Skip to main content

The microRNAs of Brachypodium

  • Chapter
  • First Online:
  • 885 Accesses

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

Abstract

Since the proposal of Brachypodium distachyon as a model organism, a substantial amount of research has been done investigating the miRNAs which aid in the post-transcriptional gene regulation of this grass. Techniques such as the sequencing of small RNA libraries have allowed for the identification and annotation of over 500 miRNAs present in the Brachypodium genome. Furthermore, experimental evidence for the cleavage of a large number of target mRNAs has also been found, including a few instances of differential target cleavage by distinct miRNA family members. This research has not only provided the community with a wealth of publicly available sequencing data, but it has also led to many insights regarding how these small 21–24 nt RNA molecules may play critical roles in different tissues, stress responses, and developmental processes of Brachypodium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AGO1:

Agonaute

ESTs:

Expressed Sequence Tags

GEO:

Gene Expression Omnibus

GSSs:

Genome Survey Sequences

PARE:

Parallel Analysis of RNA Ends

RISC:

RNA-induced silencing complex

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA. Development. 2004;131(14):3357–65.

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121(2):207–21.

    Article  CAS  PubMed  Google Scholar 

  • Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;61(6):1001–13.

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003;15(11):2730–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets. Trends Plant Sci. 2008;13(7):343–9.

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP. A two-hit trigger for siRNA biogenesis in plants. Cell. 2006;127(3):565–77.

    Article  CAS  PubMed  Google Scholar 

  • Baev V, Milev I, Naydenov M, Apostolova E, Minkov G, Minkov I, et al. Implementation of a de novo genome-wide computational approach for updating Brachypodium miRNAs. Genomics. 2011;97(5):282–93.

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Datt Pant B, Stitt M, Scheible W-R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 2006;141(3):988–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bäurle I, Dean C. The timing of developmental transitions in plants. Cell. 2006;125(4):655–64.

    Article  PubMed  Google Scholar 

  • Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inzé D, et al. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant. 2013;6(2):423–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998;17(1):170–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008;320(5880):1185–90.

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar A. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS. 2011;15(11):791–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303(5666):2022–5.

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet. 2007;39(4):544–9.

    Article  CAS  PubMed  Google Scholar 

  • Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, et al. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci U S A. 2011;108(42):17550–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu C, Sunkar R, Zhou C, Shen H, Zhang J-Y, Matts J, et al. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J. 2012;10(4):443–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol. 2005;15(22):2038–43.

    Article  CAS  PubMed  Google Scholar 

  • German MA, Pillay M, Jeong D-H, Hetawal A, Luo S, Janardhanan P, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 2008;26(8):941–6.

    Article  CAS  PubMed  Google Scholar 

  • German MA, Luo S, Schroth G, Meyers BC, Green PJ. Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc. 2009;4(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg M, Shi B-J, Gustafson P, Langridge P. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol. 2013;13:214.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeong D-H, Park S, Zhai J, Gurazada SGR, De Paoli E, Meyers BC, et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell. 2011;23(12):4185–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong D-H, Schmidt SA, Rymarquis LA, Park S, Ganssmann M, German MA, et al. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol. 2013;14(12):R145.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496(7443):91–5.

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–4.

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan G-L, Walbot V, et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res. 2009;19(8):1429–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.

    Article  CAS  PubMed  Google Scholar 

  • Jung J-H, Park C-M. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta. 2007;225(6):1327–38.

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A. 2004;101(34):12753–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008;14(5):836–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002;297(5589):2053–6.

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun Y-H, Chiang VL. Stress-responsive microRNAs in Populus. Plant J. 2008a;55(1):131–51.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Jeong D-H, Kulkarni K, Pillay M, Nobuta K, German R, et al. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A. 2008b;105(12):4951–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucas SJ, Baştaş K, Budak H. Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene. 2014;536(2):254–64.

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 2004;23(16):3356–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng Y, Ma X, Chen D, Wu P, Chen M. MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun. 2010;393(3):345–9.

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, et al. Criteria for annotation of plant MicroRNAs. Plant Cell. 2008;20(12):3186–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song X-J, Ito M, Asano K, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42(6):545–9.

    Article  CAS  PubMed  Google Scholar 

  • Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci U S A. 2009;106(52):22534–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007;39(6):787–91.

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, et al. Control of leaf morphogenesis by microRNAs. Nature. 2003;425(6955):257–63.

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell. 2007;13(1):115–25.

    Article  CAS  PubMed  Google Scholar 

  • Peña-Castro JM, van Zanten M, Lee SC, Patel MR, Voesenek LAJC, Fukao T, et al. Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Plant J. 2011;67(3):434–46.

    Article  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell. 2005;17(1):61–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. 2002;110(4):513–20.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development. 2010;137(1):103–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber AW, Shi B-J, Huang C-Y, Langridge P, Baumann U. Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics. 2011;12:129.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu J-K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16(8):2001–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Unver T, Budak H. Conserved microRNAs and their targets in model grass species Brachypodium Distachyon. Planta. 2009;230:659–69.

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 2004;18(10):1187–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaucheret H, Mallory AC, Bartel DP. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell. 2006;22(1):129–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463(7282):763–8.

    Article  CAS  Google Scholar 

  • Wang H-LV, Dinwiddie BL, Lee H, Chekanova JA. Stress-induced endogenous siRNAs targeting regulatory intron sequences in Brachypodium. RNA. 2015;21(2):145–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X-J, Reyes JL, Chua N-H, Gaasterland T. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol. 2004;5(9):R65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei B, Cai T, Zhang R, Li A, Huo N, Li S, et al. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics. 2009;9(4):499–511.

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Liu D, Wu J, Zhang R, Qin Z, Liu D, et al. Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. Plant Cell. 2013;25(11):4363–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol. 2003;13(9):784–9.

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 2006;142(1):280–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu J-K, et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 2007;8(6):R96.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics. 2009;10:449.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K, Sunkar R. Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics. 2011;98(6):460–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Mao Z, Chong K. A global profiling of uncapped mRNAs under cold stress reveals specific decay patterns and endonucleolytic cleavages in Brachypodium distachyon. Genome Biol. 2013;14(8):R92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu J-K, Zhang W. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta. 2008;1779(11):780–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dong-Hoon Jeong, Hallym University, for helpful comments on the manuscript. Brachypodium research in our lab was supported by the Office of Biological and Environmental Research of the Department of Energy under Plant Feedstock Genomics for Bioenergy award number DE-FG02-07ER64450 to P.J.G. K.R.F. was supported, in part, by NIH/NIGMS CBI Training Grant 5T32GM008550-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franke, K.R., Green, P.J. (2015). The microRNAs of Brachypodium . In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_9

Download citation

Publish with us

Policies and ethics