagn Pathol. 2010;27(4):274–86.PubMedGoogle Scholar
  94. 94.
    Wada H, Enomoto T, Fujita M, et al. Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumors. Cancer Res. 1997;57(23):5379–85.PubMedGoogle Scholar
  95. 95.
    Fujii H, Yoshida M, Gong ZX, et al. Frequent genetic heterogeneity in the clonal evolution of gynecological carcinosarcoma and its influence on phenotypic diversity. Cancer Res. 2000;60(1):114–20.PubMedGoogle Scholar
  96. 96.
    Jones S, Stransky N, McCord CL, et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun. 2014;5:5006. doi:10.1038/ncomms6006.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Biscuola M, Van de Vijver K, Castilla MÁ, et al. Oncogene alterations in endometrial carcinosarcomas. Hum Pathol. 2013;44(5):852–9.PubMedGoogle Scholar
  98. 98.
    Howitt BE, Sholl LM, Dal Cin P, et al. Targeted genomic analysis of Müllerian adenosarcoma. J Pathol. 2015;235(1):37–49.PubMedGoogle Scholar
  99. 99.
    de Vos S, Wilczynski SP, Fleischhacker M, Koeffler P. p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol. 1994;54(2):205–8.PubMedGoogle Scholar
  100. 100.
    Jeffers MD, Farquharson MA, Richmond JA, McNicol AM. p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol. 1995;177(1):65–70.PubMedGoogle Scholar
  101. 101.
    Teneriello MG, Taylor RR, et al. Analysis of Ki-ras, p53, and MDM2 genes in uterine leiomyomas and leiomyosarcomas. Gynecol Oncol. 1997;65(2):330–5.PubMedGoogle Scholar
  102. 102.
    Quade BJ, Pinto AP, Howard DR, Peters 3rd WA, Crum CP. Frequent loss of heterozygosity for chromosome 10 in uterine leiomyosarcoma in contrast to leiomyoma. Am J Pathol. 1999;154(3):945–50.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Lancaster JM, Risinger JI, Carney ME, Barrett JC, Berchuck A. Mutational analysis of the PTEN gene in human uterine sarcomas. Am J Obstet Gynecol. 2001;184(6):1051–3.PubMedGoogle Scholar
  104. 104.
    Amant F, Vloeberghs V, Woestenborghs H, et al. ERBB-2 gene overexpression and amplification in uterine sarcomas. Gynecol Oncol. 2004;95(3):583–7.PubMedGoogle Scholar
  105. 105.
    Mehine M, Mäkinen N, Heinonen HR, Aaltonen LA, Vahteristo P. Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil Steril. 2014;102(3):621–9.PubMedGoogle Scholar
  106. 106.
    Markowski DN, Bartnitzke S, Löning T, Drieschner N, Helmke BM, Bullerdiek J. MED12 mutations in uterine fibroids--their relationship to cytogenetic subgroups. Int J Cancer. 2012;131(7):1528–36.PubMedGoogle Scholar
  107. 107.
    Pérot G, Croce S, Ribeiro A, et al. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7(6):e40015.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Ravegnini G, Mariño-Enriquez A, Slater J, et al. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26(5):743–9.PubMedGoogle Scholar
  109. 109.
    Bertsch E, Qiang W, Zhang Q, et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27(8):1144–53.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Levy B, Mukherjee T, Hirschhorn K. Molecular cytogenetic analysis of uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization. Cancer Genet Cytogenet. 2000;121(1):1–8.PubMedGoogle Scholar
  111. 111.
    Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL, Morton CC. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer. 2004;40(2):97–108.PubMedGoogle Scholar
  112. 112.
    Christacos NC, Quade BJ, Dal Cin P, Morton CC. Uterine leiomyomata with deletions of Ip represent a distinct cytogenetic subgroup associated with unusual histologic features. Genes Chromosomes Cancer. 2006;45(3):304–12.PubMedGoogle Scholar
  113. 113.
    Hodge JC, Pearce KE, Clayton AC, Taran FA, Stewart EA. Uterine cellular leiomyomata with chromosome 1p deletions represent a distinct entity. Am J Obstet Gynecol. 2014; 210(6):572.e1–7.PubMedCentralGoogle Scholar
  114. 114.
    Dal Cin P, Quade BJ, Neskey DM, Kleinman MS, Weremowicz S, Morton CC. Intravenous leiomyomatosis is characterized by a der(14)t(12;14)(q15;q24). Genes Chromosomes Cancer. 2003;36(2):205–6.PubMedGoogle Scholar
  115. 115.
    Buza N, Xu F, Wu W, Carr RJ, Li P, Hui P. Recurrent chromosomal aberrations in intravenous leiomyomatosis of the uterus: high-resolution array comparative genomic hybridization study. Hum Pathol. 2014;45(9):1885–92.PubMedGoogle Scholar
  116. 116.
    Nucci MR, Drapkin R, Dal Cin P, Fletcher CD, Fletcher JA. Distinctive cytogenetic profile in benign metastasizing leiomyoma: pathogenetic implications. Am J Surg Pathol. 2007;31(5):737–43.PubMedGoogle Scholar
  117. 117.
