Skip to main content

Abstract

Abiotic stresses such as drought, are the main factors for forest declines globally. There is therefore an increasing interest in understanding the mechanisms underlying tree adaptations and survival to water deprivation. Angiosperm tree species demonstrate an amazing phenotypic plasticity. They sense and respond to adverse changing environmental conditions via a series of physiological, cellular, and molecular processes which are under a tight genetic control. In this book chapter, first we present some key morphological and anatomical features adopted by angiosperm tree species to survive drought. These traits are described at the roots, stem and shoots levels. Then, we provide insights into the dynamics of gene expression and components of regulatory networks associated with drought response, including comparisons among angiosperm tree species. Such comparative genomic approaches have the potential to provide a better understanding of the evolution and diversification process of drought response in angiosperm trees but also to the development of cultivars resilient to drought and other abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams MD. Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies. Tree Physiol. 1994;14:833–42.

    Article  PubMed  Google Scholar 

  • Alder NN, Sperry JS, Pockman WT. Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia. 1996;105:293–301.

    Article  CAS  PubMed  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitsberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010;259:660–84.

    Article  Google Scholar 

  • Almeida-Rodriguez AM, Cooke JE, Yeh F, Zwiazek JJ. Functional characterization of drought responsive aquaporins in Populus balsamifera and Populus simonii × balsamifera clones with different drought resistance strategies. Physiol Plant. 2010;140:321–33.

    Article  CAS  PubMed  Google Scholar 

  • Ameglio T, Cruiziat P, Beraud S. Alternance tension/pressure de la seve dans le xyleme chez le noyer pendant l’hiver: consequences sur la conductance hydraulique des rameaux. C R Acad Sci Paris Ser III. 1995;318:351–7.

    Google Scholar 

  • Ameglio T, Ewers FW, Cochard H, Martignac M, Vandame M, Bodet C, Cruiziat P. Winter stem pressures in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol. 2001;21:384–94.

    Article  Google Scholar 

  • Aranda I, Gil-Pelegrín E, Gascó A, Guevara MA, Cano JF, De Miguel M, Ramirez-Valiente JA, Peguero-Pina JJ, Perdiguero P, Soto A, Cervera MT, Collada C. Drought response in forest trees: from the species to the gene. In: Plant responses to drought stress. Berlin/Heidelberg: Springer; 2012. p. 293–333.

    Chapter  Google Scholar 

  • Arango‐Velez A, Zwiazek JJ, Thomas BR, Tyree MT. Stomatal factors and vulnerability of stem xylem to cavitation in poplars. Physiol Plant. 2011;143:154–65.

    Article  PubMed  CAS  Google Scholar 

  • Arend M, Fromm J. Seasonal change in the drought response of wood cell development in poplar. Tree Physiol. 2007;27:985–92.

    Article  PubMed  Google Scholar 

  • Arndt SK, Clifford SC, Wanek W, Jones HG, Popp M. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol. 2001;21:705–15.

    Article  CAS  PubMed  Google Scholar 

  • Aspelmeier S, Leuschner C. Genotypic variation in drought response of silver birch (Betula pendula Roth): leaf and root morphology and carbon partitioning. Trees. 2006;20:42–52.

    Article  Google Scholar 

  • Badel E, Ewers FW, Cochard H, Telewski FW. Acclimation of mechanical and hydraulic functions in trees: impact of the thigmomorphogenetic process. Front Plant Sci. 2015;6:266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey IW, Sinnott EW. The climatic distribution of certain types of angiosperm leaves. Am J Bot. 1916;3:24–39.

    Article  Google Scholar 

  • Barkoulas M, Galinha C, Grigg SP, Tsiantis M. From genes to shape: regulatory interactions in leaf development. Curr Opin Plant Biol. 2007;10:660–6.

    Article  CAS  PubMed  Google Scholar 

  • Battaglia M, Cherry ML, Deadle CL, Sands PJ, Hingston A. Prediction of leaf area index in eucalypt plantations: effect of water stress and temperature. Tree Physiol. 1998;18:521–8.

    Article  PubMed  Google Scholar 

  • Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML. Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biol. 2010;12:341–54.

