Skip to main content

Advancements of Second Near-Infrared Biological Window Fluorophores: Mechanism, Synthesis, and Application In Vivo

  • Chapter
  • First Online:
Fluorescent Imaging in Medicinal Chemistry

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 34))

Abstract

In vivo fluorescence imaging in second near-infrared biological window (NIR-II) is an emerging imaging technique in both fundamental research and clinical application. NIR-II fluorescence affords high-resolution images with increasing penetration depths due to the reduced scattering, minimal absorption, and negligible autofluorescence. In this chapter, we review the recent 10-year progress made on NIR-II fluorescence imaging in 1,000–1,700 nm NIR-II windows by summarizing an increasingly advanced NIR-II fluorophores including organic dyes and inorganic nanoparticles, with tunable emission wavelengths. The NIR-II fluorescence emission mechanism and the strategy for synthesis of high quantum yield with more biocompatible and higher photostability NIR-II fluorophores will be highlighted. In addition, we provide our perspective on the current development and bright future direction of NIR-II fluorophores development in frontier fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806

    Article  CAS  PubMed  Google Scholar 

  4. He S, Song J, Qu J, Cheng Z (2018) Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev 47(12):4258–4278

    Article  CAS  PubMed  Google Scholar 

  5. Chernov KG, Redchuk TA, Omelina ES, Verkhusha VV (2017) Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem Rev 117(9):6423–6446

    Article  CAS  PubMed  Google Scholar 

  6. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  7. Sordillo LA, Pu Y, Pratavieira S, Budansky Y, Alfano RR (2014) Deep optical imaging of tissue using the second and third near-infrared spectral windows. J Biomed Opt 19(5):056004

    Article  PubMed  Google Scholar 

  8. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B et al (2015) A small-molecule dye for NIR-II imaging. Nat Mater 15(2):235–242

    Article  PubMed  CAS  Google Scholar 

  9. Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG et al (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci 115(17):4465–4470

    Article  CAS  PubMed  Google Scholar 

  10. Antaris AL, Chen H, Diao S, Ma Z, Zhang Z, Zhu S, Wang J, Lozano AX, Fan Q, Chew L et al (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun Y, Qu C, Chen H, He M, Tang C, Shou K, Hong S, Yang M, Jiang Y, Ding B et al (2016) Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci 7(9):6203–6207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X-D, Wang H, Antaris AL, Li L, Diao S, Ma R, Nguyen A, Hong G, Ma Z, Wang J et al (2016) Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater 28(32):6872–6879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Y, Zeng X, Xiao Y, Liu C, Zhu H, Zhou H, Chen Z, Xu F, Wang J, Zhu M et al (2018) Novel dual-function near-infrared II fluorescence and PET probe for tumor delineation and image-guided surgery. Chem Sci 9(8):2092–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu S, Yang Q, Antaris AL, Yue J, Ma Z, Wang H, Huang W, Wan H, Wang J, Diao S et al (2017) Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci 114(5):962–967

    Article  CAS  PubMed  Google Scholar 

  15. Feng Y, Zhu S, Antaris AL, Chen H, Xiao Y, Lu X, Jiang L, Diao S, Yu K, Wang Y et al (2017) Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem Sci 8(5):3703–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shou K, Qu C, Sun Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z (2017) Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. Adv Funct Mater 27(23):1700995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sun Y, Ding M, Zeng X, Xiao Y, Wu H, Zhou H, Ding B, Qu C, Hou W, Er-bu AGA et al (2017) Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci 8(5):3489–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tao Z, Hong G, Shinji C, Chen C, Diao S, Antaris AL, Zhang B, Zou Y, Dai H (2013) Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed 52(49):13002–13006

    Article  CAS  Google Scholar 

  19. Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem 124(39):9956–9959

    Article  Google Scholar 

  20. Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1):393–400

    Article  CAS  PubMed  Google Scholar 

  21. Chen G, Tian F, Zhang Y, Zhang Y, Li C, Wang Q (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv Funct Mater 24(17):2481–2488

