Skip to main content

X-Ray Excited Fluorescent Materials for Medical Application

  • Chapter
  • First Online:

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 34))

Abstract

X-ray fluorescence (XF) and X-ray luminescence (XL) are X-ray stimulated processes which can be exploited for medical imaging. In recent years, the computed tomography (XFCT and XLCT) imaging of these processes has attracted much attention especially in the field of radiation therapy. These imaging modalities have potentials to offer additional functional information from the patient during exposure to X-rays for position alignment before the radiation treatment. More recently, these new techniques have been further studied in Monte Carlo simulations and benchtop experiments to characterize and optimize different imaging configurations. This chapter summarizes recent instrumentational developments in X-ray excited imaging; discusses their attributes, advantages, and drawbacks; and describes specifications and applications of various contrast agents for XF- and XLCT. The feasibility of the modalities for future clinical applications will be also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L (2013) X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator. Med Phys 40:010701

    Article  PubMed  Google Scholar 

  2. Rizk SL, Rizk SL, Sky-Peck HH (1984) Comparison between concentrations of trace elements in normal and neoplastia human breast tissue. Cancer Res 44:5390–5394

    CAS  PubMed  Google Scholar 

  3. Somervaille LJ, Chettle DR, Scott MC (1985) In vivo measurement of lead in bone using X-ray fluorescence. Phys Med Biol 30:929

    Article  CAS  PubMed  Google Scholar 

  4. Cheong S-K, Jones BL, Siddiqi AK, Liu F, Manohar N, Cho SH (2010) X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays. Phys Med Biol 55:647

    Article  CAS  PubMed  Google Scholar 

  5. Cong W, Shen H, Cao G, Liu H, Wang G (2013) X-ray fluorescence tomographic system design and image reconstruction. J Xray Sci Technol 21:1–8

    CAS  PubMed  Google Scholar 

  6. Kuang Y, Pratx G, Bazalova M, Meng B, Qian J, Xing L (2013) First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging. IEEE Trans Med Imaging 32:262–267

    Article  PubMed  Google Scholar 

  7. Vernekohl D, Tzoumas S, Zhao W, Xing L (2018) Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography. Med Phys 45:3741–3748

    Article  Google Scholar 

  8. Cesareo R, Mascarenhas S (1989) A new tomographic device based on the detection of fluorescent x-rays. Nucl Instrum Methods Phys Res Sect A 277:669–672

    Article  Google Scholar 

  9. La Riviere PJ, Vargas P, Fu G, Meng LJ (2009) Accelerating X-ray fluorescence computed tomography. Conf Proc IEEE Eng Med Biol Soc 2009:1000–1003

    PubMed  Google Scholar 

  10. Bazalova M, Kuang Y, Pratx G, Xing L (2012) Investigation of X-ray fluorescence computed tomography and K-edge CT imaging. IEEE Trans Med Imaging 31:1620–1627

    Article  PubMed  Google Scholar 

  11. Weissleder R (2006) Molecular imaging in cancer. Science 2006:1168–1171

    Article  CAS  Google Scholar 

  12. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  CAS  PubMed  Google Scholar 

  13. Weissleder R, Ross BD, Rehemtulla A, Gambhir SS (2010) Molecular imaging: principles and practice. People’s Medical Publishing House, Shelton

    Google Scholar 

  14. Hayashi Y, Okuyama F (2010) New approach to breast tumor detection based on fluorescence x-ray analysis. Ger Med Sci 8

    Google Scholar 

  15. Bazalova MA, Ahmad M, Pratx G, Xing L (2013) XFCT imaging of cisplatin with L-shell x-rays. Phys Med Biol 59:219–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Vernekohl D, Streicher M, Ahmad M, Xing L (2016) Comparison of a large area czt detector to a spectroscopic cdte detector for x-ray fluorescence computed tomography. In: IEEE nuclear science symposium, medical imaging conference and room-temperature semiconductor detector workshop (NSS/MIC/RTSD), Strassbourg