    Article  CAS  PubMed  Google Scholar 

  • Birol I, Raymond A, Jackman SD, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackman CJ, Brodribb TJ, Jordan GJ. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. Plant Cell Environ. 2009;32:1584–95.

    Article  PubMed  Google Scholar 

  • Blum A. The mitigation of drought stress. 2009. www.plantstress.com.

  • Bogeat-Triboulot MB, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman JF, Polle A, Kangasjärvi J, Altman A. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 2007;143:876–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond BJ, Kavanagh KL. Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiol. 1999;19:503–10.

    Article  PubMed  Google Scholar 

  • Bongarten BC, Teskey RO. Dry weight partitioning and its relationship to productivity in loblolly pine seedlings from seven sources. For Sci. 1987;33:255–67.

    Google Scholar 

  • Bouche PS, Delzon S, Choat B, Badel E, Brodribb TJ, Burlett R, Cochard H, Charra K, Lavigne B, Li S, Mayr S, Morris H, Torres-Ruiz JM, Zuffereys V, Jansen S. Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X‐ray computed tomography. Plant Cell Environ. 2016;39:860–70.

    Article  CAS  PubMed  Google Scholar 

  • Braatne JH, Hinckley TM, Stettler RF. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoides and their F1 hybrids. Tree Physiol. 1992;11:325–39.

    Article  CAS  PubMed  Google Scholar 

  • Bray EA. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot. 2004;55:2331–41.

    Article  CAS  PubMed  Google Scholar 

  • Breda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci. 2006;63:625–44.

    Article  Google Scholar 

  • Brendel O, Le Thiec D, Scotti-Saintagne C, Bodénès C, Kremer A, Guehl JM. Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet Genomes. 2008;4:263–78.

    Article  Google Scholar 

  • Brodersen CR, Mc Elrone AJ, Choat B, Lee EF, Shackel KA, Matthews MA. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol. 2013;161:1820–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosché M, Vinocur B, Alatalo ER, Lamminmäki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Polle A. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol. 2005;6:R101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruce TJ, Matthesa MC, Napiera JA, Picketta JA. Stressful memories of plants: evidence and possible mechanisms. Plant Sci. 2007;173:603–8.

    Article  CAS  Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C. How tree roots respond to drought. Front Plant Sci. 2015;6:547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruschi P, Grossoni P, Bussotti F. Within-and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees. 2003;17:164–72.

    Google Scholar 

  • Cano FJ, López R, Warren CR. Implications of the mesophyll conductance to CO2 for photosynthesis and water‐use efficiency during long‐term water stress and recovery in two contrasting Eucalyptus species. Plant Cell Environ. 2014;37:2470–90.

    Article  CAS  PubMed  Google Scholar 

  • Caruso A, Chefdor F, Carpin S, Depierreux C, Delmotte FM, Kahlem G, Morabito D. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. J Plant Physiol. 2008;165:932–41.

    Article  CAS  PubMed  Google Scholar 

  • Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A. Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics. 2006;172:533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casson SA, Hetherington AM. Environmental regulation of stomatal development. Curr Opin Plant Biol. 2010;13:90–5.

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J, Sack L, Savage J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. 2007;27:611–20.

    Article  PubMed  Google Scholar 

  • Centritto M, Magnani F, Lee HS, Jarvis PG. Interactive effects of elevated CO2 and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations. New Phytol. 1999;141:141–53.

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol. 2003;30:239–64.

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Song Y, Zhang H, Zhang D. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Report. 2013;31:946–62.

    Article  CAS  Google Scholar 

  • Choat B, Ball M, Luly J, Holtum J. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiol. 2003;131:41–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J Exp Bot. 2004;55:1569–75.

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE. Global convergence in the vulnerability of forests to drought. Nature. 2012;491:752–5.

    CAS  PubMed  Google Scholar 

  • Choat B, Badel E, Burlett R, Delzon S, Cochard H, Jansen S. Non-invasive measurement of vulnerability to drought induced embolism by X-ray microtomography. Plant Physiol. 2016. doi:10.1104/pp.15.00732.

    PubMed Central  Google Scholar 

  • Christman MA, Sperry JS, Adler FR. Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer. New Phytol. 2009;182:664–74.

