Skip to main content

The Evolution of Angiosperm Trees: From Palaeobotany to Genomics

  • Chapter
  • First Online:
Comparative and Evolutionary Genomics of Angiosperm Trees

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 21))

Abstract

Angiosperm trees now rival the largest conifers in height and many species reach over 80 m high. The large tree life form, with extensive secondary xylem, originated with the progymnosperms and gymnosperms in the Devonian and Carboniferous. However evidence suggests that the ancestor of extant angiosperms was not a tree but either a herb or understory shrub. Angiosperm fossil woods are rare in the early Cretaceous but become common in the mid-Cretaceous. The “reinvention” of wood in the Cretaceous produced a novel xylary morphospace that has since been extensively explored by subsequent evolution. Today, large timber trees are absent in the early diverging lineages of the angiosperms, and conventional wood has been lost in the monocots. There are a few timber trees in the magnoliid clade. Most timber trees are in the rosid clade, particularly the fabids (e.g. Fabaceae) but also in the Malvids (e.g. Meliaceae). Timber trees are less common in the strongly herbaceous asterid clade but some important timbers are also found in this lineage such as teak, Tectona grandis (Lamiaceae). Genomic resources for angiosperm trees are developing rapidly and this, coupled with the huge variation in woody habit, make angiosperm trees a highly promising comparative system for understanding wood evolution at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V, Ohlrogge J, Saie IJ, Suliman-Elmeer KM, Bennetzen JL, Kruegger RR, Malek JA. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol. 2011;29:521–U584.

    Google Scholar 

  • Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, Yu X, Liu J, Pan L, Zhang T, Yin Y, Xin C, Wu H, Zhang G, Abdullah MMB, Huang D, Fang Y, Alnakhli YO, Jia S, Yin A, Alhuzimi EM, Alsaihati BA, Al-Owayyed SA, Zhao D, Zhang S, Al-Otaibi NA, Sun G, Majrashi MA, Li F, Tala J, Wang Q, Yun N, Alnassar A, Wang L, Yang M, Al-Jelaify RF, Liu K, Gao S, Chen K, Alkhaldi SR, Liu G, Zhang M, Guo H, Yu J. Genome sequence of the date palm (Phoenix dactylifera). Nat Commun. 2013;4:2274.

    Google Scholar 

  • Albert VA, Barbazuk WB, dePamphilis CW, Der JP, Leebens-Mack J, Ma H, Palmer JD, Rounsley S, Sankoff D, Schuster SC, Soltis DE, Soltis PS, Wessler SR, Wing RA, Albert VA, Ammiraju JSS, Barbazuk WB, Chamala S, Chanderbali AS, dePamphilis CW, Der JP, Determann R, Leebens-Mack J, Ma H, Ralph P, Rounsley S, Schuster SC, Soltis DE, Soltis PS, Talag J, Tomsho L, Walts B, Wanke S, Wing RA, Albert VA, Barbazuk WB, Chamala S, Chanderbali AS, Chang T-H, Determann R, Lan T, Soltis DE, Soltis PS, Arikit S, Axtell MJ, Ayyampalayam S, Barbazuk WB, Burnette III JM, Chamala S, De Paoli E, dePamphilis CW, Der JP, Estill JC, Farrell NP, Harkess A, Jiao Y, Leebens-Mack J, Liu K, Mei W, Meyers BC, Shahid S, Wafula E, Walts B, Wessler SR, Zhai J, Zhang X, Albert VA, Carretero-Paulet L, dePamphilis CW, Der JP, Jiao Y, Leebens-Mack J, Lyons E, Sankoff D, Tang H, Wafula E, Zheng C, Albert VA, Altman NS, Barbazuk WB, Carretero-Paulet L, dePamphilis CW, Der JP, Estill JC, Jiao Y, Leebens-Mack J, Liu K, Mei W, Wafula E, Altman NS, Arikit S, Axtell MJ, Chamala S, Chanderbali AS, Chen F, Chen J-Q, Chiang V, De Paoli E, dePamphilis CW, Der JP, Determann R, Fogliani B, Guo C, Harholt J, Harkess A, Job C, Job D, Kim S, Kong H, Leebens-Mack J, Li G, Li L, Liu J, Ma H, Meyers BC, Park J, Qi X, Rajjou L, Burtet-Sarramegna V, Sederoff R, Shahid S, Soltis DE, Soltis PS, Sun Y-H, Ulvskov P, Villegente M, Xue J-Y, Yeh T-F, Yu X, Zhai J, Acosta JJ, Albert VA, Barbazuk WB, Bruenn RA, Chamala S, de Kochko A, dePamphilis CW, Der JP, Herrera-Estrella LR, Ibarra-Laclette E, Kirst M, Leebens-Mack J, Pissis SP, Poncet V, Schuster SC, Soltis DE, Soltis PS, Tomsho L, Amborella Genome P. The Amborella Genome and the Evolution of Flowering Plants. Science. 2013;342:1467.

