Advertisement

Uterine Cancer pp 107-146 | Cite as

Prognostic Factors in Uterine Cancer

  • Patricia M. Baker
  • Esther OlivaEmail author
Part of the Current Clinical Oncology book series (CCO)

Abstract

Pathologic staging determines the management of patients with endometrial adenocarcinoma and uterine sarcomas following the initial surgery, and it is an essential component of the initial assessment. FIGO stage, tumor subtype, grade of differentiation, myometrial invasion, lymphovascular invasion, and other factors that guide treatment decisions covered in the subsequent chapters are extensively discussed.

Keywords

Differentiation Histologic subtype Lymphovascular invasion Myometrial invasion Stage 

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. Jan-Feb 2012;62(1):10–29.PubMedGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. Jan 2013;63(1):11–30.PubMedGoogle Scholar
  3. 3.
    Chan JK, Cheung MK, Huh WK, et al. Therapeutic role of lymph node resection in endometrioid corpus cancer: a study of 12,333 patients. Cancer. 2006;107(8):1823–30.PubMedGoogle Scholar
  4. 4.
    Chan JK, Wu H, Cheung MK, Shin JY, Osann K, Kapp DS. The outcomes of 27,063 women with unstaged endometrioid uterine cancer. Gynecol Oncol. Aug 2007;106(2):282–8.PubMedGoogle Scholar
  5. 5.
    Sartori E, Laface B, Gadducci A, et al. Factors influencing survival in endometrial cancer relapsing patients: a Cooperation Task Force (CTF) study. Int J Gynecol Cancer. Jul-Aug 2003;13(4):458–65.PubMedGoogle Scholar
  6. 6.
    Zaino RJ, Kurman RJ, Diana KL, Morrow CP. Pathologic models to predict outcome for women with endometrial adenocarcinoma: the importance of the distinction between surgical stage and clinical stage—a Gynecologic Oncology Group study. Cancer. 1996;77(6):1115–21.PubMedGoogle Scholar
  7. 7.
    Odicino F, Pecorelli S, Zigliani L, Creasman WT. History of the FIGO cancer staging system. Int J Gynaecol Obstet. May 2008;101(2):205–10.PubMedGoogle Scholar
  8. 8.
    Creasman WT, Odicino F, Maisonneuve P, et al. Carcinoma of the corpus uteri. J Epidemiol Biostat. 2001;6(1):47–86.PubMedGoogle Scholar
  9. 9.
    Chen SS. Extrauterine spread in endometrial carcinoma clinically confined to the uterus. Gynecol Oncol. May 1985;21(1):23–31.PubMedGoogle Scholar
  10. 10.
    Cowles TA, Magrina JF, Masterson BJ, Capen CV. Comparison of clinical and surgical-staging in patients with endometrial carcinoma. Obstet Gynecol. Sep 1985;66(3):413–6.PubMedGoogle Scholar
  11. 11.
    Fanning J, Alvarez PM, Tsukada Y, Piver MS. Prognostic significance of the extent of cervical involvement by endometrial cancer. Gynecol Oncol. Jan 1991;40(1):46–7.PubMedGoogle Scholar
  12. 12.
    Soothill PW, Alcock CJ, MacKenzie IZ. Discrepancy between curettage and hysterectomy histology in patients with stage 1 uterine malignancy. Br J Obstet Gynaecol. Apr 1989;96(4):478–81.PubMedGoogle Scholar
  13. 13.
    Wolfson AH, Sightler SE, Markoe AM, et al. The prognostic significance of surgical staging for carcinoma of the endometrium. Gynecol Oncol. 1992;45(2):142–6.PubMedGoogle Scholar
  14. 14.
    Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet. 2009;105(2):103–4.PubMedGoogle Scholar
  15. 15.
    Creasman W. Revised FIGO staging for carcinoma of the endometrium. Int J Gynaecol Obstet. May 2009;105(2):109.PubMedGoogle Scholar
  16. 16.
    Lewin SN. Revised FIGO staging system for endometrial cancer. Clin Obstet Gynecol. 2011;54(2):215–8.PubMedGoogle Scholar
  17. 17.
    Abu-Rustum NR, Zhou Q, Iasonos A, et al. The revised 2009 FIGO staging system for endometrial cancer: should the 1988 FIGO stages IA and IB be altered? Int J Gynecol Cancer. 2011;21(3):511–6.PubMedGoogle Scholar
  18. 18.
    Cooke EW, Pappas L, Gaffney DK. Does the revised International Federation of Gynecology and Obstetrics staging system for endometrial cancer lead to increased discrimination in patient outcomes? Cancer. 2011;117(18):4231–7.PubMedGoogle Scholar
  19. 19.
    Kato T, Watari H, Endo D, et al. New revised FIGO 2008 staging system for endometrial cancer produces better discrimination in survival compared with the 1988 staging system. J Surg Oncol. Dec 2012;106(8):938–41.PubMedGoogle Scholar
  20. 20.
    Korczynski J, Jesionek-Kupnicka D, Gottwald L, Piekarski J. Comparison of FIGO 1989 and 2009 recommendations on staging of endometrial carcinoma: pathologic analysis and cervical status in 123 consecutive cases. Int J Gynecol Pathol. Jul 2011;30(4):328–34.PubMedGoogle Scholar
  21. 21.
    Abeler VM, Kjorstad KE. Endometrial adenocarcinoma in Norway. A study of a total population. Cancer. 1991;67(12):3093–103.PubMedGoogle Scholar
  22. 22.
    AlKushi A, Lim P, Aquino-Parsons C, Gilks CB. Markers of proliferative activity are predictors of patient outcome for low-grade endometrioid adenocarcinoma but not papillary serous carcinoma of endometrium. Mod Pathol. Apr 2002;15(4):365–71.Google Scholar
  23. 23.
    Gal D, Recio FO, Zamurovic D. The new International Federation of Gynecology and Obstetrics surgical staging and survival rates in early endometrial carcinoma. Cancer. 1992;69(1):200–2.PubMedGoogle Scholar
  24. 24.
    Kosary CL. FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system: an analysis of 1973-87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina. Semin Surg Oncol. Jan-Feb 1994;10(1):31–46.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Steiner E, Eicher O, Sagemuller J, et al. Multivariate independent prognostic factors in endometrial carcinoma: a clinicopathologic study in 181 patients: 10 years experience at the Department of Obstetrics and Gynecology of the Mainz University. Int J Gynecol Cancer. 2003;13(2):197–203.PubMedGoogle Scholar
  26. 26.
    DiSaia PJ, Creasman WT, Boronow RC, Blessing JA. Risk factors and recurrent patterns in Stage I endometrial cancer. Am J Obstet Gynecol. 1985;151(8):1009–15.PubMedGoogle Scholar
  27. 27.
    Barlin JN, Soslow RA, Lutz M, et al. Redefining stage I endometrial cancer: incorporating histology, a binary grading system, myometrial invasion, and lymph node assessment. Int J Gynecol Cancer. Nov 2013;23(9):1620–8.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Morrow CP, Bundy BN, Kurman RJ, et al. Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: a Gynecologic Oncology Group study. Gynecol Oncol. Jan 1991;40(1):55–65.PubMedGoogle Scholar
  29. 29.
    Creasman WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Group Study. Cancer. 1987;60(8 Suppl):2035–41.Google Scholar
  30. 30.
    Mittal KR, Schwartz PE, Barwick KW. Architectural (FIGO) grading, nuclear grading, and other prognostic indicators in stage I endometrial adenocarcinoma with identification of high-risk and low-risk groups. Cancer. 1988;61(3):538–45.PubMedGoogle Scholar
  31. 31.
    Nielsen AL, Thomsen HK, Nyholm HC. Evaluation of the reproducibility of the revised 1988 International Federation of Gynecology and Obstetrics grading system of endometrial cancers with special emphasis on nuclear grading. Cancer. 1991;68(10):2303–9.PubMedGoogle Scholar
  32. 32.
    Boronow RC, Morrow CP, Creasman WT, et al. Surgical staging in endometrial cancer: clinical-pathologic findings of a prospective study. Obstet Gynecol. Jun 1984;63(6):825–32.PubMedGoogle Scholar
  33. 33.
    Stefansson IM, Salvesen HB, Immervoll H, Akslen LA. Prognostic impact of histological grade and vascular invasion compared with tumour cell proliferation in endometrial carcinoma of endometrioid type. Histopathology. 2004;44(5):472–9.PubMedGoogle Scholar
  34. 34.
    Darvishian F, Hummer AJ, Thaler HT, et al. Serous endometrial cancers that mimic endometrioid adenocarcinomas: a clinicopathologic and immunohistochemical study of a group of problematic cases. Am J Surg Pathol. 2004;28(12):1568–78.PubMedGoogle Scholar
  35. 35.
    Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.PubMedGoogle Scholar
  36. 36.
    Grigsby PW, Perez CA, Kuten A, et al. Clinical stage I endometrial cancer: prognostic factors for local control and distant metastasis and implications of the new FIGO surgical staging system. Int J Radiat Oncol Biol Phys. 1992;22(5):905–11.PubMedGoogle Scholar
  37. 37.
    Lee KR, Vacek PM, Belinson JL. Traditional and nontraditional histopathologic predictors of recurrence in uterine endometrioid adenocarcinoma. Gynecol Oncol. 1994;54(1):10–8.PubMedGoogle Scholar
  38. 38.
    Vargas R, Rauh-Hain JA, Clemmer J, et al. Tumor size, depth of invasion, and histologic grade as prognostic factors of lymph node involvement in endometrial cancer: a SEER analysis. Gynecol Oncol. 2014;133(2):216–20.PubMedGoogle Scholar
  39. 39.
    Abeler VM, Kjorstad KE, Berle E. Carcinoma of the endometrium in Norway: a histopathological and prognostic survey of a total population. Int J Gynecol Cancer. 1992;2(1):9–22.PubMedGoogle Scholar
  40. 40.
    Gayar OH, Patel S, Schultz D, Mahan M, Rasool N, Elshaikh MA. The impact of tumor grade on survival end points and patterns of recurrence of 949 patients with early-stage endometrioid carcinoma: a single institution study. Int J Gynecol Cancer. 2014;24(1):97–101.PubMedGoogle Scholar
  41. 41.
    Konski A, Domenico D, Tyrkus M, et al. Prognostic characteristics of surgical stage I endometrial adenocarcinoma. Int J Radiat Oncol Biol Phys. 1996;35(5):935–40.PubMedGoogle Scholar
  42. 42.
    Alektiar KM, McKee A, Lin O, et al. Is there a difference in outcome between stage I-II endometrial cancer of papillary serous/clear cell and endometrioid FIGO Grade 3 cancer? Int J Radiat Oncol Biol Phys. 2002;54(1):79–85.PubMedGoogle Scholar
  43. 43.
    Ayeni TA, Bakkum-Gamez JN, Mariani A, et al. Comparative outcomes assessment of uterine grade 3 endometrioid, serous, and clear cell carcinomas. Gynecol Oncol. 2013;129(3):478–85.PubMedGoogle Scholar
  44. 44.
    Soslow RA, Bissonnette JP, Wilton A, et al. Clinicopathologic analysis of 187 high-grade endometrial carcinomas of different histologic subtypes: similar outcomes belie distinctive biologic differences. Am J Surg Pathol. 2007;31(7):979–87.PubMedGoogle Scholar
  45. 45.
    Alkushi A, Kobel M, Kalloger SE, Gilks CB. High-grade endometrial carcinoma: serous and grade 3 endometrioid carcinomas have different immunophenotypes and outcomes. Int J Gynecol Pathol. 2010;29(4):343–50.PubMedGoogle Scholar
  46. 46.
    Park JY, Nam JH, Kim YT, et al. Poor prognosis of uterine serous carcinoma compared with grade 3 endometrioid carcinoma in early stage patients. Virchows Arch. 2013;462(3):289–96.PubMedGoogle Scholar
  47. 47.
    Lax SF, Kurman RJ, Pizer ES, Wu L, Ronnett BM. A binary architectural grading system for uterine endometrial endometrioid carcinoma has superior reproducibility compared with FIGO grading and identifies subsets of advance-stage tumors with favorable and unfavorable prognosis. Am J Surg Pathol. 2000;24(9):1201–8.PubMedGoogle Scholar
  48. 48.
    Alkushi A, Abdul-Rahman ZH, Lim P, et al. Description of a novel system for grading of endometrial carcinoma and comparison with existing grading systems. Am J Surg Pathol. 2005;29(3):295–304.PubMedGoogle Scholar
  49. 49.
    Guan H, Semaan A, Bandyopadhyay S, et al. Prognosis and reproducibility of new and existing binary grading systems for endometrial carcinoma compared to FIGO grading in hysterectomy specimens. Int J Gynecol Cancer. 2011;21(4):654–60.PubMedGoogle Scholar
  50. 50.