    Article  PubMed  Google Scholar 

  • Christman MA, Sperry JS, Smith DD. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol. 2012;193:713–20.

    Article  PubMed  Google Scholar 

  • Cochard H. Cavitation in trees. C R Phys. 2006;7:1018–26.

    Article  CAS  Google Scholar 

  • Cochard H, Delzon S. Hydraulic failure and repair are not routine in trees. Ann For Sci. 2013;70:659–61.

    Article  Google Scholar 

  • Cochard H, Breda N, Granier A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism. Ann Sci For. 1996;53:197–206.

    Article  Google Scholar 

  • Cochard H, Bodet C, Améglio T, Cruiziat P. Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts? Plant Physiol. 2000;124:1191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Delzon S, Badel E. X‐ray microtomography (micro‐CT): a reference technology for high‐resolution quantification of xylem embolism in trees. Plant Cell Environ. 2015;38:201–6.

    Article  CAS  PubMed  Google Scholar 

  • Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics. 2010;11:630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comas LH, Becker SR, Von Mark VC, Byrne PF, Dierig DA. Root traits contributing to plant productivity under drought. Front Plant Sci. 2013;4:442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrin E. Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees. 2004;18:83–92.

    Article  Google Scholar 

  • Cowan L, Farquhar G. Stomatal function in relation to leaf metabolism and environment. In: Jennings DH, editor. Integration of activity in the higher plant. Cambridge: Cambridge University Press; 1977. p. 471–505.

    Google Scholar 

  • Dancik BP, Barnes BV. Leaf variability in yellow birch (betula alleghaniensis) in relation to environment. Can J For Res. 1975;5:149–59.

    Article  Google Scholar 

  • Delzon S, Douthe C, Sala A, Cochard H. Mechanism of water‐stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary‐seeding. Plant Cell Environ. 2010;33:2101–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dengler N, Kang J. Vascular patterning and leaf shape. Curr Opin Plant Biol. 2001;4:50–6.

    Article  CAS  PubMed  Google Scholar 

  • Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia. 2004;141:7–16.

    Article  PubMed  Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D. Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia. 2006;23:121–32.

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature. 2007;447:80–2.

    Article  CAS  PubMed  Google Scholar 

  • Ewers FW, Ameglio T, Cochard H, Martignac M, Vandame M, Bodet C, Cruiziat P. Seasonal variation of xylem pressure in walnut trees: root and stem pressure. Tree Physiol. 2001;21:1123–32.

    Article  CAS  PubMed  Google Scholar 

  • Fichot R, Barigah TS, Chamaillard S, Le Thiec D, Laurans F, Cochard H, Brignolas F. Common trade‐offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids. Plant Cell Environ. 2010;33:1553–68.

    PubMed  Google Scholar 

  • Fichot R, Chamaillard S, Depardieu C, Le Thiec D, Cochard H, Barigah TS, Brignolas F. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoides × Populus nigra hybrids. J Exp Bot. 2011;62:2093–106.

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol. 2002;29:461–71.

    Article  Google Scholar 

  • Franks NR, Britton NF. The possible role of reaction-diffusion in leaf shape. Proc Biol Sci. 2000;267:1295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froux F, Ducrey M, Dreyer E, Huc R. Vulnerability to embolism differs in roots and shoots and among three Mediterranean conifers: consequences for stomatal regulation of water loss? Trees. 2005;19:137–44.

    Article  Google Scholar 

  • Gailing O, Langenfeld-Heyser RM, Polle A, Finkeldey R. Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments. Glob Change Biol. 2008;14:1934–46.

    Article  Google Scholar 

  • Garcia-Gonzalez I, Eckstein D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 2003;23:497–504.

    Article  Google Scholar 

  • Gentry AH. A comparison of some leaf characteristics of tropical dry forest and tropical wet forest in Costa Rica. Turrialba. 1969;19:419–28.

    Google Scholar 

  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.

    Article  CAS  PubMed  Google Scholar 

  • Gollan T, Turner NC, Schulze ED. The response of stomata and leaf gas exchange to vapor pressure deficits and soil water content in the sclerophyllous woody species Nerium oleander. Oecologia. 1985;65:356–62.