    Google Scholar 

  • Atala C, Alfaro JF. Vascular architecture of the dendroid antipodean moss Dendroligotrichum dendroides (Brid. ex Hedw.) Broth. (Polytrichaceae). J Bryology. 2012;34:277–80.

    Google Scholar 

  • Angiosperm Phylogeny Group, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20.

    Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LGG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S-i, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Mauricio Riano-Pachon D, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sorensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng J-K, Willats WWGT, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loque D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 2011;332:960–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck CB. Connection between Archaeopteris and Callixylon. Science. 1960;131:1524–5.

    Article  CAS  PubMed  Google Scholar 

  • Beck CB, Coy K, Schmid R. Observations on the fine-structure of Callixylon wood. Am J Bot. 1982;69:54–76.

    Article  Google Scholar 

  • Boyce CK, Cody GD, Fogel ML, Hazen RM, Alexander CMO, Knoll AH. Chemical evidence for cell wall lignification and the evolution of tracheids in early Devonian plants. Int J Plant Sci. 2003;164:691–702.

    Article  CAS  Google Scholar 

  • Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang JQY, Zmarzty S, Angiosperm Phylogeny G. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009;161:105–21.

    Article  Google Scholar 

  • Carocha V, Soler M, Hefer C, Cassan-Wang H, Fevereiro P, Myburg AA, Paiva JAP, Grima-Pettenati J. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol. 2015;206:1297–313.

    Article  CAS  PubMed  Google Scholar 

  • Champagne CEM, Ashton NW. Ancestry of KNOX genes revealed by bryophyte (Physcomitrella patens) homologs. New Phytol. 2001;150:23–36.

    Google Scholar 

  • Dannenhoffer JM, Bonamo PM. The wood of Rellimia from the middle Devonian of New York. Int J Plant Sci. 2003;164:429–41.

    Google Scholar 

  • Darwin F, Seward AC. More letters of Charles Darwin. A record of his work in a series of Hitherto unpublished letters. London: John Murray; 1903.

    Book  Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. Explosive radiation of malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. Am Nat. 2005;165:E36–65.

    Article  PubMed  Google Scholar 

  • DeWoody J, Rowe CA, Hipkins VD, Mock KE. “Pando” lives: molecular genetic evidence of a giant aspen clone in central Utah. Wes N Am Nat. 2008;68:493–7.

    Article  Google Scholar 

  • DiMichele WA, Bateman RM. The rhizomorphic lycopsids: a case-study in paleobotanical classification. Syst Bot. 1996;21:535–52.

    Article  Google Scholar 

  • Doyle JA. Recognising angiosperm clades in the Early Cretaceous fossil record. Hist Biol. 2015;27:414–29.

    Article  Google Scholar 

  • Edwards D, Feehan J. Record of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature. 1980;287(5777):41–2.