    Article  CAS  Google Scholar 

  22. Tang R, Xue J, Xu B, Shen D, Sudlow GP, Achilefu S (2015) Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 9(1):220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth CM, Riman RE, Moghe PV (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:1–10

    Article  CAS  Google Scholar 

  24. Kamimura M, Kanayama N, Tokuzen K, Soga K, Nagasaki Y (2011) Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate). Nanoscale 3(9):3705–3713

    Article  CAS  PubMed  Google Scholar 

  25. Zevon M, Ganapathy V, Kantamneni H, Mingozzi M, Kim P, Adler D, Sheng Y, Tan MC, Pierce M, Riman RE et al (2015) CXCR-4 targeted, short wave infrared (SWIR) emitting nanoprobes for enhanced deep tissue imaging and micrometastatic cancer lesion detection. Small 11(47):6347–6357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shao W, Chen G, Kuzmin A, Kutscher HL, Pliss A, Ohulchanskyy TY, Prasad PN (2016) Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J Am Chem Soc 138(50):16192–16195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson JT, Hong G, Liang Y, Zhang B, Yaghi OK, Dai H (2012) In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 134(25):10664–10669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci 108(22):8943–8948

    Article  CAS  PubMed  Google Scholar 

  29. Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18(12):1841–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H (2016) Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun 7:12056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diao S, Blackburn JL, Hong G, Antaris AL, Chang J, Wu JZ, Zhang B, Cheng K, Kuo CJ, Dai H (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem Int Ed 54(49):14758–14762

    Article  CAS  Google Scholar 

  33. Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas TP et al (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8:873–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A, Annapragada A (2017) Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One 12(11):e0187563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cheng K, Chen H, Jenkins CH, Zhang G, Zhao W, Zhang Z, Han F, Fung J, Yang M, Jiang Y et al (2017) Synthesis, characterization and biomedical applications of a targeted dual-modal near infrared-II fluorescence and photoacoustic imaging nanoprobe. ACS Nano 11(12):12276–12291

    Article  CAS  PubMed  Google Scholar 

  36. Benhao L, Lingfei L, Mengyao Z, Zuhai L, Fan Z (2018) An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew Chem Int Ed 57(25):7483–7487

    Article  CAS  Google Scholar 

  37. Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206

    Article  CAS  PubMed  Google Scholar 

  38. Shou K, Tang Y, Chen H, Chen S, Zhang L, Zhang A, Fan Q, Yu A, Cheng Z (2018) Diketopyrrolopyrrole-based semiconducting polymer nano-particles for in vivo second near-infrared window imaging and image-guided tumor surgery. Chem Sci 9:3105–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao X, He S, Tan MC (2016) Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites. J Mater Chem C 4(36):8349–8372

    Article  CAS  Google Scholar 

  40. Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115(19):10725–10815

    Article  CAS  PubMed  Google Scholar 

  41. Wang F, Liu X (2014) Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc Chem Res 47(4):1378–1385

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Peng D, Ju Q, Wang F (2015) Photon upconversion in core-shell nanoparticles. Chem Soc Rev 44(6):1318–1330

    Article  PubMed  Google Scholar 

  43. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42(1):173–201

    Article  CAS  PubMed  Google Scholar 

  44. Zhou B, Shi B, Jin D, Liu X (2015) Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol 10(11):924–936

    Article  CAS  PubMed  Google Scholar 

  45. Judd B (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127(3):750

    Article  CAS  Google Scholar 

  46. Judd B (1963) Configuration interaction in rare earth ions. Proc Phys Soc 82(6):874

    Article  CAS  Google Scholar 

  47. Dejneka MJ, Streltsov A, Pal S, Frutos AG, Powell CL, Yost K, Yuen PK, Müller U, Lahiri J (2003) Rare earth-doped glass microbarcodes. Proc Natl Acad Sci 100(2):389

    Article  CAS  PubMed  Google Scholar 

  48. Gai S, Li C, Yang P, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389

    Article  CAS  PubMed  Google Scholar 

  49. Ye X, Collins JE, Kang Y, Chen J, Chen DTN, Yodh AG, Murray CB (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci 107(52):22430–22435