    Article  CAS  PubMed  Google Scholar 

  • Guehl JM, Picon C, Aussenac G, Gross P. Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiol. 1994;14:707–24.

    Article  PubMed  Google Scholar 

  • Hacke U, Sauter JJ. Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiol. 1996;111:413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schäfer KVR, Oren R. Influence of soil porosity on water use in Pinus taeda. Oecologia. 2000;124:495–505.

    Article  CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J. Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot. 2004;91:386–400.

    Article  PubMed  Google Scholar 

  • Hamanishi ET, Campbell MM. Genome-wide responses to drought in forest trees. Forestry. 2011. doi:10.1093/forestry/cpr012.

    Google Scholar 

  • Hamanishi ET, Raj S, Wilkins O, Thomas BR, Mansfield SD, Plant AL, Campbell MM. Intraspecific variation in the Populus balsamifera drought transcriptome. Plant Cell Environ. 2010;33:1742–55.

    Article  CAS  PubMed  Google Scholar 

  • Hamanishi ET, Thomas BR, Campbell MM. Drought induces alterations in the stomatal development program in Populus. J Exp Bot. 2012. doi:10.1093/jxb/ers177.

    PubMed  PubMed Central  Google Scholar 

  • Hargrave KR, Kolb KJ, Ewers FW, Davis SD. Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol. 1994;126:695–705.

    Article  Google Scholar 

  • Hinckley TM, Teskey RO, Duhme F, Richter H. Temperate hardwood forests. In: Water deficits and plant growth, vol. 6. New York: Academic press; 1981. p. 153–208.

    Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE. Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci. 2000;5:482–8.

    Article  CAS  PubMed  Google Scholar 

  • James SA, Bell DT. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae). Aust J Bot. 2001;49:259–69.

    Article  Google Scholar 

  • Jansen S, Choat B, Pletsers A. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot. 2009;96:409–19.

    Article  PubMed  Google Scholar 

  • Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, Trifilò P, Nardini A. Do quantitative vessel and pit characters account for ion‐mediated changes in the hydraulic conductance of angiosperm xylem? New Phytol. 2011;189:218–28.

    Article  PubMed  Google Scholar 

  • Jaquish LL, Ewers FW. Seasonal conductivity and embolism in the roots and stems of two clonal ring-porous trees, Sassafras albidum and Rhus typhina. Am J Bot. 2001;88:206–12.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci. 2012;195:48–53.

    Article  CAS  PubMed  Google Scholar 

  • Jones HG, Sutherland RA. Stomatal control of xylem embolism. Plant Cell Environ. 1991;14:607–12.

    Article  Google Scholar 

  • Kavanagh KL, Bond BJ, Aiken SN, Gartner BL, Knowe S. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol. 1999;19:31–7.

    Article  PubMed  Google Scholar 

  • Kessler S, Sinha N. Shaping up: the genetic control of leaf shape. Curr Opin Plant Biol. 2004;7:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Klein T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol. 2014;28:1313–20.

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG. Physiology of woody plants. 2nd ed. San Diego: Academic Press; 1997.

    Google Scholar 

  • Kozlowski TT, Pallardy SG. Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev. 2002;68:270–334.

    Article  Google Scholar 

  • Kuster TM, Arend M, Günthardt-Goerg M, Schulin R. Root growth of different oak provenances in two soils under drought stress and air warming conditions. Plant Soil. 2013;369:61–71.

    Article  CAS  Google Scholar 

  • Lake JA, Quick WP, Beerling DJ, Woodward FI. Plant development: signals from mature to new leaves. Nature. 2001;411:154.

    Article  CAS  PubMed  Google Scholar 

  • Laur J, Hacke UG. Transpirational demand affects aquaporin expression in poplar roots. J Exp Bot. 2013;64:2283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laur J, Hacke UG. Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol. 2014;203:388–400.

    Article  CAS  PubMed  Google Scholar 

  • Lauteri M, Scartazza A, Guido MC, Brugnoli E. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct Ecol. 1997;11:675–83.

    Article  Google Scholar 

  • Lauteri M, Pliura A, Monteverdi MC, Brugnoli E, Villani F, Eriksson G. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J Evol Biol. 2004;17:1286–96.

