Skip to main content

Sex Determination in Cucumis

  • Chapter
  • First Online:
Genetics and Genomics of Cucurbitaceae

Abstract

The Cucurbitaceae family is widely recognized for their highly diverse sexual systems. Due to this variability and the agricultural importance of some of its members, cucurbits have been used as a plant model for understanding sex determination in the kingdom. Several studies in important members of this family such as melon and cucumber, have supplemented plant biologists with meaningful findings regarding the main factors influencing flower sexuality. Sex determination and the evolution of sexual systems comprise different factors, ranging from genetic components involved in ethylene biosynthesis to transcription regulators and epigenetic processes.

In this chapter, we present an integrative explanation of the mechanisms governing sex determination in different members of the Cucurbitaceae family. For this purpose, several studies on the field will be integrated in order to provide the main fundaments of flower development and sexual systems in cucurbits. Starting with the basics of floral ontogenesis, this chapter will discuss the genetic models regulating sex determination and the evidenced factors influencing flower sexuality. At last, we mention the nebulous aspects of the sexual systems present in cucurbits and the importance of considering them for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angenent GC, Colombo L. Molecular control of ovule development. Trends Plant Sci. 1996;1:228–32.

    Article  Google Scholar 

  • Appelhagen I, Huep G, Lu GH, Strompen G, Weisshaar B, Sagasser M. Weird fingers: functional analysis of WIP domain proteins. FEBS Lett. 2010;584:3116–22.

    Article  CAS  PubMed  Google Scholar 

  • Bai SL, Peng YB, Cui JX, Gu HT, Xu LY, Li YQ, Xu ZH, Bai SN. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta. 2004;220:230–40.

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH. Evolution of sex: the evolution of plant sexual diversity. Nat Rev Genet. 2002;3:274–84.

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One. 2009;4:e6144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boualem A, Fleurier S, Troadec C, Audigier P, Kumar APK, Chatterjee M, Alsadon AA, Sadder MT, Wahb-Allah MA, Al-Doss AA, Bendahmane A. Development of a Cucumis sativus TILLinG platform for forward and reverse genetics. PLoS One. 2014;9:5.

    Article  Google Scholar 

  • Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I, Dogimont C, Perl-Treves R, Bendahmane A. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 2015;350:688–91.

    Article  CAS  PubMed  Google Scholar 

  • Boualem A, Lemhemdi A, Sari MA, Pignoly S, Troadec C, Abou Choucha F, Solmaz I, Sari N, Dogimont D, and Bendahmane A. The andromonoecious sex determination gene predates the separation of Cucumis and Citrullus genera. PLoS One. 2016. 11:e0155444.

    Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis. Plant Cell. 1989;1:37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM. The ABC model of flower development: then and now. Development. 2012;139:4095–8.

    Article  CAS  PubMed  Google Scholar 

  • Brockdorff N. Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Development. 2011;138:5057–65.

    Article  CAS  PubMed  Google Scholar 

  • Byers RE, Baker LR, Sell HM, Herner RC, Dilley DR. Ethylene: a natural regulator of sex expression of Cucumis melo L. Proc Natl Acad Sci U S A. 1972;69:717–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353:31–7.

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Calderon-Urrea A. Sex determination in flowering plants. Plant Cell. 1993;5:1241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Visser JAGM, Elena SF. The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet. 2007;8:139–49.

    Article  PubMed  Google Scholar 

  • Frankel R, Galun E. Pollination mechanisms, reproduction, and plant breeding. Berlin/New York: Springer; 1977.

    Book  Google Scholar 

  • Fraser JA, Heitman J. Chromosomal sex-determining regions in animals, plants and fungi. Curr Opin Genet Dev. 2005;15:645–51.

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Sun B, Looi LS, Xu Y, Gan ES, Huang J, Ito T. Co-ordination of flower development through epigenetic regulation in two model species: rice and Arabidopsis. Plant Cell Physiol. 2015;56:830–42.

    Article  CAS  PubMed  Google Scholar 

  • Ji G, Zhang J, Gong G, Shi J, Zhang H, Ren Y, Guo S, Gao J, Shen H, and Xu Y. Inheritance of sex forms in watermelon (Citrullus lanatus). Sci. Hortic. 2015;193:367–73.

    Google Scholar 

  • Manzano S, Aguado E, Martínez C, Megías Z, García A, Jamilena M. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus). PLoS One. 2016;11:e0154362.

    Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–8.

    Article  CAS  PubMed  Google Scholar 

  • Martínez C, Manzano S, Megías Z, Barrera A, Boualem A, Garrido D, Bendahmane, A, and Jamilena M. Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta. 2014;239:1201–15.

    Google Scholar 

  • Ming R, Bendahmane A, Renner SS. Sex chromosomes in land plants. Annu Rev Plant Biol. 2011;62:485–514.

    Article  CAS  PubMed  Google Scholar 

  • Otto SP, Lenormand T. Resolving the paradox of sex and recombination. Nat Rev Genet. 2002;3:252–61.

    Article  CAS  PubMed  Google Scholar 

  • Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013;242:360–70.

    Article  CAS  PubMed  Google Scholar 

  • Poole CF, Grimball PC. Inheritance of new sex forms in Cucumis melo L. J Hered. 1939;30:21–5.

    Article  Google Scholar 

  • Theissen G, Saedler H. Plant biology: floral quartets. Nature. 2001;409:469–71.

    Article  CAS  PubMed  Google Scholar 

  • Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14:131–52.

    Google Scholar 

  • Werren JH, Beukeboom LW. Sex determination, sex ratios, and genetic conflict. Annu Rev Ecol Syst. 1998;29:233–61.

    Article  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H. Hormonal regulation of sex expression in plants. In: Litwack G, editor. Plant hormones, Book series: vitamins and hormones, vol. 72; 2005. p. 79–110.

    Chapter  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990;346:35–9.

    Article  CAS  PubMed  Google Scholar 

  • Yin T, Quinn JA. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot. 1995;82:1537–46.

    Article  CAS  Google Scholar 

  • Zarsky V, Tupy J. A missed anniversary: 300 years after Rudolf Jacob Camerarius’ “De sexu plantarum epistola”. Sex Plant Reprod. 1995;8:375–6.

    Article  Google Scholar 

  • Zhang J, Boualem A, Bendahmane A, Ming R. Genomics of sex determination. Curr Opin Plant Biol. 2014;18:110–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhafid Bendahmane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodriguez-Granados, N.Y. et al. (2017). Sex Determination in Cucumis. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. https://doi.org/10.1007/7397_2016_32

Download citation

Publish with us

Policies and ethics