    Article  CAS  PubMed  Google Scholar 

  50. Naccache R, Yu Q, Capobianco JA (2015) The fluoride host: nucleation, growth, and upconversion of lanthanide-doped nanoparticles. Adv Opt Mater 3(4):482–509

    Article  CAS  Google Scholar 

  51. Abel KA, Boyer J-C, Veggel FCJM (2009) Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J Am Chem Soc 131(41):14644–14645

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Zhang Y (2006) Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew Chem 118(46):7896–7899

    Article  Google Scholar 

  53. Tu D, Liu L, Ju Q, Liu Y, Zhu H, Li R, Chen X (2011) Time-resolved fret biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew Chem Int Ed 50(28):6306–6310

    Article  CAS  Google Scholar 

  54. Meng F, Liu S, Wang Y, Tao C, Xu P, Guo W, Shen L, Zhang X, Ruan S (2012) Open-circuit voltage enhancement of inverted polymer bulk heterojunction solar cells by doping NaYF4 nanoparticles/PVP composites. J Mater Chem 22(42):22382–22386

    Article  CAS  Google Scholar 

  55. Chatteriee DK, Rufalhah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7):937–943

    Article  CAS  Google Scholar 

  56. Lim ME, Lee Y-l, Zhang Y, Chu JJH (2012) Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33(6):1912–1920

    Article  CAS  PubMed  Google Scholar 

  57. Sheng Y, Liao L-D, Thakor N, Tan MC (2014) Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging. Sci Rep 4:6562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li C, Yang J, Yang P, Lian H, Lin J (2008) Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chem Mater 20(13):4317–4326

    Article  CAS  Google Scholar 

  59. He S, Chen S, Li D, Wu Y, Zhang X, Liu J, Song J, Liu L, Qu J, Cheng Z (2019) High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging. Nano Lett 19(5):2985–2992

    Article  CAS  PubMed  Google Scholar 

  60. Naczynski DJ, Sun C, Türkcan S, Jenkins C, Koh AL, Ikeda D, Pratx G, Xing L (2015) X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett 15(1):96–102

    Article  CAS  PubMed  Google Scholar 

  61. Kantamneni H, Zevon M, Donzanti MJ, Zhao X, Sheng Y, Barkund SR, McCabe LH, Banach-Petrosky W, Higgins LM, Ganesan S et al (2017) Surveillance nanotechnology for multi-organ cancer metastases. Nat Biomed Eng 1(12):993–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang R, Zhou L, Wang W, Li X, Zhang F (2017) In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun 8:14702

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fan Z, Lu L, Shangfeng W, Baozhou Z, Peng P, Yong F, Xiaomin L (2018) Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew Chem Int Ed 57(25):7518–7522

    Article  CAS  Google Scholar 

  64. He S, Song J, Liu J, Liu L, Qu J, Cheng Z (2019) Enhancing photoacoustic intensity of upconversion nanoparticles by photoswitchable azobenzene-containing polymers for dual NIR-II and photoacoustic imaging in vivo. Adv Opt Mater 0(0):1900045

    Article  CAS  Google Scholar 

  65. Pichaandi J, van Veggel FCJM (2014) Near-infrared emitting quantum dots: recent progress on their synthesis and characterization. Coord Chem Rev 263–264:138–150

    Article  CAS  Google Scholar 

  66. Deutsch Z, Neeman L, Oron D (2013) Luminescence upconversion in colloidal double quantum dots. Nat Nanotechnol 8(9):649–653

    Article  CAS  PubMed  Google Scholar 

  67. Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25(12):2503–2509

    Article  CAS  Google Scholar 

  68. Zhou J, Yang Y, Zhang C-y (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115(21):11669–11717

    Article  CAS  PubMed  Google Scholar 

  69. Chen J, Kong Y, Wang W, Fang H, Wo Y, Zhou D, Wu Z, Li Y, Chen S (2016) Direct water-phase synthesis of lead sulfide quantum dots encapsulated by [small beta]-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chem Commun 52(21):4025–4028

