Skip to main content

Brachypodium Paleogenomics: From Genome Evolution to Translational Research in Grass Crops

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

  • 876 Accesses

Abstract

The modern Brachypodium distachyon genome consisting in 25,532 genes, 271 Megabases covering five chromosomes derives from a founder grass ancestor structured in 7/12 protochromosomes containing 10,000–15,000 protogenes with a minimal physical coding space size of <50 Megabases. From the grass ancestor, the modern Brachypodium genome evolved through a polyploidization event followed by a diploidization mechanism at the genome level, consisting in centromere-oriented ancestral chromosome fusions leading to chromosome number reduction, and at the gene level, consisting in the deletion of the duplicated gene copies leading to a subgenome dominance. Finally, the Brachypodium genome can be used as a guide for translational research in grasses for applied research in dissecting and improving traits of agricultural relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, et al. Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci. 2010;15(9):479–87.

    Article  CAS  PubMed  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, et al. The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol. 2009;12(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  • Dibari B, Murat F, Chosson A, Gautier V, Poncet C, Lecomte P, et al. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses. BMC Genomics. 2012;13:221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, et al. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol. 2015;167(1):189–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463(7282):763–8.

    Article  Google Scholar 

  • International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800.

    Article  Google Scholar 

  • Jacquemin J, Chaparro C, Laudié M, Berger A, Gavory F, Goicoechea JL, et al. Long-range and targeted ectopic recombination between the two homeologous chromosomes 11 and 12 in Oryza species. Mol Biol Evol. 2011;28(11):3139–50.

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci U S A. 2009;106(37):15780–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Massa AN, Wanjugi H, Deal KR, O’Brien K, You FM, Maiti R, et al. Gene space dynamics during the evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor genomes. Mol Biol Evol. 2011;28(9):2537–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, et al. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res. 2010;20(11):1545–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murat F, Zhang R, Guizard S, Flores R, Armero A, Pont C, et al. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol Evol. 2014a;6(1):12–33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Murat F, Pont C, Salse J. Paleogenomics in Triticeae for translational research. Curr Plant Biol. 2014b;1:34–9.

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–6.

    Article  CAS  PubMed  Google Scholar 

  • Pont C, Murat F, Confolent C, Balzergue S, Salse J. RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biol. 2011;12(12):R119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pont C, Murat F, Guizard S, Flores R, Foucrier S, Bidet Y, et al. Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. Plant J. 2013;76(6):1030–44.

    Article  CAS  PubMed  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, et al. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics. 2009;9(4):473–84.

    Article  CAS  PubMed  Google Scholar 

  • Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, et al. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J. 2011a;65(5):745–56.

    Article  CAS  PubMed  Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, et al. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics. 2011b;11(1):71–83.

    Article  CAS  PubMed  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, et al. Identification and characterization of conserved duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell. 2008;20:11–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salse J, Abrouk M, Murat F, Quraishi UM, Feuillet C. Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief Bioinform. 2009a;10(6):619–30.

    Article  CAS  PubMed  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, et al. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci U S A. 2009b;106:14908–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salse J, Feuillet C. Paleogenomics in cereals: modelling of ancestors for modern species improvement. C R Biol. 2011;334(3):205–11.

    Article  PubMed  Google Scholar 

  • Salse J. In silico archeogenomics unveils modern plant genome organization, regulation and evolution. Curr Opin Plant Biol. 2012;15(2):122–30.

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5.

    Article  CAS  PubMed  Google Scholar 

  • Schubert I, Lysak MA. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 2011;27(6):207–16.

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci U S A. 2010;107(1):472–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Tang H, Paterson AH. Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell. 2011;23(1):27–37.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wicker T, Buchmann JP, Keller B. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 2010;20(9):1229–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Agence Nationale de la Recherche (program ANR Blanc-PAGE, ref: ANR-2011-BSV6-00801). The author gratefully acknowledges Caroline Pont and Florent Murat (INRA Clermont-Ferrand, France) for their contributions in preparing the article illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Salse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salse, J. (2015). Brachypodium Paleogenomics: From Genome Evolution to Translational Research in Grass Crops. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_2

Download citation

Publish with us

Policies and ethics