    Google Scholar 

  17. Bazalova-Carter M, Ahmad M, Xing L, Fahrig R (2015) Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study. J Med Imaging 2:043501

    Article  Google Scholar 

  18. Kuang Y, Pratx G, Bazalova M, Qian J, Meng B, Xing L (2013) Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: instrumentation and phantom validation. Med Phys 40:030701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ahmad M, Bazalova-Carter M, Fahrig R, Xing L (2015) Optimized detector angular configuration increases the sensitivity of X-ray fluorescence computed tomography (XFCT). IEEE Trans Med Imaging 34:1140–1147

    Article  PubMed  Google Scholar 

  20. Dhez P, Chevallier P, Lucatorto TB, Tarrio C (1999) Instrumental aspects of x-ray microbeams in the range above 1 keV. Rev Sci Instrum 70:1907–1920

    Article  CAS  Google Scholar 

  21. Gottschlag H, Kosters T, Vernekohl D, Reygers K, Schafers KP, Wubbeling F, Wessels JP (2013) Towards quantitative image reconstruction using Monte-Carlo simulations in multi-wire proportional chamber-based small animal PET. IEEE Trans Nucl Sci 60:3343–3354

    Article  Google Scholar 

  22. Ahmad M, Bazalova M, Xiang L, Xing L (2014) Order of magnitude sensitivity increase in X-ray fluorescence computed tomography (XFCT) imaging with an optimized spectro-spatial detector configuration: theory and simulation. IEEE Trans Med Imaging 33:1119–1128

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim JH, Kim JS, Choi H, Lee SM, Jun BH, Yu KN, Kuk E, Kim YK, Jeong DH, Cho MH, Lee YS (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78:6967–6973

    Article  CAS  PubMed  Google Scholar 

  24. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of Plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  PubMed  Google Scholar 

  25. McDonald MA, Watkin KL (2006) Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. Acad Radiol 13:421–427

    Article  PubMed  Google Scholar 

  26. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  27. Ngwa W, Makrigiorgos GM, Berbeco RI (2012) Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Phys Med Biol 57:6371–6380

    Article  PubMed  CAS  Google Scholar 

  28. Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM (2013) Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat 137:81–91

    Article  CAS  PubMed  Google Scholar 

  29. Hossain M, Su M (2012) Nanoparticle location and material dependent dose enhancement in X-ray radiation therapy. J Phys Chem C Nanomater Interfaces 116:23047–23052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:N163–N173

    Article  PubMed  Google Scholar 

  31. Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, Chen J, Kong B (2011) Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 22:285101

    Article  PubMed  CAS  Google Scholar 

  32. Allemann E, Brasseur N, Benrezzak O, Rousseau J, Kudrevich SV, Boyle RW, Leroux JC, Gurny R, van Lier JE (1995) PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol 47:382–387

    Article  CAS  PubMed  Google Scholar 

  33. Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, Rumyantseva V, Shilov I, Ryabova A, Loshchenov V, Khlebtsov NG (2011) Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 5:7077–7089

    Article  CAS  PubMed  Google Scholar 

  34. Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J, Baker CH (2013) Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 9:558–569

    Article  CAS  PubMed  Google Scholar 

  35. Timerbaev A, Sturup S (2012) Analytical approaches for assaying metallodrugs in biological samples: recent methodological developments and future trends. Curr Drug Metab 13:272–283

    Article  CAS  PubMed  Google Scholar 

  36. Geraki K, Farquharson MJ, Bradley DA (2002) Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study. Phys Med Biol 47:2327

    Article  CAS  PubMed  Google Scholar 

  37. Costello LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35:285–296

    Article  CAS  PubMed  Google Scholar 

  38. Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, Deng HF, Amenta PS, Fineberg S, Pestell RG, Carrasco N (2000) The mammary gland iodide transporter is expressed during lactation and in breast cancer. Nat Med 6:871–878

