Skip to main content

Organic Fluorescent Probes for Diagnostics and Bio-Imaging

  • Chapter
  • First Online:
Fluorescent Imaging in Medicinal Chemistry

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 34))

Abstract

Fluorescence bio-imaging holds potential for new approaches for disease detection and diagnosis. Compared with conventional clinical contrast imaging modalities, such as X-ray and MRI, which use contrast agents that are “always on,” fluorescence imaging contrast agents can readily be designed to be activatable under specific circumstances and also can be used in multiplexed imaging schemes. While a wide variety of fluorescence imaging probes have been developed, small organic fluorescence probes have the advantages of being robustly synthesized and characterized, as well as a track record for clinical translation. In this chapter, we discuss organic fluorophores and highlighted some examples of their biological applications. The aim of this chapter is to provide a literature review of the development of organic fluorescent probes for biomedical imaging and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25

    Article  CAS  PubMed  Google Scholar 

  2. Gopalakrishnan V et al (2019) Use of CT imaging to quantify progression and response to treatment in lymphangioleiomyomatosis. Chest 155:962–971

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jeon SK et al (2019) Prospective evaluation of hepatic steatosis using ultrasound attenuation imaging in patients with chronic liver disease with magnetic resonance imaging proton density fat fraction as the reference standard. Ultrasound Med Biol 45:1407–1416

    Article  PubMed  Google Scholar 

  4. Bu L, Shen B, Cheng Z (2014) Fluorescent imaging of cancerous tissues for targeted surgery. Adv Drug Deliv Rev 76:21–38

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ponnuvel K, Kumar M, Padmini V (2016) A new quinoline-based chemosensor for Zn2+ ions and their application in living cell imaging. Sens Actuators B Chem 227:242–247

    Article  CAS  Google Scholar 

  7. Callan JF, de Silva AP, Magri DC (2005) Luminescent sensors and switches in the early 21st century. Tetrahedron 61:8551–8588

    Article  CAS  Google Scholar 

  8. Wang Z et al (2019) A novel isolongifolanone based fluorescent probe with super selectivity and sensitivity for hypochlorite and its application in bio-imaging. Anal Chim Acta 1051:169–178

    Article  CAS  PubMed  Google Scholar 

  9. Alfano RR, Demos SG, Gayen SK (1997) Advances in optical imaging of biomedical mediaa. Ann N Y Acad Sci 820:248–271

    Article  CAS  PubMed  Google Scholar 

  10. Yuan L, Lin W, Zheng K, He L, Huang W (2012) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42:622–661

    Article  Google Scholar 

  11. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  CAS  PubMed  Google Scholar 

  12. Ding F, Zhan Y, Lu X, Sun Y (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9:4370–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X et al (2019) LuPO4:Nd3+ nanophosphors for dual-mode deep tissue NIR-II luminescence/CT imaging. JOL 209:420–426

    CAS  Google Scholar 

  14. Cao Z et al (2018) Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging. Biomaterials 155:103–111

    Article  CAS  PubMed  Google Scholar 

  15. Li X et al (2019) 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. Mater Sci Eng C 100:260–268

    Article  CAS  Google Scholar 

  16. Xue Z, Zeng S, Hao J (2018) Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm. Biomaterials 171:153–163

    Article  CAS  PubMed  Google Scholar 

  17. Gonçalves MST (2008) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  CAS  Google Scholar 

  18. McCorquodale EM, Colyer CL (2001) Indocyanine green as a noncovalent, pseudofluorogenic label for protein determination by capillary electrophoresis. Electrophoresis 22:2403–2408

    Article  CAS  PubMed  Google Scholar 

  19. Rubens FD, Ruel M, Fremes SE (2002) A new and simplified method for coronary and graft imaging during CABG. Heart Surg Forum 5:141–144

    PubMed  Google Scholar 

  20. Mitsuhashi N et al (2008) Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery. J Hepatobiliary Pancreat Surg 15:508–514