    Zaino RJ, Kurman R, Herbold D, et al. The significance of squamous differentiation in endometrial carcinoma. Data from a Gynecologic Oncology Group study. Cancer. 1991;68(10):2293–302.PubMedGoogle Scholar
  51. 51.
    Prat J. Prognostic parameters of endometrial carcinoma. Hum Pathol. 2004;35(6):649–62.PubMedGoogle Scholar
  52. 52.
    Abeler VM, Kjorstad KE. Endometrial adenocarcinoma with squamous cell differentiation. Cancer. 1992;69(2):488–95.PubMedGoogle Scholar
  53. 53.
    Landry D, Mai KT, Senterman MK, et al. Endometrioid adenocarcinoma of the uterus with a minimal deviation invasive pattern. Histopathology. 2003;42(1):77–82.PubMedGoogle Scholar
  54. 54.
    Longacre TA, Hendrickson MR. Diffusely infiltrative endometrial adenocarcinoma: an adenoma malignum pattern of myoinvasion. Am J Surg Pathol. 1999;23(1):69–78.PubMedGoogle Scholar
  55. 55.
    Mittal KR, Barwick KW. Diffusely infiltrating adenocarcinoma of the endometrium. A subtype with poor prognosis. Am J Surg Pathol. 1988;12(10):754–8.PubMedGoogle Scholar
  56. 56.
    Ambros RA, Ballouk F, Malfetano JH, Ross JS. Significance of papillary (villoglandular) differentiation in endometrioid carcinoma of the uterus. Am J Surg Pathol. 1994;18(6):569–75.PubMedGoogle Scholar
  57. 57.
    Esteller M, Garcia A, Martinez-Palones JM, Xercavins J, Reventos J. Clinicopathologic features and genetic alterations in endometrioid carcinoma of the uterus with villoglandular differentiation. Am J Clin Pathol. 1999;111(3):336–42.PubMedGoogle Scholar
  58. 58.
    Hertel JD, Huettner PC, Pfeifer JD. Lymphovascular space invasion in microcystic elongated and fragmented (MELF)-pattern well-differentiated endometrioid adenocarcinoma is associated with a higher rate of lymph node metastasis. Int J Gynecol Pathol. 2014;33(2):127–34.PubMedGoogle Scholar
  59. 59.
    Quick CM, May T, Horowitz NS, Nucci MR. Low-grade, low-stage endometrioid endometrial adenocarcinoma: a clinicopathologic analysis of 324 cases focusing on frequency and pattern of myoinvasion. Int J Gynecol Pathol. 2012;31(4):337–43.PubMedGoogle Scholar
  60. 60.
    Tafe LJ, Garg K, Chew I, Tornos C, Soslow RA. Endometrial and ovarian carcinomas with undifferentiated components: clinically aggressive and frequently underrecognized neoplasms. Mod Pathol. 2010;23(6):781–9.PubMedGoogle Scholar
  61. 61.
    Jalloul RJ, Elshaikh MA, Ali-Fehmi R, et al. Mucinous adenocarcinoma of the endometrium: case series and review of the literature. Int J Gynecol Cancer. 2012;22(5):812–8.PubMedGoogle Scholar
  62. 62.
    Ross JC, Eifel PJ, Cox RS, Kempson RL, Hendrickson MR. Primary mucinous adenocarcinoma of the endometrium. A clinicopathologic and histochemical study. Am J Surg Pathol. 1983;7(8):715–29.PubMedGoogle Scholar
  63. 63.
    Rauh-Hain JA, Vargas RJ, Clemmer J, et al. Mucinous adenocarcinoma of the endometrium compared with endometrioid endometrial cancer: A SEER analysis. Am J Clin Oncol. 2016;39(1):43–8.PubMedGoogle Scholar
  64. 64.
    McCluggage WG, Sumathi VP, McManus DT. Uterine serous carcinoma and endometrial intraepithelial carcinoma arising in endometrial polyps: report of 5 cases, including 2 associated with tamoxifen therapy. Hum Pathol. 2003;34(9):939–43.PubMedGoogle Scholar
  65. 65.
    Semaan A, Mert I, Munkarah AR, et al. Clinical and pathologic characteristics of serous carcinoma confined to the endometrium: a multi-institutional study. Int J Gynecol Pathol. 2013;32(2):181–7.PubMedGoogle Scholar
  66. 66.
    Soslow RA, Pirog E, Isacson C. Endometrial intraepithelial carcinoma with associated peritoneal carcinomatosis. Am J Surg Pathol. 2000;24(5):726–32.PubMedGoogle Scholar
  67. 67.
    Chambers JT, Merino M, Kohorn EI, Peschel RE, Schwartz PE. Uterine papillary serous carcinoma. Obstet Gynecol. 1987;69(1):109–13.PubMedGoogle Scholar
  68. 68.
    Goff BA, Kato D, Schmidt RA, et al. Uterine papillary serous carcinoma: patterns of metastatic spread. Gynecol Oncol. 1994;54(3):264–8.PubMedGoogle Scholar
  69. 69.
    Hamilton CA, Cheung MK, Osann K, et al. Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers. Br J Cancer. 2006;94(5):642–6.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Hendrickson M, Ross J, Eifel P, Martinez A, Kempson R. Uterine papillary serous carcinoma: a highly malignant form of endometrial adenocarcinoma. Am J Surg Pathol. 1982;6(2):93–108.PubMedGoogle Scholar
  71. 71.
    Lauchlan SC. Tubal (serous) carcinoma of the endometrium. Arch Pathol Lab Med. 1981;105(11):615–8.PubMedGoogle Scholar
  72. 72.
    Lax SF, Kendall B, Tashiro H, Slebos RJ, Hedrick L. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000;88(4):814–24.PubMedGoogle Scholar
  73. 73.
    Prat J, Oliva E, Lerma E, Vaquero M, Matias-Guiu X. Uterine papillary serous adenocarcinoma. A 10-case study of p53 and c-erbB-2 expression and DNA content. Cancer. 1994;74(6):1778–83.PubMedGoogle Scholar
  74. 74.
    Rabban JT, Zaloudek CJ. Minimal uterine serous carcinoma: current concepts in diagnosis and prognosis. Pathology. 2007;39(1):125–33.PubMedGoogle Scholar
  75. 75.
    Wheeler DT, Bell KA, Kurman RJ, Sherman ME. Minimal uterine serous carcinoma: diagnosis and clinicopathologic correlation. Am J Surg Pathol. 2000;24(6):797–806.PubMedGoogle Scholar
  76. 76.
    Hui P, Kelly M, O'Malley DM, Tavassoli F, Schwartz PE. Minimal uterine serous carcinoma: a clinicopathological study of 40 cases. Mod Pathol. 2005;18(1):75–82.PubMedGoogle Scholar
  77. 77.
    Giuntoli 2nd RL, Gerardi MA, Yemelyanova AV, et al. Stage I noninvasive and minimally invasive uterine serous carcinoma: comprehensive staging associated with improved survival. Int J Gynecol Cancer. 2012;22(2):273–9.PubMedGoogle Scholar
  78. 78.
    Slomovitz BM, Burke TW, Eifel PJ, et al. Uterine papillary serous carcinoma (UPSC): a single institution review of 129 cases. Gynecol Oncol. 2003;91(3):463–9.PubMedGoogle Scholar
  79. 79.
    Chan JK, Loizzi V, Youssef M, et al. Significance of comprehensive surgical staging in noninvasive papillary serous carcinoma of the endometrium. Gynecol Oncol. 2003;90(1):181–5.PubMedGoogle Scholar
  80. 80.
    Malpica A, Deavers MT, Lu K, et al. Grading ovarian serous carcinoma using a two-tier system. Am J Surg Pathol. 2004;28(4):496–504.PubMedGoogle Scholar
  81. 81.
    Bodurka DC, Deavers MT, Tian C, et al. Reclassification of serous ovarian carcinoma by a 2-tier system: a Gynecologic Oncology Group Study. Cancer. 2012;118(12):3087–94.PubMedGoogle Scholar
  82. 82.
    Ahmed Q, Hussein Y, Hayek K, et al. Is the two-tier ovarian serous carcinoma grading system potentially useful in stratifying uterine serous carcinoma? A large multi-institutional analysis. Gynecol Oncol. 2014;132(2):372–6.PubMedGoogle Scholar
  83. 83.
    Bartosch C, Manuel Lopes J, Oliva E. Endometrial carcinomas: a review emphasizing overlapping and distinctive morphological and immunohistochemical features. Adv Anat Pathol. 2011;18(6):415–37.PubMedGoogle Scholar
  84. 84.
    Lim D, Oliva E. Nonendometrioid endometrial carcinomas. Semin Diagn Pathol. 2010;27(4):241–60.PubMedGoogle Scholar
  85. 85.
    Matias-Guiu X, Catasus L, Bussaglia E, et al. Molecular pathology of endometrial hyperplasia and carcinoma. Hum Pathol. 2001;32(6):569–77.PubMedGoogle Scholar
  86. 86.
    Catasus L, Machin P, Matias-Guiu X, Prat J. Microsatellite instability in endometrial carcinomas: clinicopathologic correlations in a series of 42 cases. Hum Pathol. 1998;29(10):1160–4.PubMedGoogle Scholar
  87. 87.
    Abeler VM, Kjorstad KE. Clear cell carcinoma of the endometrium: a histopathological and clinical study of 97 cases. Gynecol Oncol. 1991;40(3):207–17.PubMedGoogle Scholar
  88. 88.
    Rauh-Hain JA, Winograd D, Growdon WB, et al. Prognostic determinants in patients with uterine and ovarian clear carcinoma. Gynecol Oncol. 2012;125(2):376–80.PubMedGoogle Scholar
  89. 89.
    Abeler VM, Vergote IB, Kjorstad KE, Trope CG. Clear cell carcinoma of the endometrium. Prognosis and metastatic pattern. Cancer. 1996;78(8):1740–7.PubMedGoogle Scholar
  90. 90.
    Carcangiu ML, Chambers JT. Early pathologic stage clear cell carcinoma and uterine papillary serous carcinoma of the endometrium: comparison of clinicopathologic features and survival. Int J Gynecol Pathol. 1995;14(1):30–8.PubMedGoogle Scholar
  91. 91.
    Cirisano Jr FD, Robboy SJ, Dodge RK, et al. Epidemiologic and surgicopathologic findings of papillary serous and clear cell endometrial cancers when compared to endometrioid carcinoma. Gynecol Oncol. 1999;74(3):385–94.PubMedGoogle Scholar
  92. 92.
    Olawaiye AB, Boruta 2nd. DM. Management of women with clear cell endometrial cancer: a Society of Gynecologic Oncology (SGO) review. Gynecol Oncol. 2009;113(2):277–83.PubMedGoogle Scholar
  93. 93.
    Thomas M, Mariani A, Wright JD, et al. Surgical management and adjuvant therapy for patients with uterine clear cell carcinoma: a multi-institutional review. Gynecol Oncol. 2008;108(2):293–7.PubMedGoogle Scholar
  94. 94.
    Rauh-Hain JA, Costaaggini I, Olawaiye AB, Growdon WB, Horowitz NS, del Carmen MG. A comparison of outcome in patients with stage 1 clear cell and grade 3 endometrioid adenocarcinoma of the endometrium with and without adjuvant therapy. Eur J Gynaecol Oncol. 2010;31(3):284–7.PubMedGoogle Scholar
  95. 95.
    Bures N, Nelson G, Duan Q, Magliocco A, Demetrick D, Duggan MA. Primary squamous cell carcinoma of the endometrium: clinicopathologic and molecular characteristics. Int J Gynecol Pathol. 2013;32(6):566–75.PubMedGoogle Scholar
  96. 96.
    Goodman A, Zukerberg LR, Rice LW, Fuller AF, Young RH, Scully RE. Squamous cell carcinoma of the endometrium: a report of eight cases and a review of the literature. Gynecol Oncol. 1996;61(1):54–60.PubMedGoogle Scholar
  97. 97.
    Lininger RA, Ashfaq R, Albores-Saavedra J, Tavassoli FA. Transitional cell carcinoma of the endometrium and endometrial carcinoma with transitional cell differentiation. Cancer. 1997;79(10):1933–43.PubMedGoogle Scholar
  98. 98.
    Marino-Enriquez A, Gonzalez-Rocha T, Burgos E, et al. Transitional cell carcinoma of the endometrium and endometrial carcinoma with transitional cell differentiation: a clinicopathologic study of 5 cases and review of the literature. Hum Pathol. 2008;39(11):1606–13.PubMedGoogle Scholar
  99. 99.
    Abeler VM, Kjorstad KE, Nesland JM. Undifferentiated carcinoma of the endometrium. A histopathologic and clinical study of 31 cases. Cancer. 1991;68(1):98–105.PubMedGoogle Scholar
  100. 100.