    Article  CAS  PubMed  Google Scholar 

  • Le Dantec V, Dufrêne E, Saugier B. Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. For Ecol Manage. 2000;134:71–81.

    Article  Google Scholar 

  • Lei YB, Yin CY, Li CY. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant. 2006;127:182–91.

    Article  CAS  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 2011;190:709–23.

    Article  PubMed  Google Scholar 

  • Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S. Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr Opin Plant Biol. 2013;16:1–6.

    Article  Google Scholar 

  • Leung J, Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Biol. 1998;49:199–222.

    Article  CAS  Google Scholar 

  • Li ZX, Zheng CX. Structural characteristics and ecoadaptability of heteromorphic leaves of Populus euphratica. For Stud China. 2005;7:11–5.

    Article  CAS  Google Scholar 

  • Lo Gullo MA, Salleo S, Piaceri EC, Rosso R. Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ. 1995;18:661–9.

    Article  Google Scholar 

  • Lundstrom T, Jonas T, Volkwein A. Analysing the mechanical performance and growth adaptation of Norway spruce using a non-linear finite-element model and experimental data. J Exp Bot. 2008;59:2513–28.

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology. 2004;85:2184–99.

    Article  Google Scholar 

  • Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB. Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant Cell Environ. 2006;29:571–83.

    Article  PubMed  Google Scholar 

  • Malamy JE. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 2005;28:67–77.

    Article  CAS  PubMed  Google Scholar 

  • Markesteijn L, Poorter L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought-and shade-tolerance. J Ecol. 2009;97:311–25.

    Article  Google Scholar 

  • Marshall JD, Waring RH. Conifers and broadleaf species: stomatal sensitivity differs in western Oregon. Can J For Res. 1984;14:905–8.

    Article  Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia. 2002;133:19–29.

    Article  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 2008;178:719–39.

    Article  PubMed  Google Scholar 

  • Meier IC, Leuschner C. Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiol. 2008;28:297–309.

    Article  PubMed  Google Scholar 

  • Meinzer FC, McCulloh KA. Xylem recovery from drought-induced embolism: where is the hydraulic point of no return? Tree Physiol. 2013;33:331–4.

    Article  PubMed  Google Scholar 

  • Miyazawa SI, Livingston NJ, Turpin DH. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa × P. deltoides). J Exp Bot. 2006;57:373–80.

    Article  CAS  PubMed  Google Scholar 

  • Moore JP, Vicré-Gibouin M, Farrant JM, Driouich A. Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant. 2008;134:237–45.

    Article  CAS  PubMed  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, et al. The genome of Eucalyptus grandis. Nature. 2014;510:356–62.

    CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S. Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees. 2000;15:14–24.

    Article  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S. Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci. 2011;180:604–11.

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15:1–13.

    Article  CAS  Google Scholar 

  • Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H. The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol. 2011;38:535–52.

    Article  Google Scholar 

  • Nystedt B, Street N, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.

    Article  CAS  PubMed  Google Scholar 

  • Orwig DA, Abrams MD. Variation in radial growth responses to drought among species, site, and canopy strata. Trees. 1997;11:474–84.

    Article  Google Scholar 

  • Pääkkönen E, Vahala J, Pohjola M, Holopainen T, Kärenlampi L. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ. 1998;21:671–84.

    Article  Google Scholar 

  • Pallardy SG. Closely related woody plants. In: Water deficits and plant growth, vol. 6. New York: Academic press; 1981. p. 511–48.

    Google Scholar 

  • Pallardy SG, Rhoads JL. Morphological adaptations to drought in seedlings of deciduous angiosperms. Can J For Res. 1993;23:1766–74.

    Article  Google Scholar 

  • Passioura JB. Drought and drought tolerance. Plant Growth Regul. 1996;20:79–83.

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol. 2011;14:290–5.

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Jiang H, Zhang S, Chen L, Li X, Korpelainen H, Li C. Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis. Tree Physiol. 2012;00:1–15.

    Google Scholar 

  • Polle A, Altman A, Jiang XN. Towards genetic engineering for drought tolerance in trees. In: Tree transgenesis: recent developments. Berlin: Springer-Verlag; 2006. p. 275–97.