    Article  PubMed  Google Scholar 

  21. Ishizawa T et al (2009) Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg 208:e1–e4

    Article  PubMed  Google Scholar 

  22. Ishizawa T et al (2010) Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 97:1369–1377

    Article  CAS  PubMed  Google Scholar 

  23. Raabe A et al (2005) Prospective evaluation of surgical microscope – integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg 103:982–989

    Article  PubMed  Google Scholar 

  24. Stummer W et al (2000) Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    Article  CAS  PubMed  Google Scholar 

  25. Peng Q et al (1997) 5-Aminolevulinic acid-based photodynamic therapy. Cancer 79:2282–2308

    Article  CAS  PubMed  Google Scholar 

  26. Stummer W et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  27. Schucht P et al (2012) Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71:927–936

    Article  PubMed  Google Scholar 

  28. Puppa AD et al (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir 155:965–972

    Article  PubMed  Google Scholar 

  29. Tummers QRJG et al (2014) Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and methylene blue. Eur J Surg Oncol 40:850–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Vorst JR et al (2014) Intraoperative near-infrared fluorescence imaging of parathyroid adenomas with use of low-dose methylene blue. Head neck-J. Sci. Spec. Head Neck 36:853–858

    Article  PubMed  Google Scholar 

  31. Kolemen S, Akkaya EU (2018) Reaction-based BODIPY probes for selective bio-imaging. Coord Chem Rev 354:121–134

    Article  CAS  Google Scholar 

  32. Rurack K, Kollmannsberger M, Daub J (2001) A highly efficient sensor molecule emitting in the near infrared (NIR): 3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene. New J Chem 25:289–292

    Article  CAS  Google Scholar 

  33. Saki N, Dinc T, Akkaya EU (2006) Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold. Tetrahedron 62:2721–2725

    Article  CAS  Google Scholar 

  34. Goud TV, Tutar A, Biellmann J-F (2006) Synthesis of 8-heteroatom-substituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene dyes (BODIPY). Tetrahedron 62:5084–5091

    Article  CAS  Google Scholar 

  35. Benniston AC, Copley G (2009) Lighting the way ahead with boron dipyrromethene (Bodipy) dyes. Phys Chem Chem Phys 11:4124–4131

    Article  CAS  PubMed  Google Scholar 

  36. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  CAS  PubMed  Google Scholar 

  37. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201

    Article  CAS  Google Scholar 

  38. Ma X, Tan Z, Wei G, Wei D, Du Y (2012) Solvent controlled sugar-rhodamine fluorescence sensor for Cu(2+) detection. Analyst 137:1436–1439

    Article  CAS  PubMed  Google Scholar 

  39. Senthil Murugan A, Vidhyalakshmi N, Ramesh U, Annaraj J (2018) In vivo bio-imaging studies of highly selective, sensitive rhodamine based fluorescent chemosensor for the detection of Cu2+/Fe3+ ions. Sens Actuators B Chem. 274:22–29

    Article  CAS  Google Scholar 

  40. Shen S-L, Zhang X-F, Ge Y-Q, Zhu Y, Cao X-Q (2018) A novel ratiometric fluorescent probe for the detection of HOCl based on FRET strategy. Sens Actuators B Chem 254:736–741

    Article  CAS  Google Scholar 

  41. Kilic H, Bozkurt E (2018) A rhodamine-based novel turn on trivalent ions sensor. J Photochem Photobiol A Chem 363:23–30

    Article  CAS  Google Scholar 

  42. Palero JA, De Bruijn HS, Sterenborg H, Gerritsen HC (2006) In vivo nonlinear spectral imaging in mouse skin. Opt Express 14:4395–4402

    Article  PubMed  Google Scholar 

  43. Skala MC et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104:19494–19499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schweitzer D et al (2007) Towards metabolic mapping of the human retina. Microsc Res Tech 70:410–419