    Article  CAS  Google Scholar 

  70. Zhao D-H, Yang J, Xia R-X, Yao M-H, Jin R-M, Zhao Y-D, Liu B (2018) High quantum yield Ag2S quantum dot@polypeptide-engineered hybrid nanogels for targeted second near-infrared fluorescence/photoacoustic imaging and photothermal therapy. Chem Commun 54(5):527–530

    Article  CAS  Google Scholar 

  71. Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ et al (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:0056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cassette E, Pons T, Bouet C, Helle M, Bezdetnaya L, Marchal F, Dubertret B (2010) Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging. Chem Mater 22(22):6117–6124

    Article  CAS  Google Scholar 

  73. Hu D, Zhang P, Gong P, Lian S, Lu Y, Gao D, Cai L (2011) A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes. Nanoscale 3(11):4724–4732

    Article  CAS  PubMed  Google Scholar 

  74. Nirmal G, Anupam G, Shantimoy K, Siddaramappa BM, Robin J, Lourdu XP, Thalappil P, Kumar PS (2012) Protein-directed synthesis of NIR-emitting, tunable HgS quantum dots and their applications in metal-ion sensing. Small 8(20):3175–3184

    Article  CAS  Google Scholar 

  75. Chen L, Han H (2014) Recent advances in the use of near-infrared quantum dots as optical probes for bioanalytical, imaging and solar cell application. Microchim Acta 181(13):1485–1495

    Article  CAS  Google Scholar 

  76. Li C, Cao L, Zhang Y, Yi P, Wang M, Tan B, Deng Z, Wu D, Wang Q (2015) Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and NIR nanoprobe. Small 11(35):4517–4525

    Article  CAS  PubMed  Google Scholar 

  77. Wu C, Zhang Y, Li Z, Li C, Wang Q (2016) A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 8(25):12531–12539

    Article  CAS  PubMed  Google Scholar 

  78. Yang T, Tang Y, Liu L, Lv X, Wang Q, Ke H, Deng Y, Yang H, Yang X, Liu G et al (2017) Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy. ACS Nano 11(2):1848–1857

    Article  CAS  PubMed  Google Scholar 

  79. Hu F, Li C, Zhang Y, Wang M, Wu D, Wang Q (2015) Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res 8(5):1637–1647

    Article  CAS  Google Scholar 

  80. Tsukasaki Y, Morimatsu M, Nishimura G, Sakata T, Yasuda H, Komatsuzaki A, Watanabe TM, Jin T (2014) Synthesis and optical properties of emission-tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second near-infrared window. RSC Adv 4(77):41164–41171

    Article  CAS  Google Scholar 

  81. Yi H, Ghosh D, Ham M-H, Qi J, Barone PW, Strano MS, Belcher AM (2012) M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett 12(3):1176–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115(19):10816–10906

    Article  CAS  PubMed  Google Scholar 

  83. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  84. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1):49–54

    Article  CAS  Google Scholar 

  85. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1):91–97

    Article  CAS  Google Scholar 

  86. Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM (2014) Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci 111(38):13948–13953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the fund from the Department of Radiology, Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Cheng .

Editor information

Editors and Affiliations

Ethics declarations

Funding:

This work was partially supported by the fund from the Department of Radiology, Stanford University; the Office of Science (BER), US Department of Energy (DE-SC0008397) and the Shenzhen Basic Research Project (JCYJ20170817094201000).

Conflict of Interest:

The authors declare that they have no conflict of interest.

Ethical Approval:

This chapter does not contain any studies with human. All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, S., Cheng, Z. (2019). Advancements of Second Near-Infrared Biological Window Fluorophores: Mechanism, Synthesis, and Application In Vivo. In: Cheng, Z. (eds) Fluorescent Imaging in Medicinal Chemistry . Topics in Medicinal Chemistry, vol 34. Springer, Cham. https://doi.org/10.1007/7355_2019_89

Download citation

Publish with us

Policies and ethics