    Atienza-Amores M, Guerini-Rocco E, Soslow RA, Park KJ, Weigelt B. Small cell carcinoma of the gynecologic tract: a multifaceted spectrum of lesions. Gynecol Oncol. 2014;134(2):410–8.PubMedGoogle Scholar
  101. 101.
    Huntsman DG, Clement PB, Gilks CB, Scully RE. Small-cell carcinoma of the endometrium. A clinicopathological study of sixteen cases. Am J Surg Pathol. 1994;18(4):364–75.PubMedGoogle Scholar
  102. 102.
    Silva EG, Deavers MT, Malpica A. Undifferentiated carcinoma of the endometrium: a review. Pathology. 2007;39(1):134–8.PubMedGoogle Scholar
  103. 103.
    Eifel PJ, Ross J, Hendrickson M, Cox RS, Kempson R, Martinez A. Adenocarcinoma of the endometrium. Analysis of 256 cases with disease limited to the uterine corpus: treatment comparisons. Cancer. 1983;52(6):1026–31.PubMedGoogle Scholar
  104. 104.
    Mariani A, Webb MJ, Keeney GL, Lesnick TG, Podratz KC. Surgical stage I endometrial cancer: predictors of distant failure and death. Gynecol Oncol. 2002;87(3):274–80.PubMedGoogle Scholar
  105. 105.
    Page BR, Pappas L, Cooke EW, Gaffney DK. Does the FIGO 2009 endometrial cancer staging system more accurately correlate with clinical outcome in different histologies? Revised staging, endometrial cancer, histology. Int J Gynecol Cancer. 2012;22(4):593–8.PubMedGoogle Scholar
  106. 106.
    Longacre TA, Chung MH, Jensen DN, Hendrickson MR. Proposed criteria for the diagnosis of well-differentiated endometrial carcinoma. A diagnostic test for myoinvasion. Am J Surg Pathol. 1995;19(4):371–406.PubMedGoogle Scholar
  107. 107.
    Ali A, Black D, Soslow RA. Difficulties in assessing the depth of myometrial invasion in endometrial carcinoma. Int J Gynecol Pathol. 2007;26(2):115–23.PubMedGoogle Scholar
  108. 108.
    Jacques SM, Lawrence WD. Endometrial adenocarcinoma with variable-level myometrial involvement limited to adenomyosis: a clinicopathologic study of 23 cases. Gynecol Oncol. 1990;37(3):401–7.PubMedGoogle Scholar
  109. 109.
    Murray SK, Young RH, Scully RE. Unusual epithelial and stromal changes in myoinvasive endometrioid adenocarcinoma: a study of their frequency, associated diagnostic problems, and prognostic significance. Int J Gynecol Pathol. 2003;22(4):324–33.PubMedGoogle Scholar
  110. 110.
    Euscher E, Fox P, Bassett R, et al. The pattern of myometrial invasion as a predictor of lymph node metastasis or extrauterine disease in low-grade endometrial carcinoma. Am J Surg Pathol. 2013;37(11):1728–36.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Han G, Lim D, Leitao Jr MM, Abu-Rustum NR, Soslow RA. Histological features associated with occult lymph node metastasis in FIGO clinical stage I, grade I endometrioid carcinoma. Histopathology. 2014;64(3):389–98.PubMedGoogle Scholar
  112. 112.
    Pavlakis K, Messini I, Vrekoussis T, et al. MELF invasion in endometrial cancer as a risk factor for lymph node metastasis. Histopathology. 2011;58(6):966–73.PubMedGoogle Scholar
  113. 113.
    Hall JB, Young RH, Nelson Jr JH. The prognostic significance of adenomyosis in endometrial carcinoma. Gynecol Oncol. 1984;17(1):32–40.PubMedGoogle Scholar
  114. 114.
    Mittal KR, Barwick KW. Endometrial adenocarcinoma involving adenomyosis without true myometrial invasion is characterized by frequent preceding estrogen therapy, low histologic grades, and excellent prognosis. Gynecol Oncol. 1993;49(2):197–201.PubMedGoogle Scholar
  115. 115.
    Hanley KZ, Dustin SM, Stoler MH, Atkins KA. The significance of tumor involved adenomyosis in otherwise low-stage endometrioid adenocarcinoma. Int J Gynecol Pathol. 2010;29(5):445–51.PubMedGoogle Scholar
  116. 116.
    Gemer O, Uriev L, Harkovsky T, et al. The significance of the degree of myometrial invasion in patients with stage IB endometrial cancer. Eur J Gynaecol Oncol. 2004;25(3):336–8.PubMedGoogle Scholar
  117. 117.
    Zaino R. Conventional and novel prognostic factors in endometrial adenocarcinoma: a critical appraisal. Pathol Case Rev. 2000;5:138–52.Google Scholar
  118. 118.
    Shim JU, Rose PG, Reale FR, Soto H, Tak WK, Hunter RE. Accuracy of frozen-section diagnosis at surgery in clinical stage I and II endometrial carcinoma. Am J Obstet Gynecol. 1992;166(5):1335–8.PubMedGoogle Scholar
  119. 119.
    Fanning J, Tsukada Y, Piver MS. Intraoperative frozen section diagnosis of depth of myometrial invasion in endometrial adenocarcinoma. Gynecol Oncol. 1990;37(1):47–50.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Goff BA, Rice LW. Assessment of depth of myometrial invasion in endometrial adenocarcinoma. Gynecol Oncol. 1990;38(1):46–8.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Doering DL, Barnhill DR, Weiser EB, Burke TW, Woodward JE, Park RC. Intraoperative evaluation of depth of myometrial invasion in stage I endometrial adenocarcinoma. Obstet Gynecol. 1989;74(6):930–3.PubMedGoogle Scholar
  122. 122.
    AlHilli MM, Podratz KC, Dowdy SC, et al. Risk-scoring system for the individualized prediction of lymphatic dissemination in patients with endometrioid endometrial cancer. Gynecol Oncol. 2013;131(1):103–8.PubMedGoogle Scholar
  123. 123.
    Gemer O, Uriev L, Harkovsky T, et al. Significance of lower uterine segment involvement in women with stage I endometrial adenocarcinoma. J Reprod Med. 2004;49(9):703–6.PubMedGoogle Scholar
  124. 124.
    Kadar NR, Kohorn EI, LiVolsi VA, Kapp DS. Histologic variants of cervical involvement by endometrial carcinoma. Obstet Gynecol. 1982;59(1):85–92.PubMedGoogle Scholar
  125. 125.
    Leminen A, Forss M, Lehtovirta P. Endometrial adenocarcinoma with clinical evidence of cervical involvement: accuracy of diagnostic procedures, clinical course, and prognostic factors. Acta Obstet Gynecol Scand. 1995;74(1):61–6.PubMedGoogle Scholar
  126. 126.
    Jordan LB, Al-Nafussi A. Clinicopathological study of the pattern and significance of cervical involvement in cases of endometrial adenocarcinoma. Int J Gynecol Cancer. 2002;12(1):42–8.PubMedGoogle Scholar
  127. 127.
    Weiner J, Bigelow B, Demopoulos RI, Beckman EM, Weiner I. The value of endocervical sampling in the staging of endometrial carcinoma. Diagn Gynecol Obstet. 1980;2(4):265–8.PubMedGoogle Scholar
  128. 128.
    Pitson G, Colgan T, Levin W, et al. Stage II endometrial carcinoma: prognostic factors and risk classification in 170 patients. Int J Radiat Oncol Biol Phys. 2002;53(4):862–7.PubMedGoogle Scholar
  129. 129.
    Eltabbakh GH, Moore AD. Survival of women with surgical stage II endometrial cancer. Gynecol Oncol. 1999;74(1):80–5.PubMedGoogle Scholar
  130. 130.
    Zaino RJ, Abendroth C, Yemelyanova A, et al. Endocervical involvement in endometrial adenocarcinoma is not prognostically significant and the pathologic assessment of the pattern of involvement is not reproducible. Gynecol Oncol. 2013;128(1):83–7.PubMedGoogle Scholar
  131. 131.
    Alektiar KM, Venkatraman E, Abu-Rustum N, Barakat RR. Is endometrial carcinoma intrinsically more aggressive in elderly patients? Cancer. 2003;98(11):2368–77.PubMedGoogle Scholar
  132. 132.
    Orezzoli JP, Sioletic S, Olawaiye A, Oliva E, del Carmen MG. Stage II endometrioid adenocarcinoma of the endometrium: clinical implications of cervical stromal invasion. Gynecol Oncol. 2009;113(3):316–23.PubMedGoogle Scholar
  133. 133.
    Menczer J. Management of endometrial carcinoma with cervical involvement. An unsettled issue. Eur J Gynaecol Oncol. 2005;26(3):245–55.PubMedGoogle Scholar
  134. 134.
    Tambouret R, Clement PB, Young RH. Endometrial endometrioid adenocarcinoma with a deceptive pattern of spread to the uterine cervix: a manifestation of stage IIb endometrial carcinoma liable to be misinterpreted as an independent carcinoma or a benign lesion. Am J Surg Pathol. 2003;27(8):1080–8.PubMedGoogle Scholar
  135. 135.
    McCluggage WG, Hirschowitz L, Wilson GE, Oliva E, Soslow RA, Zaino RJ. Significant variation in the assessment of cervical involvement in endometrial carcinoma: an interobserver variation study. Am J Surg Pathol. 2011;35(2):289–94.PubMedGoogle Scholar
  136. 136.
    Nevadunsky NS, Van Arsdale A, Strickler HD, et al. Obesity and age at diagnosis of endometrial cancer. Obstet Gynecol. 2014;124(2 Pt 1):300–6.PubMedGoogle Scholar
  137. 137.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.PubMedGoogle Scholar
  138. 138.
    Garg K, Soslow RA. Endometrial carcinoma in women aged 40 years and younger. Arch Pathol Lab Med. 2014;138(3):335–42.PubMedGoogle Scholar
  139. 139.
    Creutzberg CL, van Putten WL, Koper PC, et al. Surgery and postoperative radiotherapy versus surgery alone for patients with stage-1 endometrial carcinoma: multicentre randomised trial. PORTEC Study Group. Post Operative Radiation Therapy in Endometrial Carcinoma. Lancet. 2000;355(9213):1404–11.PubMedGoogle Scholar
  140. 140.
    Gayar OH, Robbins JR, Parikh K, et al. Hysterectomy for uterine adenocarcinoma in the elderly: tumor characteristics, and long-term outcome. Gynecol Oncol. 2011;123(1):71–5.PubMedGoogle Scholar
  141. 141.
    Kennedy AW, Webster KD, Nunez C, Bauer LJ. Pelvic washings for cytologic analysis in endometrial adenocarcinoma. J Reprod Med. 1993;38(8):637–42.PubMedGoogle Scholar
  142. 142.
    Okuma K, Yamashita H, Kawana K, Nakagawa S, Oda K, Nakagawa K. Advanced age is a significant determinant of poor prognosis in patients treated with surgery plus postoperative radiotherapy for endometrial cancer. J Obstet Gynaecol Res. 2010;36(4):757–63.PubMedGoogle Scholar
  143. 143.
    Vance S, Yechieli R, Cogan C, Hanna R, Munkarah A, Elshaikh MA. The prognostic significance of age in surgically staged patients with Type II endometrial carcinoma. Gynecol Oncol. 2012;126(1):16–9.PubMedGoogle Scholar
  144. 144.
    Mundt AJ, Waggoner S, Yamada D, Rotmensch J, Connell PP. Age as a prognostic factor for recurrence in patients with endometrial carcinoma. Gynecol Oncol. 2000;79(1):79–85.PubMedGoogle Scholar
  145. 145.
    Beckner ME, Mori T, Silverberg SG. Endometrial carcinoma: nontumor factors in prognosis. Int J Gynecol Pathol. 1985;4(2):131–45.PubMedGoogle Scholar
  146. 146.
    Farley JH, Nycum LR, Birrer MJ, Park RC, Taylor RR. Age-specific survival of women with endometrioid adenocarcinoma of the uterus. Gynecol Oncol. 2000;79(1):86–9.PubMedGoogle Scholar
  147. 147.
    Ambros RA, Kurman RJ. Combined assessment of vascular and myometrial invasion as a model to predict prognosis in stage I endometrioid adenocarcinoma of the uterine corpus. Cancer. 1992;69(6):1424–31.PubMedGoogle Scholar
  148. 148.
    Briet JM, Hollema H, Reesink N, et al. Lymphvascular space involvement: an independent prognostic factor in endometrial cancer. Gynecol Oncol. 2005;96(3):799–804.PubMedGoogle Scholar
  149. 149.
    Cohn DE, Horowitz NS, Mutch DG, Kim SM, Manolitsas T, Fowler JM. Should the presence of lymphvascular space involvement be used to assign patients to adjuvant therapy following hysterectomy for unstaged endometrial cancer? Gynecol Oncol. 2002;87(3):243–6.PubMedGoogle Scholar
  150. 150.