    Article  CAS  PubMed  Google Scholar 

  45. Yu Q, Heikal AA (2009) Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol B Biol 95:46–57

    Article  CAS  Google Scholar 

  46. Ghukasyan VV, Kao F-J (2009) Monitoring cellular metabolism with fluorescence lifetime of reduced Nicotinamide adenine dinucleotide. J Phys Chem C 113:11532–11540

    Article  CAS  Google Scholar 

  47. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yaseen MA et al (2013) In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed Opt Express 4:307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H-P et al (2007) Fluorescence lifetime image of a single halobacterium. Chem Phys Lett 442:441–444

    Article  CAS  Google Scholar 

  50. Nakabayashi T, Wang H-P, Kinjo M, Ohta N (2008) Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements. Photochem Photobiol Sci 7:668–670

    Article  CAS  PubMed  Google Scholar 

  51. Ogikubo S et al (2011) Intracellular pH sensing using autofluorescence lifetime microscopy. J Phys Chem B 115:10385–10390

    Article  CAS  PubMed  Google Scholar 

  52. Nakabayashi T et al (2008) Stress-induced environmental changes in a single cell as revealed by fluorescence lifetime imaging. Photochem Photobiol Sci 7:671–674

    Article  CAS  PubMed  Google Scholar 

  53. Ito T et al (2009) Fluorescence lifetime images of green fluorescent protein in HeLa cells during TNF-α induced apoptosis. Photochem Photobiol Sci 8:763–767

    Article  CAS  PubMed  Google Scholar 

  54. Awasthi K, Nakabayashi T, Ohta N (2012) Application of nanosecond pulsed electric fields into HeLa cells expressing enhanced green fluorescent protein and fluorescence lifetime microscopy. J Phys Chem B 116:11159–11165

    Article  CAS  PubMed  Google Scholar 

  55. Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16:19–27

    Article  CAS  PubMed  Google Scholar 

  56. Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Article  CAS  PubMed  Google Scholar 

  57. Auler H, Banzer G (1942) Untersuchungen über die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren. Z Krebsforsch 53:65–68

    Article  CAS  Google Scholar 

  58. Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs 2008:276109

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    Article  CAS  PubMed  Google Scholar 

  60. Blake E, Allen J, Curnow A (2011) An in vitro comparison of the effects of the iron-chelating agents, CP94 and dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection. Photochem Photobiol 87:1419–1426

    Article  CAS  PubMed  Google Scholar 

  61. Winkelman J (1962) The distribution of tetraphenylporphinesulfonate in the tumor-bearing rat. Cancer Res 22:589–596

    CAS  PubMed  Google Scholar 

  62. Lovell JF et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332

    Article  CAS  PubMed  Google Scholar 

  63. Huang H et al (2017) Implantable tin porphyrin-PEG hydrogels with pH-responsive fluorescence. Biomacromolecules 18:562–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang H et al (2014) Pd-porphyrin-cross-linked implantable hydrogels with oxygen-responsive phosphorescence. Adv Healthc Mater 3:891–896

    Article  CAS  PubMed  Google Scholar 

  65. Wong RCH, Lo P-C, Ng DKP (2019) Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord Chem Rev 379:30–46

    Article  CAS  Google Scholar 

  66. van Leengoed HL et al (1994) In vivo fluorescence and photodynamic activity of zinc phthalocyanine administered in liposomes. Br J Cancer 69:840–845

    Article  PubMed  PubMed Central  Google Scholar 

  67. Taratula O et al (2015) Naphthalocyanine-based biodegradable polymeric nanoparticles for image-guided combinatorial phototherapy. Chem Mater 27:6155–6165