    Article  Google Scholar 

  • Edwards D, Axe L, Duckett JG. Diversity in conducting cells in early land plants and comparisons with extant bryophytes. Bot J Linn Soc. 2003;141:297–347.

    Article  Google Scholar 

  • Feild TS, Arens NC. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytol. 2005;166:383–408.

    Article  PubMed  Google Scholar 

  • Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology. 2004;30:82–107.

    Article  Google Scholar 

  • Feild TS, Chatelet DS, Balun L, Schilling EE, Evans R. The evolution of angiosperm lianescence without vessels - climbing mode and wood structure-function in Tasmannia cordata (Winteraceae). New Phytol. 2012;193:229–40.

    Google Scholar 

  • Floyd SK, Bowman JL. The ancestral developmental tool kit of land plants. Int J Plant Sci. 2007;168:1–35.

    Article  CAS  Google Scholar 

  • Groover A, Robischon M. Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol. 2006;9:55–8.

    Article  CAS  PubMed  Google Scholar 

  • Groover AT. What genes make a tree a tree? Trends Plant Sci. 2005;10:210–4.

    Article  CAS  PubMed  Google Scholar 

  • Hochuli PA, Feist-Burkhardt S. Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Front Plant Sci. 2013;4:344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwamoto A, Izumidate R, De Craene LPR. Floral anatomy and vegetative development in Ceratophyllum demersum: a morphological picture of an "unsolved" plant. Am J Bot. 2015;102:1578–89.

    Article  PubMed  Google Scholar 

  • Jud NA. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous. Proc R Soc B Biol Sci. 2015;282:81–8.

    Article  Google Scholar 

  • Karrfalt EE, Hunter DM. Notes on the natural history of Stylites gemmifera. Am Fern J. 1980;70:69–72.

    Article  Google Scholar 

  • Kenrick P, Crane PR. Water-conducting cells in early fossil land plants – implications for the early evolution of tracheophytes. Bot Gaz. 1991;152:335–56.

    Article  Google Scholar 

  • Larsen E, Rydin C. Disentangling the phylogeny of Isoetes (Isoetales), using nuclear and plastid data. Int J Plant Sci. 2016;177:157–74.

    Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS. Major transitions in the evolution of early land plants: a bryological perspective. Ann Bot. 2012;109:851–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z-J, Wang X. A perfect flower from the Jurassic of China. Hist Biol. 2016;28:707–19.

    Article  PubMed  Google Scholar 

  • Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 2015;207:437–53.

    Article  PubMed  Google Scholar 

  • Magallon S, Hilu KW, Quandt D. Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot. 2013;100:556–73.

    Article  CAS  PubMed  Google Scholar 

  • Mark J, Newton AC, Oldfield S, Rivers M. The international timber trade: a working list of commercial timber tree species. Richmond: Botanic Gardens Conservation International; 2014.

    Google Scholar 

  • Maslova NP. Systematics of fossil platanoids and hamamelids. Paleontological J. 2010;44:1379–466.

    Article  Google Scholar 

  • Meyer-Berthaud B, Scheckler SE, Wendt J. Archaeopteris is the earliest known modern tree. Nature. 1999;398:700–1.

    Article  CAS  Google Scholar 

  • Ohashi-Ito K, Fukuda H. Transcriptional regulation of vascular cell fates. Curr Opin Plant Biol. 2010;13:670–6.

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Medina E, Falcon-Lang HJ. Cretaceous forest composition and productivity inferred from a global fossil wood database. Geology. 2012;40:219–22.

    Article  Google Scholar 

  • Phillips TL, Dimichele WA. Comparative ecology and life-history biology of arborescent lycopsids in late carboniferous swamps of Euramerica. Ann Mo Bot Gard. 1992;79:560–88.