    Dewdney SB, Jiao Z, Roma AA, et al. The prognostic significance of lymphovascular space invasion in laparoscopic versus abdominal hysterectomy for endometrioid endometrial cancer. Eur J Gynaecol Oncol. 2014;35(1):7–10.PubMedGoogle Scholar
  151. 151.
    Folkins AK, Nevadunsky NS, Saleemuddin A, et al. Evaluation of vascular space involvement in endometrial adenocarcinomas: laparoscopic vs abdominal hysterectomies. Mod Pathol. 2010;23(8):1073–9.PubMedGoogle Scholar
  152. 152.
    Krizova A, Clarke BA, Bernardini MQ, et al. Histologic artifacts in abdominal, vaginal, laparoscopic, and robotic hysterectomy specimens: a blinded, retrospective review. Am J Surg Pathol. 2011;35(1):115–26.PubMedGoogle Scholar
  153. 153.
    Hanson MB, van Nagell JR, Jr., Powell DE, et al. The prognostic significance of lymph-vascular space invasion in stage I endometrial cancer. Cancer 1985;55(8):1753-1757.PubMedGoogle Scholar
  154. 154.
    Gal D, Recio FO, Zamurovic D, Tancer ML. Lymphvascular space involvement – a prognostic indicator in endometrial adenocarcinoma. Gynecol Oncol. 1991;42(2):142–5.PubMedGoogle Scholar
  155. 155.
    Kadar N, Homesley HD, Malfetano JH. Positive peritoneal cytology is an adverse factor in endometrial carcinoma only if there is other evidence of extrauterine disease. Gynecol Oncol. 1992;46(2):145–9.PubMedGoogle Scholar
  156. 156.
    Shah C, Johnson EB, Everett E, et al. Does size matter? Tumor size and morphology as predictors of nodal status and recurrence in endometrial cancer. Gynecol Oncol. 2005;99(3):564–70.PubMedGoogle Scholar
  157. 157.
    Sivridis E, Buckley CH, Fox H. The prognostic significance of lymphatic vascular space invasion in endometrial adenocarcinoma. Br J Obstet Gynaecol. 1987;94(10):991–4.PubMedGoogle Scholar
  158. 158.
    Watari H, Todo Y, Takeda M, Ebina Y, Yamamoto R, Sakuragi N. Lymph-vascular space invasion and number of positive para-aortic node groups predict survival in node-positive patients with endometrial cancer. Gynecol Oncol. 2005;96(3):651–7.PubMedGoogle Scholar
  159. 159.
    Bendifallah S, Canlorbe G, Raimond E, et al. A clue towards improving the European Society of Medical Oncology risk group classification in apparent early stage endometrial cancer? Impact of lymphovascular space invasion. Br J Cancer. 2014;110(11):2640–6.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Weinberg LE, Kunos CA, Zanotti KM. Lymphovascular space invasion (LVSI) is an isolated poor prognostic factor for recurrence and survival among women with intermediate- to high-risk early-stage endometrioid endometrial cancer. Int J Gynecol Cancer. 2013;23(8):1438–45.PubMedGoogle Scholar
  161. 161.
    Guntupalli SR, Zighelboim I, Kizer NT, et al. Lymphovascular space invasion is an independent risk factor for nodal disease and poor outcomes in endometrioid endometrial cancer. Gynecol Oncol. 2012;124(1):31–5.PubMedGoogle Scholar
  162. 162.
    O'Brien DJ, Flannelly G, Mooney EE, Foley M. Lymphovascular space involvement in early stage well-differentiated endometrial cancer is associated with increased mortality. BJOG. 2009;116(7):991–4.PubMedGoogle Scholar
  163. 163.
    Mariani A, Dowdy SC, Keeney GL, Haddock MG, Lesnick TG, Podratz KC. Predictors of vaginal relapse in stage I endometrial cancer. Gynecol Oncol. 2005;97(3):820–7.PubMedGoogle Scholar
  164. 164.
    Mariani A, Webb MJ, Keeney GL, Aletti G, Podratz KC. Predictors of lymphatic failure in endometrial cancer. Gynecol Oncol. 2002;84(3):437–42.PubMedGoogle Scholar
  165. 165.
    Simpkins F, Papadia A, Kunos C, et al. Patterns of recurrence in stage I endometrioid endometrial adenocarcinoma with lymphovascular space invasion. Int J Gynecol Cancer. 2013;23(1):98–104.PubMedGoogle Scholar
  166. 166.
    Yamazawa K, Seki K, Matsui H, Sekiya S. Significance of perivascular lymphocytic infiltrates in endometrial carcinoma. Cancer. 2001;91(9):1777–84.PubMedGoogle Scholar
  167. 167.
    Deligdisch L. Morphologic correlates of host response in endometrial carcinoma. Am J Reprod Immunol. 1982;2(1):54–7.PubMedGoogle Scholar
  168. 168.
    Wong FC, Pang CP, Tang SK, et al. Treatment results of endometrial carcinoma with positive peritoneal washing, adnexal involvement and serosal involvement. Clin Oncol (R Coll Radiol). 2004;16(5):350–5.Google Scholar
  169. 169.
    Kashimura M, Sugihara K, Toki N, et al. The significance of peritoneal cytology in uterine cervix and endometrial cancer. Gynecol Oncol. 1997;67(3):285–90.PubMedGoogle Scholar
  170. 170.
    Kasamatsu T, Onda T, Katsumata N, et al. Prognostic significance of positive peritoneal cytology in endometrial carcinoma confined to the uterus. Br J Cancer. 2003;88(2):245–50.PubMedGoogle Scholar
  171. 171.
    Grimshaw RN, Tupper WC, Fraser RC, Tompkins MG, Jeffrey JF. Prognostic value of peritoneal cytology in endometrial carcinoma. Gynecol Oncol. 1990;36(1):97–100.PubMedGoogle Scholar
  172. 172.
    Lurain JR. The significance of positive peritoneal cytology in endometrial cancer. Gynecol Oncol. 1992;46(2):143–4.PubMedGoogle Scholar
  173. 173.
    Mariani A, Webb MJ, Keeney GL, Aletti G, Podratz KC. Assessment of prognostic factors in stage IIIA endometrial cancer. Gynecol Oncol. 2002;86(1):38–44.PubMedGoogle Scholar
  174. 174.
    Mlyncek M, Uharcek P. Peritoneal cytology in endometrial cancer. Neoplasma. 2005;52(2):103–8.PubMedGoogle Scholar
  175. 175.
    Takeshima N, Nishida H, Tabata T, Hirai Y, Hasumi K. Positive peritoneal cytology in endometrial cancer: enhancement of other prognostic indicators. Gynecol Oncol. 2001;82(3):470–3.PubMedGoogle Scholar
  176. 176.
    Tebeu PM, Popowski Y, Verkooijen HM, et al. Positive peritoneal cytology in early-stage endometrial cancer does not influence prognosis. Br J Cancer. 2004;91(4):720–4.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Ayhan A, Taskiran C, Celik C, Aksu T, Yuce K. Surgical stage III endometrial cancer: analysis of treatment outcomes, prognostic factors and failure patterns. Eur J Gynaecol Oncol. 2002;23(6):553–6.PubMedGoogle Scholar
  178. 178.
    Han KH, Park NH, Kim HS, Chung HH, Kim JW, Song YS. Peritoneal cytology: A risk factor of recurrence for non-endometrioid endometrial cancer. Gynecol Oncol. 2014;134(2):293–6.PubMedGoogle Scholar
  179. 179.
    Milgrom SA, Kollmeier MA, Abu-Rustum NR, et al. Positive peritoneal cytology is highly predictive of prognosis and relapse patterns in stage III (FIGO 2009) endometrial cancer. Gynecol Oncol. 2013;130(1):49–53.PubMedGoogle Scholar
  180. 180.
    Santala M, Talvensaari-Mattila A, Kauppila A. Peritoneal cytology and preoperative serum CA 125 level are important prognostic indicators of overall survival in advanced endometrial cancer. Anticancer Res. 2003;23(3C):3097–103.PubMedGoogle Scholar
  181. 181.
    Turner DA, Gershenson DM, Atkinson N, Sneige N, Wharton AT. The prognostic significance of peritoneal cytology for stage I endometrial cancer. Obstet Gynecol. 1989;74(5):775–80.PubMedGoogle Scholar
  182. 182.
    Ashman JB, Connell PP, Yamada D, Rotmensch J, Waggoner SE, Mundt AJ. Outcome of endometrial carcinoma patients with involvement of the uterine serosa. Gynecol Oncol. 2001;82(2):338–43.PubMedGoogle Scholar
  183. 183.
    Grigsby PW, Perez CA, Kuske RR, Kao MS, Galakatos AE. Results of therapy, analysis of failures, and prognostic factors for clinical and pathologic stage III adenocarcinoma of the endometrium. Gynecol Oncol. 1987;27(1):44–57.PubMedGoogle Scholar
  184. 184.
    Schorge JO, Molpus KL, Goodman A, Nikrui N, Fuller Jr AF. The effect of postsurgical therapy on stage III endometrial carcinoma. Gynecol Oncol. 1996;63(1):34–9.PubMedGoogle Scholar
  185. 185.
    Connell PP, Rotmensch J, Waggoner S, Mundt AJ. The significance of adnexal involvement in endometrial carcinoma. Gynecol Oncol. 1999;74(1):74–9.PubMedGoogle Scholar
  186. 186.
    Greven KM, Lanciano RM, Corn B, Case D, Randall ME. Pathologic stage III endometrial carcinoma. Prognostic factors and patterns of recurrence. Cancer. 1993;71(11):3697–702.PubMedGoogle Scholar
  187. 187.
    Irving JA, Catasus L, Gallardo A, et al. Synchronous endometrioid carcinomas of the uterine corpus and ovary: alterations in the beta-catenin (CTNNB1) pathway are associated with independent primary tumors and favorable prognosis. Hum Pathol. 2005;36(6):605–19.PubMedGoogle Scholar
  188. 188.
    Ulbright TM, Roth LM. Metastatic and independent cancers of the endometrium and ovary: a clinicopathologic study of 34 cases. Hum Pathol. 1985;16(1):28–34.PubMedGoogle Scholar
  189. 189.
    Zaino R, Whitney C, Brady MF, DeGeest K, Burger RA, Buller RE. Simultaneously detected endometrial and ovarian carcinomas—a prospective clinicopathologic study of 74 cases: a gynecologic oncology group study. Gynecol Oncol. 2001;83(2):355–62.PubMedGoogle Scholar
  190. 190.
    Clement PB, Young RH. Endometrioid carcinoma of the uterine corpus: a review of its pathology with emphasis on recent advances and problematic aspects. Adv Anat Pathol. 2002;9(3):145–84.PubMedGoogle Scholar
  191. 191.
    Sutton GP. The significance of positive peritoneal cytology in endometrial cancer. Oncology (Williston Park). 1990;4(6):21–6. discussion 30-22Google Scholar
  192. 192.
    Takeshima N, Hirai Y, Yano K, Tanaka N, Yamauchi K, Hasumi K. Ovarian metastasis in endometrial carcinoma. Gynecol Oncol. 1998;70(2):183–7.PubMedGoogle Scholar
  193. 193.
    Nicklin JL, Petersen RW. Stage 3B adenocarcinoma of the endometrium: a clinicopathologic study. Gynecol Oncol. 2000;78(2):203–7.PubMedGoogle Scholar
  194. 194.
    Chuang L, Burke TW, Tornos C, et al. Staging laparotomy for endometrial carcinoma: assessment of retroperitoneal lymph nodes. Gynecol Oncol. 1995;58(2):189–93.PubMedGoogle Scholar
  195. 195.
    Lampe B, Kurzl R, Hantschmann P. Prognostic factors that predict pelvic lymph node metastasis from endometrial carcinoma. Cancer. 1994;74(9):2502–8.PubMedGoogle Scholar
  196. 196.
    Ohkouchi T, Sakuragi N, Watari H, et al. Prognostic significance of Bcl-2, p53 overexpression, and lymph node metastasis in surgically staged endometrial carcinoma. Am J Obstet Gynecol. 2002;187(2):353–9.PubMedGoogle Scholar
  197. 197.
    Chang SJ, Kim WY, Yoon JH, Yoo SC, Chang KH, Ryu HS. Para-aortic lymphadenectomy improves survival in patients with intermediate to high-risk endometrial carcinoma. Acta Obstet Gynecol Scand. 2008;87(12):1361–9.PubMedGoogle Scholar
  198. 198.
    Kim HS, Kim HY, Park CY, et al. Lymphadenectomy increases the prognostic value of the revised 2009 FIGO staging system for endometrial cancer: a multi-center study. Eur J Surg Oncol. 2012;38(3):230–7.PubMedGoogle Scholar
  199. 199.