    Article  CAS  Google Scholar 

  68. Gasser M, Waaga-Gasser AM (2016) Therapeutic antibodies in cancer therapy. Adv Exp Med Biol 917:95–120

    Article  CAS  PubMed  Google Scholar 

  69. Fay F, Scott CJ (2011) Antibody-targeted nanoparticles for cancer therapy. Immunotherapy 3:381–394

    Article  CAS  PubMed  Google Scholar 

  70. Alibakhshi A et al (2017) Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release 268:323–334

    Article  CAS  PubMed  Google Scholar 

  71. Hollandsworth HM et al (2019) Anti-Claudin-1 conjugated to a near-infrared Fluorophore targets colon cancer in PDOX mouse models. J Surg Res 242:145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maawy AA et al (2015) Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer. PLoS One 10:e0121989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hiroshima Y et al (2015) Photoimmunotherapy inhibits tumor recurrence after surgical resection on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse model. Ann Surg Oncol 22(Suppl 3):S1469–S1474

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boogerd LSF et al (2018) Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol 3:181–191

    Article  PubMed  Google Scholar 

  75. Kijanka M et al (2013) Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery. Eur J Nucl Med Mol Imaging 40:1718–1729

    Article  PubMed  Google Scholar 

  76. van der Vorst JR et al (2013) Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 119:3411–3418

    Article  PubMed  CAS  Google Scholar 

  77. van der Vorst JR et al (2011) Optimization of near-infrared fluorescent sentinel lymph node mapping in cervical cancer patients. Int J Gynecol Cancer 21:1472–1478

    Article  PubMed  PubMed Central  Google Scholar 

  78. Crane LMA et al (2011) Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol 13:1043–1049

    Article  PubMed  Google Scholar 

  79. Fujiwara M, Mizukami T, Suzuki A, Fukamizu H (2009) Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J Plast Reconstr Aesthet Surg 62:E373–E378

    Article  PubMed  Google Scholar 

  80. van der Vorst JR et al (2013) Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma. Br J Dermatol 168:93–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. van Dam GM et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–U202

    Article  PubMed  CAS  Google Scholar 

  82. Tsujino Y, Mizumoto K, Matsuzaka Y, Niihara H, Morita E (2009) Fluorescence navigation with indocyanine green for detecting sentinel nodes in extramammary Paget’s disease and squamous cell carcinoma. J Dermatol 36:90–94

    Article  PubMed  Google Scholar 

  83. Yokoyama N et al (2012) Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging preliminary results of a prospective study. Cancer 118:2813–2819

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki T et al (2013) Cadherin 13 overexpression as an important factor related to the absence of tumor fluorescence in 5-aminolevulinic acid-guided resection of glioma laboratory investigation. J Neurosurg 119:1331–1339

    Article  CAS  PubMed  Google Scholar 

  85. Loja MN et al (2013) Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer. Int J Cancer 132:1613–1623

    Article  CAS  PubMed  Google Scholar 

  86. Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231

    Article  CAS  PubMed  Google Scholar 

  87. Wapnir I et al (2014) Intraoperative imaging of nipple perfusion patterns and ischemic complications in nipple-sparing mastectomies. Ann Surg Oncol 21:100–106

    Article  PubMed  Google Scholar 

  88. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van der Vorst JR et al (2012) 46. Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Eur J Surg Oncol 38:745

    Article  Google Scholar 

  90. Chi C et al (2014) Intraoperative imaging-guided Cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 4:1072–1084

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation – a new cutting edge. Nat Rev Cancer 13:653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. He L, Yang X, Xu K, Kong X, Lin W (2017) A multi-signal fluorescent probe for simultaneously distinguishing and sequentially sensing cysteine/homocysteine, glutathione, and hydrogen sulfide in living cells. Chem Sci 8:6257–6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang L et al (2016) A highly selective and sensitive near-infrared fluorescent probe for imaging of hydrogen sulphide in living cells and mice. Sci Rep 6:18868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xie X, Yin C, Yue Y, Chao J, Huo F (2018) Fluorescent probe detect distinguishly sulfite/hydrogen sulfide and thiol via two emission channels in vivo. Sens Actuators B Chem 277:647–653