    Chapter  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 2012;193:30–50.

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci. 2007;12:98–105.

    Article  CAS  PubMed  Google Scholar 

  • Potts BM, Jordan GJ. The spatial pattern and scale of variation in Eucalyptus globulus ssp. globulus: variation in seedling abnormalities and early growth. Aust J Bot. 1994;42:471–92.

    Article  Google Scholar 

  • Pucholt P, Sjödin P, Weih M, Rönnberg-Wästljung AC, Berlin S. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes. BMC Plant Biol. 2015;15:1.

    Article  CAS  Google Scholar 

  • Qiu Q, Ma T, Hu Q, Liu B, Wu Y, Zhou H, Wang Q, Wang J, Liu J. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol. 2011;00:1–10.

    Google Scholar 

  • Raj S, Bräutigam K, Hamanishi ET, Wilkins O, Thomas BR, Schroeder W, Mansfield SD, Plant AL, Campbell MM. Clone history shapes Populus drought responses. Proc Natl Acad Sci U S A. 2011;108:12521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I. Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Mol Ecol. 2009;18:3803–15.

    Article  CAS  PubMed  Google Scholar 

  • Rönnberg-Wästljung AC, Glynn C, Weih M. QTL analyses of drought tolerance and growth for a Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet. 2005;110:537–49.

    Article  PubMed  Google Scholar 

  • Running SW. Environmental control of leaf water conductance in conifers. Can J For Res. 1976;6:104–12.

    Article  Google Scholar 

  • Sade N, Gebremedhin A, Moshelion M. Risk-taking plants: anisohydric behavior as a stress-resistance trait. Plant Signal Behav. 2012;7:767–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ. Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol. 2003;133:630–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Gómez D, Velasco-Conde T, Cano FJ, Guevara MA, Cervera MT, Aranda I. Stone pine, a genetically homogeneous species that displays inter-clonal variation in functional traits related to differential growth under drought. Environ Exp Bot. 2011;70:104–9.

    Article  Google Scholar 

  • Sandford AP, Jarvis PG. Stomatal responses to humidity in selected conifers. Tree Physiol. 1986;2:89–103.

    Article  PubMed  Google Scholar 

  • Sano Y. Inter-and intraspecific structural variations among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. Am J Bot. 2005;92:1077–84.

    Article  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA. Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant Cell Environ. 2010;33:1285–97.

    Article  CAS  PubMed  Google Scholar 

  • Seiler JR, Johnson JD. Physiological and morphological responses of three half-sib families of loblolly pine to water-stress conditioning. For Sci. 1988;34:487–95.

    Google Scholar 

  • Silim S, Nash R, Reynard D, White B, Schroeder W. Leaf gas exchange and water potential responses to drought in nine poplar (Populus spp.) clones with contrasting drought tolerance. Trees. 2009;23:959–69.

    Article  Google Scholar 

  • Sparks JP, Black RA. Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol. 1999;19:453–9.

    Article  PubMed  Google Scholar 

  • Sperry J. Cutting‐edge research or cutting‐edge artefact? An overdue control experiment complicates the xylem refilling story. Plant Cell Environ. 2013;36:1916–8.

    PubMed  Google Scholar 

  • Sperry JS, Hacke UG. Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. Am J Bot. 2004;91:369–85.

    Article  PubMed  Google Scholar 

  • Sperry JS, Ikeda T. Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol. 1997;17:275–80.

    Article  CAS  PubMed  Google Scholar 

  • Sperry J, Saliendra NZ. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ. 1994;17:1233–41.

    Article  Google Scholar 

  • Sperry JS, Tyree MT. Mechanism of water-stress induced xylem embolism. Plant Physiol. 1988;88:581–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT. Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum). Am J Bot. 1988;75:1212–8.

    Article  Google Scholar 

  • Sperry JS, Alder NN, Eastlack SE. The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J Exp Bot. 1993;44:1075–82.

    Article  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology. 1994;75:1736–52.

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J. Size and function in conifer tracheids and angiosperm vessels. Am J Bot. 2006;93:1490–500.