    Article  Google Scholar 

  • Qian H, Zhang J. Using an updated time-calibrated family-level phylogeny of seed plants to test for non-random patterns of life forms across the phylogeny. J Syst Evol. 2014;52:423–30.

    Article  Google Scholar 

  • Roessler R, Feng Z, Noll R. The largest calamite and its growth architecture – Arthropitys bistriata from the Early Permian Petrified Forest of Chemnitz. Rev Palaeobot Palynol. 2012;185:64–78.

    Google Scholar 

  • Rossler R, Noll R. Sphenopsids of the Permian (I): the largest known anatomically preserved calamite, an exceptional find from the petrified forest of Chemnitz, Germany. Rev Palaeobot Palynol. 2006;140:145–62.

    Article  Google Scholar 

  • Sakakibara K, Nishiyama T, Deguchi H, Hasebe M. Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev. 2008;10:555–66.

    Google Scholar 

  • Savidge RA. Learning from the past – the origin of wood. For Chron. 2008;84:498–503.

    Article  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, et al. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell. 2004;16:2278–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silber MV, Meimberg H, Ebel J. Identification of a 4-coumarate:CoA ligase gene family in the moss, Physcomitrella patens. Phytochemistry. 2008;69:2449–56.

    Google Scholar 

  • Sillett SC, Van Pelt R, Kramer RD, Carroll AL, Koch GW. Biomass and growth potential of Eucalyptus regnans up to 100 m tall. For Ecol Manage. 2015;348:78–91.

    Google Scholar 

  • Singer SD, Ashton NW. Revelation of ancestral roles of KNOX genes by a functional analysis of Physcomitrella homologues. Plant Cell Rep. 2007;26:2039–54.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Ong-Abdullah M, Low E-TL, Manaf MAA, Rosli R, Nookiah R, Ooi LC-L, Ooi S-E, Chan K-L, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R. Oil palm genome sequence reveals divergence of interfertile species in Old and New Worlds. Nature. 2013;500:335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria A, Meyer-Berthaud B. Tree fern growth strategy in the Late Devonian cladoxylopsid species Pietzschia levis from the study of its stem and root system. Am J Bot. 2004;91:10–23.

    Article  PubMed  Google Scholar 

  • Souza C d A, Barbazuk B, Ralph SG, Bohlmann J, Hamberger B, Douglas CJ. Genome-wide analysis of a land plant-specific acyl : coenzymeA synthetase (ACS) gene family in Arabidopsis, poplar, rice and Physcomitrella. New Phytol. 2008;179:987–1003.

    Google Scholar 

  • Stein WE, Mannolini F, Hernick LV, Landing E, Berry CM. Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa. Nature. 2007;446:904–7.

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng SL, Nixon KC, Wang XF. Archaefructaceae, a new basal angiosperm family. Science. 2002;296:899–904.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson PB. The uniqueness of palms. Bot J Linn Soc. 2006;151:5–14.

    Article  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE. Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci U S A. 2009;106:3853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, Kubo M, Nakano Y, Sano R, Hiwatashi Y, Murata T, Kurata T, Yoneda A, Kato K, Hasebe M, Demura T. Contribution of NAC transcription factors to plant adaptation to land. Science. 2014;343:1505–8.

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Wang H. Molecular mechanisms for vascular development and secondary cell wall formation. Front Plant Sci. 2016;7(356):1–8.

    Google Scholar 

  • Zamski E, Trachtenberg S. Water-movement through hydroids of a moss gametophyte. Israel J Bot. 1976;25:168–73.

    Google Scholar 

Download references

Acknowledgements

We thank Drs. Wm. Stein, Richard Bateman and Paula Rudall for helpful discussion and advice. Work in the laboratory of QC is funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants Program (grant no. RGPIN-2014-05820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin C. B. Cronk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cronk, Q.C.B., Forest, F. (2017). The Evolution of Angiosperm Trees: From Palaeobotany to Genomics. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_31

Download citation

Publish with us

Policies and ethics