    Article  CAS  Google Scholar 

  95. Yin J et al (2016) Correction to ‘cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues’. J Am Chem Soc 138:7442

    Article  CAS  PubMed  Google Scholar 

  96. Zhang X et al (2019) Mitochondria-targeting near-infrared ratiometric fluorescent probe for selective imaging of cysteine in orthotopic lung cancer mice. Sens Actuators B Chem 282:69–77

    Article  CAS  Google Scholar 

  97. Chen X, Ko S-K, Kim MJ, Shin I, Yoon J (2010) A thiol-specific fluorescent probe and its application for bioimaging. Chem Commun 46:2751–2753

    Article  CAS  Google Scholar 

  98. Zhu B et al (2010) A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications. Chem Commun 46:5710–5712

    Article  CAS  Google Scholar 

  99. Lim CS et al (2011) Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe. J Am Chem Soc 133:11132–11135

    Article  CAS  PubMed  Google Scholar 

  100. Kellum JA, Song M, Li J (2004) Science review: extracellular acidosis and the immune response: clinical and physiologic implications. Crit Care 8:331

    Article  PubMed  PubMed Central  Google Scholar 

  101. Coakley RD et al (2003) Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci 100:16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gillies RJ, Schomack PA, Secomb TW, Raghunand N (1999) Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Overly CC, Lee K-D, Berthiaume E, Hollenbeck PJ (1995) Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci 92:3156–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martin GR, Jain RK (1993) Fluorescence ratio imaging measurement of pH gradients: calibration and application in normal and tumor tissues. Microvasc Res 46:216–230

    Article  CAS  PubMed  Google Scholar 

  105. Bassnett S, Reinisch L, Beebe DC (1990) Intracellular pH measurement using single excitation-dual emission fluorescence ratios. Am J Physiol 258:C171–C178

    Article  CAS  PubMed  Google Scholar 

  106. Murphy RF, Powers S, Cantor CR (1984) Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol 98:1757–1762

    Article  CAS  PubMed  Google Scholar 

  107. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  CAS  PubMed  Google Scholar 

  108. Kim S, Pudavar HE, Prasad PN (2006) Dye-concentrated organically modified silica nanoparticles as a ratiometric fluorescent pH probe by one-and two-photon excitation. Chem Commun 19:2071–2073

    Article  CAS  Google Scholar 

  109. McNamara KP et al (2001) Synthesis, characterization, and application of fluorescence sensing lipobeads for intracellular pH measurements. Anal Chem 73:3240–3246

    Article  CAS  PubMed  Google Scholar 

  110. Ji J, Rosenzweig N, Griffin C, Rosenzweig Z (2000) Synthesis and application of submicrometer fluorescence sensing particles for lysosomal pH measurements in murine macrophages. Anal Chem 72:3497–3503

    Article  CAS  PubMed  Google Scholar 

  111. Marshall MV et al (2010) Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J 2:12–25

    PubMed  PubMed Central  Google Scholar 

  112. Almutairi A, Guillaudeu SJ, Berezin MY, Achilefu S, Fréchet JMJ (2008) Biodegradable pH-sensing dendritic Nanoprobes for near-infrared fluorescence lifetime and intensity imaging. J Am Chem Soc 130:444–445

    Article  CAS  PubMed  Google Scholar 

  113. Tang B et al (2009) A near-infrared neutral pH fluorescent probe for monitoring minor pH changes: imaging in living HepG2 and HL-7702 cells. J Am Chem Soc 131:3016–3023

    Article  CAS  PubMed  Google Scholar 

  114. Zhang T et al (2013) Porphyrin-based ytterbium complexes targeting anionic phospholipid membranes as selective biomarkers for cancer cell imaging. Chem Commun 49:7252–7254

    Article  CAS  Google Scholar 

  115. Trivedi ER et al (2010) Chiral porphyrazine near-IR optical imaging agent exhibiting preferential tumor accumulation. Proc Natl Acad Sci 107:1284–1288