    Mariani A, Dowdy SC, Cliby WA, et al. Prospective assessment of lymphatic dissemination in endometrial cancer: a paradigm shift in surgical staging. Gynecol Oncol. 2008;109(1):11–8.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Abu-Rustum NR, Iasonos A, Zhou Q, et al. Is there a therapeutic impact to regional lymphadenectomy in the surgical treatment of endometrial carcinoma? Am J Obstet Gynecol. 2008;198(4):457 e451–5; discussion 457 e455–56.Google Scholar
  201. 201.
    Lutman CV, Havrilesky LJ, Cragun JM, et al. Pelvic lymph node count is an important prognostic variable for FIGO stage I and II endometrial carcinoma with high-risk histology. Gynecol Oncol. 2006;102(1):92–7.PubMedPubMedCentralGoogle Scholar
  202. 202.
    Mariani A, Dowdy SC, Cliby WA, et al. Efficacy of systematic lymphadenectomy and adjuvant radiotherapy in node-positive endometrial cancer patients. Gynecol Oncol. May 2006;101(2):200–8.PubMedGoogle Scholar
  203. 203.
    Mariani A, Webb MJ, Galli L, Podratz KC. Potential therapeutic role of para-aortic lymphadenectomy in node-positive endometrial cancer. Gynecol Oncol. 2000;76(3):348–56.PubMedGoogle Scholar
  204. 204.
    Kilgore LC, Partridge EE, Alvarez RD, et al. Adenocarcinoma of the endometrium: survival comparisons of patients with and without pelvic node sampling. Gynecol Oncol. 1995;56(1):29–33.Google Scholar
  205. 205.
    Larson DM, Johnson KK. Pelvic and para-aortic lymphadenectomy for surgical staging of high-risk endometrioid adenocarcinoma of the endometrium. Gynecol Oncol. 1993;51(3):345–8.PubMedGoogle Scholar
  206. 206.
    Yokoyama Y, Maruyama H, Sato S, Saito Y. Indispensability of pelvic and paraaortic lymphadenectomy in endometrial cancers. Gynecol Oncol. 1997;64(3):411–7.PubMedGoogle Scholar
  207. 207.
    Arango HA, Hoffman MS, Roberts WS, DeCesare SL, Fiorica JV, Drake J. Accuracy of lymph node palpation to determine need for lymphadenectomy in gynecologic malignancies. Obstet Gynecol. 2000;95(4):553–6.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Nugent EK, Bishop EA, Mathews CA, et al. Do uterine risk factors or lymph node metastasis more significantly affect recurrence in patients with endometrioid adenocarcinoma? Gynecol Oncol. 2012;125(1):94–8.PubMedGoogle Scholar
  209. 209.
    Mariani A, Keeney GL, Aletti G, Webb MJ, Haddock MG, Podratz KC. Endometrial carcinoma: paraaortic dissemination. Gynecol Oncol. 2004;92(3):833–8.PubMedGoogle Scholar
  210. 210.
    McMeekin DS, Lashbrook D, Gold M, Johnson G, Walker JL, Mannel R. Analysis of FIGO Stage IIIc endometrial cancer patients. Gynecol Oncol. 2001;81(2):273–8.PubMedGoogle Scholar
  211. 211.
    Mohan DS, Samuels MA, Selim MA, et al. Long-term outcomes of therapeutic pelvic lymphadenectomy for stage I endometrial adenocarcinoma. Gynecol Oncol. 1998;70(2):165–71.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Girardi F, Petru E, Heydarfadai M, Haas J, Winter R. Pelvic lymphadenectomy in the surgical treatment of endometrial cancer. Gynecol Oncol. 1993;49(2):177–80.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Gonzalez Bosquet J, Keeney GL, Mariani A, Webb MJ, Cliby WA. Cytokeratin staining of resected lymph nodes may improve the sensitivity of surgical staging for endometrial cancer. Gynecol Oncol. 2003;91(3):518–25.PubMedGoogle Scholar
  214. 214.
    Yabushita H, Shimazu M, Yamada H, et al. Occult lymph node metastases detected by cytokeratin immunohistochemistry predict recurrence in node-negative endometrial cancer. Gynecol Oncol. 2001;80(2):139–44.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Abu-Rustum NR. Update on sentinel node mapping in uterine cancer: 10-year experience at Memorial Sloan-Kettering Cancer Center. J Obstet Gynaecol Res. 2014;40(2):327–34.PubMedGoogle Scholar
  216. 216.
    Touboul C, Bentivegna E, Uzan C, et al. Sentinel lymph node in endometrial cancer: a review. Curr Oncol Rep. 2013;15(6):559–65.PubMedGoogle Scholar
  217. 217.
    Evans MP, Podratz KC. Endometrial neoplasia: prognostic significance of ploidy status. Clin Obstet Gynecol. 1996;39(3):696–706.PubMedGoogle Scholar
  218. 218.
    Britton LC, Wilson TO, Gaffey TA, Lieber MM, Wieand HS, Podratz KC. Flow cytometric DNA analysis of stage I endometrial carcinoma. Gynecol Oncol. 1989;34(3):317–22.PubMedGoogle Scholar
  219. 219.
    Pradhan M, Abeler VM, Danielsen HE, Trope CG, Risberg BA. Image cytometry DNA ploidy correlates with histological subtypes in endometrial carcinomas. Mod Pathol. 2006;19(9):1227–35.PubMedGoogle Scholar
  220. 220.
    Susini T, Amunni G, Molino C, et al. Ten-year results of a prospective study on the prognostic role of ploidy in endometrial carcinoma: dNA aneuploidy identifies high-risk cases among the so-called “low-risk” patients with well and moderately differentiated tumors. Cancer. 2007;109(5):882–90.PubMedGoogle Scholar
  221. 221.
    Terada K, Mattson D, Goo D, Shimizu D. DNA aneuploidy is associated with increased mortality for stage I endometrial cancer. Gynecol Oncol. 2004;95(3):483–7.PubMedGoogle Scholar
  222. 222.
    Genest DR, Sheets E, Lage JM. Flow-cytometric analysis of nuclear DNA content in endometrial adenocarcinoma. Atypical mitoses are associated with DNA aneuploidy. Am J Clin Pathol. 1994;102(3):341–8.PubMedGoogle Scholar
  223. 223.
    Kudela M, Pilka R, Lubusky M, Hejtmanek P, Dzubak P, Brychtova S. Prognostic importance of selected molecular immunohistochemical markers and DNA ploidy in endometrial cancer. Eur J Gynaecol Oncol. 2012;33(2):159–63.PubMedGoogle Scholar
  224. 224.
    Lukes AS, Kohler MF, Pieper CF, et al. Multivariable analysis of DNA ploidy, p53, and HER-2/neu as prognostic factors in endometrial cancer. Cancer. 1994;73(9):2380–5.PubMedGoogle Scholar
  225. 225.
    Lundgren C, Auer G, Frankendal B, Moberger B, Nilsson B, Nordstrom B. Nuclear DNA content, proliferative activity, and p53 expression related to clinical and histopathologic features in endometrial carcinoma. Int J Gynecol Cancer. 2002;12(1):110–8.PubMedGoogle Scholar
  226. 226.
    Mangili G, De Marzi P, Vigano R, et al. Identification of high risk patients with endometrial carcinoma. Prognostic assessment of endometrial cancer. Eur J Gynaecol Oncol. 2002;23(3):216–20.PubMedGoogle Scholar
  227. 227.
    Mauland KK, Wik E, Salvesen HB. Clinical value of DNA content assessment in endometrial cancer. Cytometry B Clin Cytom. 2014;86(3):154–63.PubMedGoogle Scholar
  228. 228.
    Santala M, Talvensaari-Mattila A. DNA ploidy is an independent prognostic indicator of overall survival in stage I endometrial endometrioid carcinoma. Anticancer Res. 2003;23(6D):5191–6.PubMedGoogle Scholar
  229. 229.
    Geisinger KR, Homesley HD, Morgan TM, Kute TE, Marshall RB. Endometrial adenocarcinoma. A multiparameter clinicopathologic analysis including the DNA profile and the sex steroid hormone receptors. Cancer. 1986;58(7):1518–25.PubMedGoogle Scholar
  230. 230.
    Pfisterer J, Kommoss F, Sauerbrei W, et al. Prognostic value of DNA ploidy and S-phase fraction in stage I endometrial carcinoma. Gynecol Oncol. 1995;58(2):149–56.PubMedGoogle Scholar
  231. 231.
    Sorbe B, Risberg B, Frankendal B. DNA ploidy, morphometry, and nuclear grade as prognostic factors in endometrial carcinoma. Gynecol Oncol. 1990;38(1):22–7.PubMedGoogle Scholar
  232. 232.
    Pradhan M, Davidson B, Abeler VM, et al. DNA ploidy may be a prognostic marker in stage I and II serous adenocarcinoma of the endometrium. Virchows Arch. 2012;461(3):291–8.PubMedPubMedCentralGoogle Scholar
  233. 233.
    Kildal W, Micci F, Risberg B, et al. Genomic imbalances in endometrial adenocarcinomas—comparison of DNA ploidy, karyotyping and comparative genomic hybridization. Mol Oncol. 2012;6(1):98–107.PubMedGoogle Scholar
  234. 234.
    Chambers JT, MacLusky N, Eisenfield A, Kohorn EI, Lawrence R, Schwartz PE. Estrogen and progestin receptor levels as prognosticators for survival in endometrial cancer. Gynecol Oncol. 1988;31(1):65–81.PubMedGoogle Scholar
  235. 235.
    Creasman WT. Prognostic significance of hormone receptors in endometrial cancer. Cancer. 1993;71(4 Suppl):1467–70.PubMedGoogle Scholar
  236. 236.
    Hanekamp EE, Gielen SC, Smid-Koopman E, et al. Consequences of loss of progesterone receptor expression in development of invasive endometrial cancer. Clin Cancer Res. 2003;9(11):4190–9.PubMedGoogle Scholar
  237. 237.
    Kadar N, Malfetano JH, Homesley HD. Steroid receptor concentrations in endometrial carcinoma: effect on survival in surgically staged patients. Gynecol Oncol. 1993;50(3):281–6.PubMedGoogle Scholar
  238. 238.
    Morris PC, Anderson JR, Anderson B, Buller RE. Steroid hormone receptor content and lymph node status in endometrial cancer. Gynecol Oncol. 1995;56(3):406–11.PubMedGoogle Scholar
  239. 239.
    Arai T, Watanabe J, Kawaguchi M, et al. Clear cell adenocarcinoma of the endometrium is a biologically distinct entity from endometrioid adenocarcinoma. Int J Gynecol Cancer. 2006;16(1):391–5.PubMedGoogle Scholar
  240. 240.
    Carcangiu ML, Chambers JT, Voynick IM, Pirro M, Schwartz PE. Immunohistochemical evaluation of estrogen and progesterone receptor content in 183 patients with endometrial carcinoma. Part I: Clinical and histologic correlations. Am J Clin Pathol. 1990;94(3):247–54.PubMedGoogle Scholar
  241. 241.
    Lax SF, Pizer ES, Ronnett BM, Kurman RJ. Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression. Hum Pathol. 1998;29(6):551–8.PubMedGoogle Scholar
  242. 242.
    Ehrlich CE, Young PC, Stehman FB, Sutton GP, Alford WM. Steroid receptors and clinical outcome in patients with adenocarcinoma of the endometrium. Am J Obstet Gynecol. 1988;158(4):796–807.PubMedGoogle Scholar
  243. 243.
    Hu K, Zhong G, He F. Expression of estrogen receptors ERalpha and ERbeta in endometrial hyperplasia and adenocarcinoma. Int J Gynecol Cancer. 2005;15(3):537–41.PubMedGoogle Scholar
  244. 244.
    De Vivo I, Huggins GS, Hankinson SE, et al. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc Natl Acad Sci U S A. 2002;99(19):12263–8.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Kalogiannidis I, Petousis S, Bobos M, et al. HER-2/neu is an independent prognostic factor in type I endometrial adenocarcinoma. Arch Gynecol Obstet. 2014;290(6):1231–7.PubMedGoogle Scholar
  246. 246.
    Berchuck A, Rodriguez G, Kinney RB, et al. Overexpression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am J Obstet Gynecol. 1991;164(1 Pt 1):15–21.PubMedGoogle Scholar
  247. 247.
    Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podratz KC. HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol. 1992;47(2):179–85.PubMedGoogle Scholar
  248. 248.
    Peiro G, Mayr D, Hillemanns P, Lohrs U, Diebold J. Analysis of HER-2/neu amplification in endometrial carcinoma by chromogenic in situ hybridization. Correlation with fluorescence in situ hybridization, HER-2/neu, p53 and Ki-67 protein expression, and outcome. Mod Pathol. 2004;17(3):227–87.PubMedGoogle Scholar
  249. 249.