    Article  CAS  PubMed  Google Scholar 

  39. Naczynski DJ, Sun C, Turkcan S, Jenkins C, Koh AL, Ikeda D, Pratx G, Xing L (2015) X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett 15:96–102

    Article  CAS  PubMed  Google Scholar 

  40. Chen D, Zhu S, Yi H, Zhang X, Chen D, Liang J, Tian J (2013) Cone beam x-ray luminescence computed tomography: a feasibility study. Med Phys 40:031111

    Article  PubMed  Google Scholar 

  41. Yi Z, Lu W, Xu Y, Yang J, Deng L, Qian C, Zeng T, Wang H, Rao L, Liu H, Zeng S (2014) PEGylated NaLuF4: Yb/Er upconversion nanophosphors for in vivo synergistic fluorescence/X-ray bioimaging and long-lasting, real-time tracking. Biomaterials 35:9689–9697

    Article  CAS  PubMed  Google Scholar 

  42. Cong W, Wang C, Wang G (2014) Stored luminescence computed tomography. Appl Optics 53:5672–5676

    Article  CAS  Google Scholar 

  43. Carpenter CM, Sun C, Pratx G, Rao R, Xing L (2010) Hybrid x-ray/optical luminescence imaging: characterization of experimental conditions. Med Phys 37:4011–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pratx G, Carpenter CM, Sun C, Rao RP, Xing L (2010) Tomographic molecular imaging of x-ray-excitable nanoparticles. Opt Lett 35:3345–3347

    Article  CAS  PubMed  Google Scholar 

  45. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:1369–1379

    CAS  PubMed  Google Scholar 

  46. Schillaci O (2005) Hybrid SPECT/CT: a new era for SPECT imaging? Eur J Nucl Med Mol Imaging 32:521–524

    Article  PubMed  Google Scholar 

  47. Schulz RB, Ale A, Sarantopoulos A, Freyer M, Soehngen E, Zientkowska M, Ntziachristos V (2010) Hybrid system for simultaneous fluorescence and X-ray computed tomography. IEEE Trans Med Imaging 29:465–473

    Article  PubMed  Google Scholar 

  48. Wang B, Zhao Q, Barkey NM, Morse DL, Jiang H (2012) Photoacoustic tomography and fluorescence molecular tomography: a comparative study based on indocyanine green. Med Phys 39:2512–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pratx G, Carpenter CM, Sun C, Xing L (2010) X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Trans Med Imaging 29:1992–1999

    Article  PubMed  Google Scholar 

  50. Vernekohl D, Ahmad M, Chinn G, Xing L (2016) Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans. Phys Med Biol 61:8521–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vernekohl D, Ahmad M, Dai X, Zhao W, Cheng K, Xing L (2019) Reduced acquisition time for L-shell x-ray fluorescence computed tomography using polycapillary x-ray optics. Med Phys. https://doi.org/10.1002/mp.13822

    Article  PubMed  Google Scholar 

  52. Tzoumas S, Vernekohl D, Xing L (2018) Coded-aperture compressed sensing X-ray luminescence tomography. IEEE Trans Biomed Eng 65:1892–1895

    Article  PubMed  Google Scholar 

  53. Division IMI (2008) CT census database and market summary report. IMV, L’Aigle

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the NIH for the support of several XFCT and XLCT research projects and to the many researches who were involved in the related work at our institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

Author Don Vernekohl declares that he has no conflict of interest. Author Lei Xing declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vernekohl, D., Xing, L. (2019). X-Ray Excited Fluorescent Materials for Medical Application. In: Cheng, Z. (eds) Fluorescent Imaging in Medicinal Chemistry . Topics in Medicinal Chemistry, vol 34. Springer, Cham. https://doi.org/10.1007/7355_2019_91

Download citation

Publish with us

Policies and ethics