    Article  PubMed  Google Scholar 

  • Spieß N, Oufir M, Matušíková I, Stierschneider M, Kopecky D, Homolka A, Burg K, Fluch S, Hausman JF, Wilhelm E. Ecophysiological and transcriptomic responses of oak (Quercus robur) to long-term drought exposure and rewatering. Environ Exp Bot. 2012;77:117–26.

    Article  Google Scholar 

  • Stone EL, Kalisz PJ. On the maximum extent of tree roots. For Ecol Manage. 1991;46:59–102.

    Article  Google Scholar 

  • Street NR, Skogström O, Sjödin A, Tucker J, Rodríguez-Acosta M, Nilsson P, Jansson S, Taylor G. The genetics and genomics of the drought response in Populus. Plant J. 2006;48:321–41.

    Article  CAS  PubMed  Google Scholar 

  • Svenning JC, Skov F. Limited filling of the potential range in European tree species. Ecol Lett. 2004;7:565–73.

    Article  Google Scholar 

  • Sykes MT, Prentice IC, Cramer W. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J Biogeogr. 1996;23:203–33.

    Google Scholar 

  • Tang S, Liang H, Yan D, Zhao Y, Han X, Carlson JE, Xia X, Yin W. Populus euphratica: the transcriptomic response to drought stress. Plant Mol Biol. 2013;83:539–57.

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Dong Y, Liang D, Zhang Z, Ye CY, Shuai P, Han X, Zhao Y, Yin W, Xia X. Analysis of the drought stress-responsive transcriptome of black cottonwood (Populus trichocarpa) using deep RNA sequencing. Plant Mol Biol Report. 2015;33:424–38.

    Article  CAS  Google Scholar 

  • Tardieu F, Tuberosa R. Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol. 2010;13:206–12.

    Article  PubMed  Google Scholar 

  • Teixeira J, Missiaggia A, Dias D, Scarpinati E, Viana J, Paula N, Paula R, Bonine C. QTL analyses of drought tolerance in Eucalyptus under two contrasting water regimes. BMC Proc. 2011;5:40.

    Article  Google Scholar 

  • Tesche M. Immediate and long-term (memory) responses of Picea abies to a single growing season of SO2-exposure or moderate drought. For Ecol Manage. 1992;51:179–86.

    Article  Google Scholar 

  • Theroux-Rancourt G, Éthier G, Pepin S. Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying. J Exp Bot. 2014;65:741–53.

    Article  CAS  PubMed  Google Scholar 

  • Theroux-Rancourt G, Éthier G, Pepin S. Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought. Tree Physiol. 2015;35:172–84.

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Sharma N, Southerton SG. Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection. BMC Genomics. 2012;13:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tixier A. Physique et biologie moléculaire de la vulnérabilité du xylème à la cavitation (Doctoral thesis). Université Blaise Pascal, Clermont-Ferrand; 2013.

    Google Scholar 

  • Tixier A, Herbette S, Jansen S, Capron M, Tordjeman P, Cochard H, Badel E. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Ann Bot. 2014;114:325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol. 1989;40:19–36.

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH. Xylem structure and the ascent of sap. 2nd ed. Berlin: Springer; 2002. p. 283.

    Book  Google Scholar 

  • Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol. 2013;33:672–83.

    Article  CAS  PubMed  Google Scholar 

  • Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT. Widespread increase of tree mortality rates in the western United States. Science. 2009;323:521–4.

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet. 2010;42:833–9.

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet. 2013;45:487–94.

    Article  CAS  PubMed  Google Scholar 

  • Vilagrosa A, Bellot J, Vallejo VR, Gil‐Pelegrin E. Cavitation, stomatal conductance, and leaf dieback in seedlings of two co‐occurring Mediterranean shrubs during an intense drought. J Exp Bot. 2003;54:2015–24.

    Article  CAS  PubMed  Google Scholar 

  • Villar-Salvador P, Castro-Diez P, Perez-Rontome C, Montserrat-Marti G. Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees. 1997;12:90–6.

    Google Scholar 

  • Von Humboldt A, Bonpland A. Essay on the geography of plants. In: Jackson ST, editor. Translated by Romanowski S. Chicago: The University of Chicago Press; 2009. p. 274.