    Saffari B, Jones LA. el-Naggar A, Felix JC, George J, Press MF. Amplification and overexpression of HER-2/neu (c-erbB2) in endometrial cancers: correlation with overall survival. Cancer Res. 1995;55(23):5693–8.PubMedGoogle Scholar
  250. 250.
    Santin AD. HER2/neu overexpression: has the Achilles’ heel of uterine serous papillary carcinoma been exposed? Gynecol Oncol. 2003;88(3):263–5.PubMedGoogle Scholar
  251. 251.
    Coronado PJ, Vidart JA, Lopez-asenjo JA, et al. P53 overexpression predicts endometrial carcinoma recurrence better than HER-2/neu overexpression. Eur J Obstet Gynecol Reprod Biol. 2001;98(1):103–8.PubMedGoogle Scholar
  252. 252.
    Heffner HM, Freedman AN, Asirwatham JE, Lele SB. Prognostic significance of p53, PCNA, and c-erbB-2 in endometrial enocarcinoma. Eur J Gynaecol Oncol. 1999;20(1):8–12.PubMedGoogle Scholar
  253. 253.
    Pisani AL, Barbuto DA, Chen D, Ramos L, Lagasse LD, Karlan BY. HER-2/neu, p53, and DNA analyses as prognosticators for survival in endometrial carcinoma. Obstet Gynecol. 1995;85(5 Pt 1):729–34.PubMedGoogle Scholar
  254. 254.
    Riben MW, Malfetano JH, Nazeer T, Muraca PJ, Ambros RA, Ross JS. Identification of HER-2/neu oncogene amplification by fluorescence in situ hybridization in stage I endometrial carcinoma. Mod Pathol. 1997;10(8):823–31.PubMedGoogle Scholar
  255. 255.
    Williams Jr JA, Wang ZR, Parrish RS, Hazlett LJ, Smith ST, Young SR. Fluorescence in situ hybridization analysis of HER-2/neu, c-myc, and p53 in endometrial cancer. Exp Mol Pathol. 1999;67(3):135–43.PubMedGoogle Scholar
  256. 256.
    Alvarez T, Miller E, Duska L, Oliva E. Molecular profile of grade 3 endometrioid endometrial carcinoma: is it a type I or type II endometrial carcinoma? Am J Surg Pathol. 2012;36(5):753–61.Google Scholar
  257. 257.
    Khalifa MA, Mannel RS, Haraway SD, Walker J, Min KW. Expression of EGFR, HER-2/neu, P53, and PCNA in endometrioid, serous papillary, and clear cell endometrial adenocarcinomas. Gynecol Oncol. 1994;53(1):84–92.PubMedGoogle Scholar
  258. 258.
    Rolitsky CD, Theil KS, McGaughy VR, Copeland LJ, Niemann TH. HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol. 1999;18(2):138–43.PubMedGoogle Scholar
  259. 259.
    Tashiro H, Isacson C, Levine R, Kurman RJ, Cho KR, Hedrick L. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol. 1997;150(1):177–85.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Yamazawa K, Shimada H, Hirai M, et al. Serum p53 antibody as a diagnostic marker of high-risk endometrial cancer. Am J Obstet Gynecol. 2007;197(5):505 e501–7.Google Scholar
  261. 261.
    An HJ, Logani S, Isacson C, Ellenson LH. Molecular characterization of uterine clear cell carcinoma. Mod Pathol. 2004;17(5):530–7.PubMedGoogle Scholar
  262. 262.
    Gadducci A, Tana R, Cosio S, Fanucchi A, Genazzani AR. Molecular target therapies in endometrial cancer: from the basic research to the clinic. Gynecol Endocrinol. 2008;24(5):239–49.PubMedGoogle Scholar
  263. 263.
    Lee EJ, Kim TJ, Kim DS, et al. p53 alteration independently predicts poor outcomes in patients with endometrial cancer: a clinicopathologic study of 131 cases and literature review. Gynecol Oncol. 2010;116(3):533–8.PubMedGoogle Scholar
  264. 264.
    Alkushi A, Lim P, Coldman A, Huntsman D, Miller D, Gilks CB. Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gynecol Pathol. 2004;23(2):129–37.PubMedGoogle Scholar
  265. 265.
    Geisler JP, Geisler HE, Wiemann MC, Zhou Z, Miller GA, Crabtree W. Lack of bcl-2 persistence: an independent prognostic indicator of poor prognosis in endometrial carcinoma. Gynecol Oncol. 1998;71(2):305–7.PubMedGoogle Scholar
  266. 266.
    Taskin M, Lallas TA, Barber HR, Shevchuk MM. bcl-2 and p53 in endometrial adenocarcinoma. Mod Pathol. 1997;10(7):728–34.PubMedGoogle Scholar
  267. 267.
    Yamauchi N, Sakamoto A, Uozaki H, Iihara K, Machinami R. Immunohistochemical analysis of endometrial adenocarcinoma for bcl-2 and p53 in relation to expression of sex steroid receptor and proliferative activity. Int J Gynecol Pathol. 1996;15(3):202–8.PubMedGoogle Scholar
  268. 268.
    Zheng W, Cao P, Zheng M, Kramer EE, Godwin TA. p53 overexpression and bcl-2 persistence in endometrial carcinoma: comparison of papillary serous and endometrioid subtypes. Gynecol Oncol. 1996;61(2):167–74.PubMedGoogle Scholar
  269. 269.
    Mariani A, Sebo TJ, Cliby WA, et al. Role of bcl-2 in endometrioid corpus cancer: an experimental study. Anticancer Res. 2006;26(2A):823–7.PubMedGoogle Scholar
  270. 270.
    Risinger JI, Hayes K, Maxwell GL, et al. PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998;4(12):3005–10.PubMedGoogle Scholar
  271. 271.
    Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57(18):3935–40.PubMedGoogle Scholar
  272. 272.
    Bussaglia E, del Rio E, Matias-Guiu X, Prat J. PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum Pathol. 2000;31(3):312–7.PubMedGoogle Scholar
  273. 273.
    Levine RL, Cargile CB, Blazes MS, van Rees B, Kurman RJ, Ellenson LH. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res. 1998;58(15):3254–8.PubMedGoogle Scholar
  274. 274.
    Bilbao C, Rodriguez G, Ramirez R, et al. The relationship between microsatellite instability and PTEN gene mutations in endometrial cancer. Int J Cancer. 2006;119(3):563–70.PubMedGoogle Scholar
  275. 275.
    Terakawa N, Kanamori Y, Yoshida S. Loss of PTEN expression followed by Akt phosphorylation is a poor prognostic factor for patients with endometrial cancer. Endocr Relat Cancer. 2003;10(2):203–8.PubMedGoogle Scholar
  276. 276.
    Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.PubMedPubMedCentralGoogle Scholar
  277. 277.
    Xiong J, He M, Jackson C, et al. Endometrial carcinomas with significant mucinous differentiation associated with higher frequency of k-ras mutations: a morphologic and molecular correlation study. Int J Gynecol Cancer. 2013;23(7):1231–6.PubMedGoogle Scholar
  278. 278.
    Duggan BD, Felix JC, Muderspach LI, Tsao JL, Shibata DK. Early mutational activation of the c-Ki-ras oncogene in endometrial carcinoma. Cancer Res. 1994;54(6):1604–7.PubMedGoogle Scholar
  279. 279.
    Lagarda H, Catasus L, Arguelles R, Matias-Guiu X, Prat J. K-ras mutations in endometrial carcinomas with microsatellite instability. J Pathol. 2001;193(2):193–9.PubMedGoogle Scholar
  280. 280.
    Mutter GL, Wada H, Faquin WC, Enomoto T. K-ras mutations appear in the premalignant phase of both microsatellite stable and unstable endometrial carcinogenesis. Mol Pathol. 1999;52(5):257–62.PubMedPubMedCentralGoogle Scholar
  281. 281.
    Caduff RF, Johnston CM, Frank TS. Mutations of the Ki-ras oncogene in carcinoma of the endometrium. Am J Pathol. 1995;146(1):182–8.PubMedPubMedCentralGoogle Scholar
  282. 282.
    Doll A, Abal M, Rigau M, et al. Novel molecular profiles of endometrial cancer-new light through old windows. J Steroid Biochem Mol Biol. 2008;108(3-5):221–9.PubMedGoogle Scholar
  283. 283.
    Buttin BM, Powell MA, Mutch DG, et al. Increased risk for hereditary nonpolyposis colorectal cancer-associated synchronous and metachronous malignancies in patients with microsatellite instability-positive endometrial carcinoma lacking MLH1 promoter methylation. Clin Cancer Res. 2004;10(2):481–90.PubMedGoogle Scholar
  284. 284.
    Hagen CE, Lefferts J, Hornick JL, Srivastava A. “Null pattern” of immunoreactivity in a Lynch syndrome-associated colon cancer due to germline MSH2 mutation and somatic MLH1 hypermethylation. Am J Surg Pathol. 2011;35(12):1902–5.PubMedGoogle Scholar
  285. 285.
    Kwon JS, Scott JL, Gilks CB, Daniels MS, Sun CC, Lu KH. Testing women with endometrial cancer to detect Lynch syndrome. J Clin Oncol. 2011;29(16):2247–52.PubMedPubMedCentralGoogle Scholar
  286. 286.
    Whelan AJ, Babb S, Mutch DG, et al. MSI in endometrial carcinoma: absence of MLH1 promoter methylation is associated with increased familial risk for cancers. Int J Cancer. 2002;99(5):697–704.PubMedGoogle Scholar
  287. 287.
    Broaddus RR, Lynch HT, Chen LM, et al. Pathologic features of endometrial carcinoma associated with HNPCC: a comparison with sporadic endometrial carcinoma. Cancer. 2006;106(1):87–94.PubMedGoogle Scholar
  288. 288.
    Carcangiu ML, Radice P, Casalini P, Bertario L, Merola M, Sala P. Lynch syndrome-related endometrial carcinomas show a high frequency of nonendometrioid types and of high FIGO grade endometrioid types. Int J Surg Pathol. 2010;18(1):21–6.PubMedGoogle Scholar
  289. 289.
    Parc YR, Halling KC, Burgart LJ, et al. Microsatellite instability and hMLH1/hMSH2 expression in young endometrial carcinoma patients: associations with family history and histopathology. Int J Cancer. 2000;86(1):60–6.PubMedGoogle Scholar
  290. 290.
    Soslow RA. Endometrial carcinomas with ambiguous features. Semin Diagn Pathol. 2010;27(4):261–73.PubMedGoogle Scholar
  291. 291.
    Westin SN, Lacour RA, Urbauer DL, et al. Carcinoma of the lower uterine segment: a newly described association with Lynch syndrome. J Clin Oncol. 2008;26(36):5965–71.PubMedPubMedCentralGoogle Scholar
  292. 292.
    Maxwell GL, Risinger JI, Alvarez AA, Barrett JC, Berchuck A. Favorable survival associated with microsatellite instability in endometrioid endometrial cancers. Obstet Gynecol. 2001;97(3):417–22.PubMedGoogle Scholar
  293. 293.
    Caduff RF, Johnston CM, Svoboda-Newman SM, Poy EL, Merajver SD, Frank TS. Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol. 1996;148(5):1671–8.PubMedPubMedCentralGoogle Scholar
  294. 294.
    Fiumicino S, Ercoli A, Ferrandina G, et al. Microsatellite instability is an independent indicator of recurrence in sporadic stage I-II endometrial adenocarcinoma. J Clin Oncol. 2001;19(4):1008–14.PubMedGoogle Scholar
  295. 295.
    Kobayashi K, Sagae S, Kudo R, Saito H, Koi S, Nakamura Y. Microsatellite instability in endometrial carcinomas: frequent replication errors in tumors of early onset and/or of poorly differentiated type. Genes Chromosomes Cancer. 1995;14(2):128–32.PubMedGoogle Scholar
  296. 296.
    MacDonald ND, Salvesen HB, Ryan A, Iversen OE, Akslen LA, Jacobs IJ. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000;60(6):1750–2.PubMedGoogle Scholar
  297. 297.
    Orbo A, Eklo K, Kopp M. A semiautomated test for microsatellite instability and its significance for the prognosis of sporadic endometrial cancer in northern Norway. Int J Gynecol Pathol. 2002;21(1):27–33.PubMedGoogle Scholar
  298. 298.
    Tibiletti MG, Furlan D, Taborelli M, et al. Microsatellite instability in endometrial cancer: relation to histological subtypes. Gynecol Oncol. 1999;73(2):247–52.PubMedGoogle Scholar
  299. 299.
    Wong YF, Ip TY, Chung TK, et al. Clinical and pathologic significance of microsatellite instability in endometrial cancer. Int J Gynecol Cancer. 1999;9(5):406–10.PubMedGoogle Scholar
  300. 300.
    Diaz-Padilla I, Romero N, Amir E, et al. Mismatch repair status and clinical outcome in endometrial cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2013;88(1):154–67.PubMedGoogle Scholar
  301. 301.