    Article  CAS  PubMed  Google Scholar 

  116. Trivedi ER et al (2010) Synthesis of heteroatom substituted naphthoporphyrazine derivatives with near-infrared absorption and emission. J Org Chem 75:1799–1802

    Article  CAS  PubMed  Google Scholar 

  117. Zhu S et al (2013) Highly water-soluble, near-infrared emissive BODIPY polymeric dye bearing RGD peptide residues for cancer imaging. Anal Chim Acta 758:138–144

    Article  CAS  PubMed  Google Scholar 

  118. Ma J et al (2018) A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell. Talanta 182:464–469

    Article  CAS  PubMed  Google Scholar 

  119. Cooper MA, Williams DH (1999) Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. Chem Biol 6:891–899

    Article  CAS  PubMed  Google Scholar 

  120. Kotra LP, Amro NA, Liu GY, Mobashery S (2000) Visualizing bacteria at high resolution. ASM News 66:675–681

    Google Scholar 

  121. Fernandez-Lopez S et al (2001) Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412:452–455

    Article  CAS  PubMed  Google Scholar 

  122. Leevy WM et al (2006) Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc 128:16476–16477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ning X et al (2011) Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 10:602–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang L, Xia Q, Liu R, Qu J (2018) A red fluorescent probe for ribonucleic acid (RNA) detection, cancer cell tracing and tumor growth monitoring. Sens Actuators B Chem 273:935–943

    Article  CAS  Google Scholar 

  125. Cal PMSD et al (2016) Site-selective installation of BASHY fluorescent dyes to Annexin V for targeted detection of apoptotic cells. Chem Commun 53:368–371

    Article  CAS  Google Scholar 

  126. Georgiev NI, Krasteva PV, Bojinov VB (2019) A ratiometric 4-amido-1,8-naphthalimide fluorescent probe based on excimer-monomer emission for determination of pH and water content in organic solvents. JOL 212:271–278

    CAS  Google Scholar 

  127. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44:83–90

    Article  CAS  PubMed  Google Scholar 

  129. Wang L, Zhuo S, Tang H, Cao D (2018) A near-infrared turn on fluorescent probe for cysteine based on organic nanoparticles. Sens Actuators B Chem 277:437–444

    Article  CAS  Google Scholar 

  130. Martinić I, Eliseeva SV, Petoud S (2017) Near-infrared emitting probes for biological imaging: organic fluorophores, quantum dots, fluorescent proteins, lanthanide(III) complexes and nanomaterials. JOL 189:19–43

    Google Scholar 

  131. Kim D, Ryu HG, Ahn KH (2014) Recent development of two-photon fluorescent probes for bioimaging. Org Biomol Chem 12:4550–4566

    Article  CAS  PubMed  Google Scholar 

  132. Chinnathambi S, Shirahata N (2019) Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci Technol Adv Mater 20:337–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao J et al (2018) Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 8:320–338

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rieffel J et al (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27:1785–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang Y et al (2016) Surfactant-stripped frozen pheophytin micelles for multimodal gut imaging. Adv Mater 28:8524–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhou Y et al (2016) A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging. Theranostics 6:688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Tianjin University Start-up Funding and the Chinese One-thousand Young Talent Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiao Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Funding:

This chapter was made possible by Tianjin University Start-up Funding.

Conflict of Interest:

The authors declare no conflict of interest.

Ethical Approval:

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X., Lovell, J.F., Murthy, N., Zhang, Y. (2019). Organic Fluorescent Probes for Diagnostics and Bio-Imaging. In: Cheng, Z. (eds) Fluorescent Imaging in Medicinal Chemistry . Topics in Medicinal Chemistry, vol 34. Springer, Cham. https://doi.org/10.1007/7355_2019_88

Download citation

Publish with us

Policies and ethics