    Google Scholar 

  • Wang S, Chena B, Li H. Euphrates poplar forest. Beijing: China Environmental Science Press; 1996. p. 41–153.

    Google Scholar 

  • Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, van Zyl L, Egertsdotter U, Sederoff RR, Grene R. Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol. 2003;133:1702–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ. 2013;36:1938–49.

    CAS  PubMed  Google Scholar 

  • Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM. Genotype and time of day shape the Populus drought response. Plant J. 2009;60:703–15.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 2002;25:195–210.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S. Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plant. 2008;133:298–317.

    Article  CAS  PubMed  Google Scholar 

  • Yan DH, Fenning T, Tang S, Xia X, Yin W. Genome-wide transcriptional response of Populus euphratica to long-term drought stress. Plant Sci. 2012;195:24–35.

    Article  CAS  PubMed  Google Scholar 

  • Yin CY, Duan BL, Wang X, Li CY. Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Sci. 2004;167:1091–7.

    Article  CAS  Google Scholar 

  • Ying CC, Bagley WT. Genetic variation of eastern cottonwood in an eastern Nebraska provenance study. Silvae Genet. 1976;25:67–73.

    Google Scholar 

  • Zang U, Goisser M, Häberle KH, Matyssek R, Matzner E, Borken W. Effects of drought stress on photosynthesis, rhizosphere respiration, and fine root characteristics of beech saplings: a rhizotron field study. J Plant Nutr Soil Sci. 2014;177:168–77.

    Article  CAS  Google Scholar 

  • Zheng C, Qiu J, Jiang C, Yue N, Wang X, Wang W. Comparison of stomatal characteristics and photosynthesis of polymorphic Populus euphratica leaves. Front Forest China. 2007;2:87–93.

    Article  Google Scholar 

  • Zhu XB, Cox RM, Arp PA. Effects of xylem cavitation and freezing injury on dieback of yellow birch (Betula alleghaniensis) in relation to a simulated winter thaw. Tree Physiol. 2000;20:541–7.

    Article  PubMed  Google Scholar 

  • Zimmermann MH. Xylem structure and the ascent of sap. New York: Springer-Verlag; 1983.

    Book  Google Scholar 

  • Zwiazek JJ. Cell wall changes in white spruce (Picea glauca) needles subjected to repeated drought stress. Physiol Plant. 1991;82:513–8.

    Article  CAS  Google Scholar 

  • Zwieniecki MA, Holbrook NM. Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci. 2009;14:530–4.

    Article  CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Brodribb TJ, Holbrook NM. Hydraulic design of leaves: insights from rehydration kinetics. Plant Cell Environ. 2007;30:910–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héloïse Bastiaanse .

Editor information

Editors and Affiliations

Glossary

Isohydric water-balance behavior

 involves the maintenance of a constant leaf water potential at midday, even under drought conditions. In contrast, plants exhibiting anisohydric behavior can markedly decrease water potentials following the evaporative demand experienced during the day. This permits lower leaf water potentials in the presence of drought stress.

Mesophyll conductance (gm)

 estimates the restriction to the influx of carbon dioxide from the leaf internal airspace to the site of carboxylation. Together with stomatal conductance, it constitutes a crucial component of the diffusive limitation of photosynthesis.

Ψcrit

 critical xylem water potential, beyond which hydraulic failure is likely to occur, expressed in megapascals (MPa)

Ψsoil

 soil water potential (MPa)

Stomatal conductance

 usually measured in mmol m−2 s−1, is the measure of the rate of water vapor exiting through the stomata of a leaf, from which one can estimate the rate of carbon dioxide (CO2) entering.

Vapour Pressure Deficit (VPD)

 is the difference between the amount of moisture in the air and saturated vapour pressure, i.e. how much moisture the air can hold when it is saturated, at a certain temperature.

Water use Efficiency (WUE)

 represents the tradeoff between C assimilation and water loss, expressed as the ratio of C assimilated, e.g. in term of biomass or photosynthetic rate, to the rate of transpiration.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bastiaanse, H., Théroux-Rancourt, G., Tixier, A. (2017). Abiotic Stress. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_13

Download citation

Publish with us

Policies and ethics