    Fukuchi T, Sakamoto M, Tsuda H, Maruyama K, Nozawa S, Hirohashi S. Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 1998;58(16):3526–8.PubMedGoogle Scholar
  302. 302.
    Machin P, Catasus L, Pons C, Munoz J, Matias-Guiu X, Prat J. CTNNB1 mutations and beta-catenin expression in endometrial carcinomas. Hum Pathol. 2002;33(2):206–12.PubMedGoogle Scholar
  303. 303.
    Moreno-Bueno G, Hardisson D, Sanchez C, et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene. 2002;21(52):7981–90.PubMedGoogle Scholar
  304. 304.
    Ikeda T, Yoshinaga K, Semba S, Kondo E, Ohmori H, Horii A. Mutational analysis of the CTNNB1 (beta-catenin) gene in human endometrial cancer: frequent mutations at codon 34 that cause nuclear accumulation. Oncol Rep. 2000;7(2):323–6.PubMedGoogle Scholar
  305. 305.
    Saegusa M, Hashimura M, Yoshida T, Okayasu I. beta-Catenin mutations and aberrant nuclear expression during endometrial tumorigenesis. Br J Cancer. 2001;84(2):209–17.PubMedPubMedCentralGoogle Scholar
  306. 306.
    Catasus L, Gallardo A, Cuatrecasas M, Prat J. PIK3CA mutations in the kinase domain (exon 20) of uterine endometrial adenocarcinomas are associated with adverse prognostic parameters. Mod Pathol. 2008;21(2):131–9.PubMedGoogle Scholar
  307. 307.
    Ellis PE, Ghaem-Maghami S. Molecular characteristics and risk factors in endometrial cancer: what are the treatment and preventative strategies? Int J Gynecol Cancer. 2010;20(7):1207–16.PubMedGoogle Scholar
  308. 308.
    Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–73.PubMedGoogle Scholar
  309. 309.
    Velasco A, Bussaglia E, Pallares J, et al. PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations. Hum Pathol. 2006;37(11):1465–72.PubMedGoogle Scholar
  310. 310.
    Matias-Guiu X, Davidson B. Prognostic biomarkers in endometrial and ovarian carcinoma. Virchows Arch. 2014;464(3):315–31.PubMedGoogle Scholar
  311. 311.
    Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.PubMedGoogle Scholar
  312. 312.
    Mao TL, Shih IM. The roles of ARID1A in gynecologic cancer. J Gynecol Oncol. 2013;24(4):376–81.PubMedPubMedCentralGoogle Scholar
  313. 313.
    Meng B, Hoang LN, McIntyre JB, et al. POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol. 2014;134(1):15–9.PubMedGoogle Scholar
  314. 314.
    Meeting Report: The new FIGO staging system for cancers of the vulva, cervix, endometrium and sarcomas. Gynecol Oncol. 2009;115(3):325–8.Google Scholar
  315. 315.
    Kapp DS, Shin JY, Chan JK. Prognostic factors and survival in 1396 patients with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and oophorectomy. Cancer. 2008;112(4):820–30.PubMedGoogle Scholar
  316. 316.
    Leitao MM, Brennan MF, Hensley M, et al. Surgical resection of pulmonary and extrapulmonary recurrences of uterine leiomyosarcoma. Gynecol Oncol. 2002;87(3):287–94.PubMedGoogle Scholar
  317. 317.
    Bodner K, Bodner-Adler B, Kimberger O, Czerwenka K, Leodolter S, Mayerhofer K. Evaluating prognostic parameters in women with uterine leiomyosarcoma. A clinicopathologic study. J Reprod Med. 2003;48(2):95–100.PubMedGoogle Scholar
  318. 318.
    Giuntoli 2nd RL, Metzinger DS, DiMarco CS, et al. Retrospective review of 208 patients with leiomyosarcoma of the uterus: prognostic indicators, surgical management, and adjuvant therapy. Gynecol Oncol. 2003;89(3):460–9.PubMedGoogle Scholar
  319. 319.
    Dinh TA, Oliva EA, Fuller Jr AF, Lee H, Goodman A. The treatment of uterine leiomyosarcoma. Results from a 10-year experience (1990-1999) at the Massachusetts General Hospital. Gynecol Oncol. 2004;92(2):648–52.PubMedGoogle Scholar
  320. 320.
    Jones MW, Norris HJ. Clinicopathologic study of 28 uterine leiomyosarcomas with metastasis. Int J Gynecol Pathol. 1995;14(3):243–9.PubMedGoogle Scholar
  321. 321.
    Larson B, Silfversward C, Nilsson B, Pettersson F. Prognostic factors in uterine leiomyosarcoma. A clinical and histopathological study of 143 cases. The Radiumhemmet series 1936-1981. Acta Oncol. 1990;29(2):185–91.PubMedGoogle Scholar
  322. 322.
    Major FJ, Blessing JA, Silverberg SG, et al. Prognostic factors in early-stage uterine sarcoma. A Gynecologic Oncology Group study. Cancer. 1993;71(4 Suppl):1702–9.PubMedGoogle Scholar
  323. 323.
    Pautier P, Genestie C, Rey A, et al. Analysis of clinicopathologic prognostic factors for 157 uterine sarcomas and evaluation of a grading score validated for soft tissue sarcoma. Cancer. 2000;88(6):1425–31.PubMedGoogle Scholar
  324. 324.
    Abeler VM, Royne O, Thoresen S, Danielsen HE, Nesland JM, Kristensen GB. Uterine sarcomas in Norway. A histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients. Histopathology. 2009;54(3):355–64.PubMedGoogle Scholar
  325. 325.
    D'Angelo E, Espinosa I, Ali R, et al. Uterine leiomyosarcomas: tumor size, mitotic index, and biomarkers Ki67, and Bcl-2 identify two groups with different prognosis. Gynecol Oncol. 2011;121(2):328–33.PubMedGoogle Scholar
  326. 326.
    Evans HL, Chawla SP, Simpson C, Finn KP. Smooth muscle neoplasms of the uterus other than ordinary leiomyoma. A study of 46 cases, with emphasis on diagnostic criteria and prognostic factors. Cancer. 1988;62(10):2239–47.PubMedGoogle Scholar
  327. 327.
    Hsieh CH, Lin H, Huang CC, Huang EY, Chang SY, ChangChien CC. Leiomyosarcoma of the uterus: a clinicopathologic study of 21 cases. Acta Obstet Gynecol Scand. 2003;82(1):74–81.PubMedGoogle Scholar
  328. 328.
    Leitao MM, Soslow RA, Nonaka D, et al. Tissue microarray immunohistochemical expression of estrogen, progesterone, and androgen receptors in uterine leiomyomata and leiomyosarcoma. Cancer. 2004;101(6):1455–62.PubMedGoogle Scholar
  329. 329.
    Mayerhofer K, Obermair A, Windbichler G, et al. Leiomyosarcoma of the uterus: a clinicopathologic multicenter study of 71 cases. Gynecol Oncol. 1999;74(2):196–201.PubMedGoogle Scholar
  330. 330.
    Nordal RR, Kristensen GB, Kaern J, Stenwig AE, Pettersen EO, Trope CG. The prognostic significance of stage, tumor size, cellular atypia and DNA ploidy in uterine leiomyosarcoma. Acta Oncol. 1995;34(6):797–802.PubMedGoogle Scholar
  331. 331.
    Pelmus M, Penault-Llorca F, Guillou L, et al. Prognostic factors in early-stage leiomyosarcoma of the uterus. Int J Gynecol Cancer. 2009;19(3):385–90.PubMedGoogle Scholar
  332. 332.
    Veras E, Zivanovic O, Jacks L, Chiappetta D, Hensley M, Soslow R. "Low-grade leiomyosarcoma" and late-recurring smooth muscle tumors of the uterus: a heterogenous collection of frequently misdiagnosed tumors associated with an overall favorable prognosis relative to conventional uterine leiomyosarcomas. Am J Surg Pathol. 2011;35(11):1626–37.PubMedGoogle Scholar
  333. 333.
    Lim D, Wang WL, Lee CH, Dodge T, Gilks B, Oliva E. Old versus new FIGO staging systems in predicting overall survival in patients with uterine leiomyosarcoma: a study of 86 cases. Gynecol Oncol. 2013;128(2):322–6.PubMedGoogle Scholar
  334. 334.
    Malouf GG, Lhomme C, Duvillard P, Morice P, Haie-Meder C, Pautier P. Prognostic factors and outcome of undifferentiated endometrial sarcoma treated by multimodal therapy. Int J Gynaecol Obstet. 2013;122(1):57–61.PubMedGoogle Scholar
  335. 335.
    Raut CP, Nucci MR, Wang Q, et al. Predictive value of FIGO and AJCC staging systems in patients with uterine leiomyosarcoma. Eur J Cancer. 2009;45(16):2818–24.PubMedGoogle Scholar
  336. 336.
    Garg G, Shah JP, Liu JR, et al. Validation of tumor size as staging variable in the revised International Federation of Gynecology and Obstetrics stage I leiomyosarcoma: a population-based study. Int J Gynecol Cancer. 2010;20(7):1201–6.PubMedGoogle Scholar
  337. 337.
    Giuntoli 2nd RL, Lessard-Anderson CR, Gerardi MA, et al. Comparison of current staging systems and a novel staging system for uterine leiomyosarcoma. Int J Gynecol Cancer. 2013;23(5):869–76.PubMedGoogle Scholar
  338. 338.
    Wang WL, Soslow R, Hensley M, et al. Histopathologic prognostic factors in stage I leiomyosarcoma of the uterus: a detailed analysis of 27 cases. Am J Surg Pathol. 2011;35(4):522–9.PubMedGoogle Scholar
  339. 339.
    King ME, Dickersin GR, Scully RE. Myxoid leiomyosarcoma of the uterus. A report of six cases. Am J Surg Pathol. 1982;6(7):589–98.PubMedGoogle Scholar
  340. 340.
    Kurman RJ, Norris HJ. Mesenchymal tumors of the uterus. VI. Epithelioid smooth muscle tumors including leiomyoblastoma and clear-cell leiomyoma: a clinical and pathologic analysis of 26 cases. Cancer. 1976;37(4):1853–65.PubMedGoogle Scholar
  341. 341.
    Prayson RA, Goldblum JR, Hart WR. Epithelioid smooth-muscle tumors of the uterus: a clinicopathologic study of 18 patients. Am J Surg Pathol. 1997;21(4):383–91.PubMedGoogle Scholar
  342. 342.
    Burch DM, Tavassoli FA. Myxoid leiomyosarcoma of the uterus. Histopathology. 2011;59(6):1144–55.PubMedGoogle Scholar
  343. 343.
    Toledo G, Oliva E. Smooth muscle tumors of the uterus: a practical approach. Arch Pathol Lab Med. 2008;132(4):595–605.PubMedGoogle Scholar
  344. 344.
    Raspollini MR, Amunni G, Villanucci A, et al. Estrogen and progesterone receptors expression in uterine malignant smooth muscle tumors: correlation with clinical outcome. J Chemother. 2003;15(6):596–602.PubMedGoogle Scholar
  345. 345.
    Bodner K, Bodner-Adler B, Kimberger O, Czerwenka K, Leodolter S, Mayerhofer K. Estrogen and progesterone receptor expression in patients with uterine leiomyosarcoma and correlation with different clinicopathological parameters. Anticancer Res. 2003;23(1B):729–32.PubMedGoogle Scholar
  346. 346.
    Goff BA, Rice LW, Fleischhacker D, et al. Uterine leiomyosarcoma and endometrial stromal sarcoma: lymph node metastases and sites of recurrence. Gynecol Oncol. 1993;50(1):105–9.PubMedGoogle Scholar
  347. 347.
    Leitao MM, Sonoda Y, Brennan MF, Barakat RR, Chi DS. Incidence of lymph node and ovarian metastases in leiomyosarcoma of the uterus. Gynecol Oncol. 2003;91(1):209–12.PubMedGoogle Scholar
  348. 348.
    Lennart K, Lennart B, Ulf S, Bernard T. Flow cytometric analysis of uterine sarcomas. Gynecol Oncol. 1994;55(3 Pt 1):339–42.PubMedGoogle Scholar
  349. 349.
    Liu FS, Kohler MF, Marks JR, Bast Jr RC, Boyd J, Berchuck A. Mutation and overexpression of the p53 tumor suppressor gene frequently occurs in uterine and ovarian sarcomas. Obstet Gynecol. 1994;83(1):118–24.PubMedGoogle Scholar
  350. 350.
    Raspollini MR, Paglierani M, Taddei GL, Villanucci A, Amunni G, Taddei A. The protooncogene c-KIT is expressed in leiomyosarcomas of the uterus. Gynecol Oncol. 2004;93(3):718.PubMedGoogle Scholar
  351. 351.