    Bowen JM, Cates JM, Kash S, et al. Genomic imbalances in benign metastasizing leiomyoma: characterization by conventional karyotypic, fluorescence in situ hybridization, and whole genome SNP array analysis. Cancer Genet. 2012;205(5):249–54.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Quade BJ, McLachlin CM, Soto-Wright V, Zuckerman J, Mutter GL, Morton CC. Disseminated peritoneal leiomyomatosis. Clonality analysis by X chromosome inactivation and cytogenetics of a clinically benign smooth muscle proliferation. Am J Pathol. 1997;150(6):2153–66.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Ordulu Z, Dal Cin P, Chong WW, et al. Disseminated peritoneal leiomyomatosis after laparoscopic supracervical hysterectomy with characteristic molecular cytogenetic findings of uterine leiomyoma. Genes Chromosomes Cancer. 2010;49(12):1152–60.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Ng TL, Gown AM, Barry TS, et al. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18(1):68–74.PubMedGoogle Scholar
  121. 121.
    Hrzenjak A, Tippl M, Kremser ML, et al. Inverse correlation of secreted frizzled-related protein 4 and beta-catenin expression in endometrial stromal sarcomas. J Pathol. 2004;204(1):19–27.PubMedGoogle Scholar
  122. 122.
    Koontz JI, Soreng AL, Nucci M, et al. Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98(11):6348–53.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Nucci MR, Harburger D, Koontz J, Dal Cin P, Sklar J. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31(1):65–70.PubMedGoogle Scholar
  124. 124.
    Chiang S, Oliva E. Recent developments in uterine mesenchymal neoplasms. Histopathology. 2013;62(1):124–37.PubMedGoogle Scholar
  125. 125.
    Micci F, Walter CU, Teixeira MR, et al. Cytogenetic and molecular genetic analyses of endometrial stromal sarcoma: nonrandom involvement of chromosome arms 6p and 7p and confirmation of JAZF1/JJAZ1 gene fusion in t(7;17). Cancer Genet Cytogenet. 2003;144(2):119–24.PubMedGoogle Scholar
  126. 126.
    Micci F, Gorunova L, Gatius S, et al. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett. 2014;347(1):75–8.PubMedGoogle Scholar
  127. 127.
    D'Angelo E, Ali RH, Espinosa I, Lee CH, Huntsman DG, Gilks B, Prat J. Endometrial stromal sarcomas with sex cord differentiation are associated with PHF1 rearrangement. Am J Surg Pathol. 2013;37(4):514–21.PubMedGoogle Scholar
  128. 128.
    Panagopoulos I, Thorsen J, Gorunova L, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer. 2013;52(7):610–8.PubMedGoogle Scholar
  129. 129.
    Dewaele B, Przybyl J, Quattrone A, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer. 2014;134(5):1112–22.PubMedGoogle Scholar
  130. 130.
    Antonescu CR, Sung YS, Chen CL, Zhang L, et al. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors--molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer. 2014;53(2):183–93.PubMedGoogle Scholar
  131. 131.
    Schoolmeester JK, Sukov WR, Maleszewski JJ, Bedroske PP, Folpe AL, Hodge JC. JAZF1 rearrangement in a mesenchymal tumor of nonendometrial stromal origin: report of an unusual ossifying sarcoma of the heart demonstrating JAZF1/PHF1 fusion. Am J Surg Pathol. 2013;37(6):938–42.PubMedGoogle Scholar
  132. 132.
    Lee CH, Ou W, Mariño-Enriquez A, Zhu M, et al. 14-3-3 Fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109:929–34.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Lee C-H, Mariño-Enriquez A, Ou W, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas – a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36:641–53.PubMedGoogle Scholar
  134. 134.
    Stewart CJ, Leung YC, Murch A, Peverall J. Evaluation of fluorescence in-situ hybridization in monomorphic endometrial stromal neoplasms and their histological mimics: a review of 49 cases. Histopathology. 2014;65(4):473–82.PubMedGoogle Scholar
  135. 135.
    Sciallis AP, Bedroske PP, Schoolmeester JK, et al. High-grade endometrial stromal sarcomas: a clinicopathologic study of a group of tumors with heterogenous morphologic and genetic features. Am J Surg Pathol. 2014;38(9):1161–72.PubMedGoogle Scholar
  136. 136.
    Lee C-H, Ali RH, Rouzbahman M, Marino-Enriquez A, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36:641–53.PubMedGoogle Scholar
  137. 137.
    O'Meara E, Stack D, Lee CH, et al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol. 2012;227(1):72–80.PubMedGoogle Scholar
  138. 138.
    Oliva E. Cellular mesenchymal tumors of the uterus: a review emphasizing recent observations. Int J Gynecol Pathol. 2014;33(4):374–84.PubMedGoogle Scholar
  139. 139.
    Parra-Herran C, Quick CM, Howitt BE, Dal Cin PD, Quade BJ, Nucci MR. Inflammatory myofibroblastic tumor of the uterus: clinical and pathologic review of 10 cases including a subset with aggressive clinical course. Am J Surg Pathol. 2015;39(2):157–68.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Servicio de Anatomía PatológicaHospital Universitario Ramón y CajalMadridSpain
  2. 2.Department of Pathology, CAMDBrigham and Women’s HospitalBostonUSA

Personalised recommendations