    Raspollini MR, Pinzani P, Simi L, et al. Uterine leiomyosarcomas express KIT protein but lack mutation(s) in exon 9 of c-KIT. Gynecol Oncol. 2005;98(2):334–5.PubMedGoogle Scholar
  352. 352.
    Rushing RS, Shajahan S, Chendil D, et al. Uterine sarcomas express KIT protein but lack mutation(s) in exon 11 or 17 of c-KIT. Gynecol Oncol. 2003;91(1):9–14.PubMedGoogle Scholar
  353. 353.
    Wang L, Felix JC, Lee JL, et al. The proto-oncogene c-kit is expressed in leiomyosarcomas of the uterus. Gynecol Oncol. 2003;90(2):402–6.PubMedGoogle Scholar
  354. 354.
    Winter 3rd WE, Seidman JD, Krivak TC, et al. Clinicopathological analysis of c-kit expression in carcinosarcomas and leiomyosarcomas of the uterine corpus. Gynecol Oncol. 2003;91(1):3–8.PubMedGoogle Scholar
  355. 355.
    Einstein MH, Barakat RR, Chi DS, et al. Management of uterine malignancy found incidentally after supracervical hysterectomy or uterine morcellation for presumed benign disease. Int J Gynecol Cancer. 2008;18(5):1065–70.PubMedGoogle Scholar
  356. 356.
    George S, Barysauskas C, Serrano C, et al. Retrospective cohort study evaluating the impact of intraperitoneal morcellation on outcomes of localized uterine leiomyosarcoma. Cancer. 2014;120(20):3154–8.PubMedGoogle Scholar
  357. 357.
    Larson B, Silfversward C, Nilsson B, Pettersson F. Endometrial stromal sarcoma of the uterus. A clinical and histopathological study. The Radiumhemmet series 1936-1981. Eur J Obstet Gynecol Reprod Biol. 1990;35(2-3):239–49.PubMedGoogle Scholar
  358. 358.
    Norris HJ, Taylor HB. Mesenchymal tumors of the uterus. I. A clinical and pathological study of 53 endometrial stromal tumors. Cancer. 1966;19(6):755–66.PubMedGoogle Scholar
  359. 359.
    Chang KL, Crabtree GS, Lim-Tan SK, Kempson RL, Hendrickson MR. Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol. 1990;14(5):415–38.PubMedGoogle Scholar
  360. 360.
    Feng W, Malpica A, Robboy SJ, et al. Prognostic value of the diagnostic criteria distinguishing endometrial stromal sarcoma, low grade from undifferentiated endometrial sarcoma, 2 entities within the invasive endometrial stromal neoplasia family. Int J Gynecol Pathol. 2013;32(3):299–306.PubMedGoogle Scholar
  361. 361.
    Chew I, Oliva E. Endometrial stromal sarcomas: a review of potential prognostic factors. Adv Anat Pathol. 2010;17(2):113–21.PubMedGoogle Scholar
  362. 362.
    De Fusco PA, Gaffey TA, Malkasian Jr GD, Long HJ, Cha SS. Endometrial stromal sarcoma: review of Mayo Clinic experience, 1945-1980. Gynecol Oncol. 1989;35(1):8–14.PubMedGoogle Scholar
  363. 363.
    Lee CH, Ali RH, Rouzbahman M, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36(10):1562–70.PubMedPubMedCentralGoogle Scholar
  364. 364.
    August CZ, Bauer KD, Lurain J, Murad T. Neoplasms of endometrial stroma: histopathologic and flow cytometric analysis with clinical correlation. Hum Pathol. 1989;20(3):232–7.PubMedGoogle Scholar
  365. 365.
    el-Naggar AK, Abdul-Karim FW, Silva EG, McLemore D, Garnsey L. Uterine stromal neoplasms: a clinicopathologic and DNA flow cytometric correlation. Hum Pathol. 1991;22(9):897–903.PubMedGoogle Scholar
  366. 366.
    Nola M, Babic D, Ilic J, et al. Prognostic parameters for survival of patients with malignant mesenchymal tumors of the uterus. Cancer. 1996;78(12):2543–50.PubMedGoogle Scholar
  367. 367.
    Balleine RL, Earls PJ, Webster LR, et al. Expression of progesterone receptor A and B isoforms in low-grade endometrial stromal sarcoma. Int J Gynecol Pathol. 2004;23(2):138–44.PubMedGoogle Scholar
  368. 368.
    Leunen M, Breugelmans M, De Sutter P, Bourgain C, Amy JJ. Low-grade endometrial stromal sarcoma treated with the aromatase inhibitor letrozole. Gynecol Oncol. 2004;95(3):769–71.PubMedGoogle Scholar
  369. 369.
    Maluf FC, Sabbatini P, Schwartz L, Xia J, Aghajanian C. Endometrial stromal sarcoma: objective response to letrozole. Gynecol Oncol. 2001;82(2):384–8.PubMedGoogle Scholar
  370. 370.
    Spano JP, Soria JC, Kambouchner M, et al. Long-term survival of patients given hormonal therapy for metastatic endometrial stromal sarcoma. Med Oncol. 2003;20(1):87–93.PubMedGoogle Scholar
  371. 371.
    Gadducci A, Sartori E, Landoni F, et al. Endometrial stromal sarcoma: analysis of treatment failures and survival. Gynecol Oncol. 1996;63(2):247–53.PubMedGoogle Scholar
  372. 372.
    Arend R, Bagaria M, Lewin SN, et al. Long-term outcome and natural history of uterine adenosarcomas. Gynecol Oncol. 2010;119(2):305–8.PubMedGoogle Scholar
  373. 373.
    Clement PB, Scully RE. Mullerian adenosarcoma of the uterus: a clinicopathologic analysis of 100 cases with a review of the literature. Hum Pathol. 1990;21(4):363–81.PubMedGoogle Scholar
  374. 374.
    Bernard B, Clarke BA, Malowany JI, et al. Uterine adenosarcomas: a dual-institution update on staging, prognosis and survival. Gynecol Oncol. 2013;131(3):634–9.PubMedGoogle Scholar
  375. 375.
    Clement PB, Scully RE. Mullerian adenofibroma of the uterus with invasion of myometrium and pelvic veins. Int J Gynecol Pathol. 1990;9(4):363–71.PubMedGoogle Scholar
  376. 376.
    Kaku T, Silverberg SG, Major FJ, Miller A, Fetter B, Brady MF. Adenosarcoma of the uterus: a Gynecologic Oncology Group clinicopathologic study of 31 cases. Int J Gynecol Pathol. 1992;11(2):75–88.PubMedGoogle Scholar
  377. 377.
    Zaloudek CJ, Norris HJ. Adenofibroma and adenosarcoma of the uterus: a clinicopathologic study of 35 cases. Cancer. 1981;48(2):354–66.PubMedGoogle Scholar
  378. 378.
    Krivak TC, Seidman JD, McBroom JW, MacKoul PJ, Aye LM, Rose GS. Uterine adenosarcoma with sarcomatous overgrowth versus uterine carcinosarcoma: comparison of treatment and survival. Gynecol Oncol. 2001;83(1):89–94.PubMedGoogle Scholar
  379. 379.
    Blom R, Guerrieri C. Adenosarcoma of the uterus: a clinicopathologic, DNA flow cytometric, p53 and mdm-2 analysis of 11 cases. Int J Gynecol Cancer. 1999;9(1):37–43.PubMedGoogle Scholar
  380. 380.
    Chuang JT, Van Velden DJ, Graham JB. Carcinosarcoma and mixed mesodermal tumor of the uterine corpus. Review of 49 cases. Obstet Gynecol. 1970;35(5):769–80.PubMedGoogle Scholar
  381. 381.
    Dinh TV, Slavin RE, Bhagavan BS, Hannigan EV, Tiamson EM, Yandell RB. Mixed mullerian tumors of the uterus: a clinicopathologic study. Obstet Gynecol. 1989;74(3 Pt 1):388–92.PubMedGoogle Scholar
  382. 382.
    DiSaia PJ, Castro JR, Rutledge FN. Mixed mesodermal sarcoma of the uterus. Am J Roentgenol Radium Therapy, Nucl Med. 1973;117(3):632–6.Google Scholar
  383. 383.
    Amant F, Cadron I, Fuso L, et al. Endometrial carcinosarcomas have a different prognosis and pattern of spread compared to high-risk epithelial endometrial cancer. Gynecol Oncol. 2005;98(2):274–80.PubMedGoogle Scholar
  384. 384.
    Vaidya AP, Horowitz NS, Oliva E, Halpern EF, Duska LR. Uterine malignant mixed mullerian tumors should not be included in studies of endometrial carcinoma. Gynecol Oncol. 2006;103(2):684–7.PubMedGoogle Scholar
  385. 385.
    Arrastia CD, Fruchter RG, Clark M, et al. Uterine carcinosarcomas: incidence and trends in management and survival. Gynecol Oncol. 1997;65(1):158–63.PubMedGoogle Scholar
  386. 386.
    Gerszten K, Faul C, Kounelis S, Huang Q, Kelley J, Jones MW. The impact of adjuvant radiotherapy on carcinosarcoma of the uterus. Gynecol Oncol. 1998;68(1):8–13.PubMedGoogle Scholar
  387. 387.
    Inthasorn P, Carter J, Valmadre S, Beale P, Russell P, Dalrymple C. Analysis of clinicopathologic factors in malignant mixed Mullerian tumors of the uterine corpus. Int J Gynecol Cancer. 2002;12(4):348–53.PubMedGoogle Scholar
  388. 388.
    Iwasa Y, Haga H, Konishi I, et al. Prognostic factors in uterine carcinosarcoma: a clinicopathologic study of 25 patients. Cancer. 1998;82(3):512–9.PubMedGoogle Scholar
  389. 389.
    Larson B, Silfversward C, Nilsson B, Pettersson F. Mixed mullerian tumours of the uterus—prognostic factors: a clinical and histopathologic study of 147 cases. Radiother Oncol. 1990;17(2):123–32.PubMedGoogle Scholar
  390. 390.
    Nordal RR, Kristensen GB, Stenwig AE, Nesland JM, Pettersen EO, Trope CG. An evaluation of prognostic factors in uterine carcinosarcoma. Gynecol Oncol. 1997;67(3):316–21.PubMedGoogle Scholar
  391. 391.
    Sartori E, Bazzurini L, Gadducci A, et al. Carcinosarcoma of the uterus: a clinicopathological multicenter CTF study. Gynecol Oncol. 1997;67(1):70–5.PubMedGoogle Scholar
  392. 392.
    Yamada SD, Burger RA, Brewster WR, Anton D, Kohler MF, Monk BJ. Pathologic variables and adjuvant therapy as predictors of recurrence and survival for patients with surgically evaluated carcinosarcoma of the uterus. Cancer. 2000;88(12):2782–6.PubMedGoogle Scholar
  393. 393.
    Silverberg SG, Major FJ, Blessing JA, et al. Carcinosarcoma (malignant mixed mesodermal tumor) of the uterus. A Gynecologic Oncology Group pathologic study of 203 cases. Int J Gynecol Pathol. 1990;9(1):1–19.PubMedGoogle Scholar
  394. 394.
    Barwick KW, LiVolsi VA. Malignant mixed mullerian tumors of the uterus. A clinicopathologic assessment of 34 cases. Am J Surg Pathol. 1979;3(2):125–35.PubMedGoogle Scholar
  395. 395.
    Ferguson SE, Tornos C, Hummer A, Barakat RR, Soslow RA. Prognostic features of surgical stage I uterine carcinosarcoma. Am J Surg Pathol. 2007;31(11):1653–61.PubMedGoogle Scholar
  396. 396.
    Kanbour AI, Buchsbaum HJ, Hall A. Peritoneal cytology in malignant mixed mullerian tumors of the uterus. Gynecol Oncol. 1989;33(1):91–5.PubMedGoogle Scholar
  397. 397.
    Lotocki R, Rosenshein NB, Grumbine F, Dillon M, Parmley T, Woodruff JD. Mixed Mullerian tumors of the uterus: clinical and pathologic correlations. Int J Gynaecol Obstet. 1982;20(3):237–43.PubMedGoogle Scholar
  398. 398.
    Blom R, Guerrieri C, Stal O, Malmstrom H, Sullivan S, Simonsen E. Malignant mixed Mullerian tumors of the uterus: a clinicopathologic, DNA flow cytometric, p53, and mdm-2 analysis of 44 cases. Gynecol Oncol. 1998;68(1):18–24.PubMedGoogle Scholar
  399. 399.
    Growdon WB, Roussel BN, Scialabba VL, et al. Tissue-specific signatures of activating PIK3CA and RAS mutations in carcinosarcomas of gynecologic origin. Gynecol Oncol. 2011;121(1):212–7.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PathologyHealth Science CenterWinnipegCanada
  2. 2.Department of PathologyMassachusetts General HospitalBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA

Personalised recommendations