Skip to main content

Chemical Compounds Targeting DNA Methylation and Hydroxymethylation

  • Chapter
  • First Online:
Chemical Epigenetics

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 33))

Abstract

DNA methylation and its oxidised forms participate in the interpretation and regulation of the human genome. Many questions arise around the enzymes responsible for these chemical modifications on DNA, and their roles in transcriptional regulation. These epigenetic marks are very dynamic and specific in their location and context (tissues, diseases, etc.). We review the major enzymes involved in DNA methylation and oxidation, with a focus on the DNA methyltransferases and TET enzymes. The principal compounds that inhibit these enzymes are presented since they will help address these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-mA:

1-Methyl-adenine

2OG:

2-Oxoglutarate

3-mC:

3-Methylcytosine

3-mT:

3-Methyl-thymine

5-aza-C:

5-Aza-cytosine

5-azadC:

5-Aza-2′-deoxycytosine

5-caC:

5-Carboxycytosine

5-fC:

5-Formylcytosine

5-hmC:

5-Hydroxymethylcytosine

5-mC:

5-Methylcytosine

5-xC:

5-Modified cytosine

6-mA:

6-Methyl-adenine

AML:

Acute myeloid leukaemia

AM-PD:

Active modification-passive dilution

BAH1 and BAH2:

Bromo-adjacent homology domains 1 and 2

BER:

Base excision repair

CFP1:

CpG-binding protein, CXXC finger protein 1

CMML:

Chronic myelomonocytic leukaemia

CpA:

Cytidine pairing adenosine

CpC:

Cytidine pairing cytidine

CpG:

Cytidine pairing guanosine

CpT:

Cytidine pairing thymidine

CXXC:

CXXC domain

DMAP domain:

DNA methyltransferase-associated protein 1-interacting domain

DNMT:

C5-DNA methyltransferase

DSBH:

Double-stranded β-ηelix

EGCG:

Epigallocatechin gallate

ELISA:

Enzyme-linked immunosorbent assay

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

FH:

Fumarate hydratase

FTO:

Fat mass and obesity-associated protein

HDAC:

Histone deacetylase

IDAX:

Inhibition of the Dvl and Axin complex

IDH:

Isocitrate dehydrogenase

LCI:

Low-complexity insert

LC-MS:

Liquid chromatography-mass spectrometry

MALDI-TOF:

Matrix-assisted laser desorption/ionisation time-of-flight

MBP:

Methyl-binding protein

MDS:

Myelodysplastic syndrome

MLL:

Mixed lineage leukaemia

mTet1:

Murine TET

NgTet1:

Naegleria gruberi TET

NLS:

Nuclear localisation signal

NOG:

N-Oxalylglycine

PBD:

PCNA-binding domain

PHD:

Plant homeodomain

PRMT:

Protein arginine methyltransferase

PWWP:

Proline-tryptophan-tryptophan-proline domain

R/S-2HG:

R/S-2-hydroxyglutarate

RFTD:

Replication foci targeting sequence (RFTS) domain

ROS1:

Repressor of silencing 1

SAH/AdoHys:

S-Adenosyl-l-homocysteine

SAM/AdoMet:

S-Adenosyl-l-methionine

SDH:

Succinate dehydrogenase

SPR:

Surface plasmon resonance

TCA:

Tricarboxylic acid

TDG:

Thymidine-DNA glycosylase

TET:

Ten-eleven translocation

TLC:

Thin-layer chromatography

TRDMT1:

tRNA aspartic acid methyltransferase

References

  1. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432. https://doi.org/10.1038/nature05918

    Article  CAS  PubMed  Google Scholar 

  2. Gros C, Fahy J, Halby L et al (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94:2280–2296. https://doi.org/10.1016/J.BIOCHI.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  3. Ludwig AK, Zhang P, Cardoso MC (2016) Modifiers and readers of DNA modifications and their impact on genome structure, expression, and stability in disease. Front Genet 7:115. https://doi.org/10.3389/fgene.2016.00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39:310–318. https://doi.org/10.1016/j.tibs.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  5. Kriaucionis S, Heintz N (2009) The nuclear DNA Base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930. https://doi.org/10.1126/science.1169786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kubik G, Summerer D (2015) Deciphering epigenetic cytosine modifications by direct molecular recognition. ACS Chem Biol 10:1580–1589. https://doi.org/10.1021/acschembio.5b00158

    Article  CAS  PubMed  Google Scholar 

  8. Breiling A, Lyko F (2015) Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8:24. https://doi.org/10.1186/s13072-015-0016-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen H-F, Wu K-J (2016) Epigenetics, TET proteins, and hypoxia in epithelial-mesenchymal transition and tumorigenesis. Biomedicine (Taipei) 6(1). https://doi.org/10.7603/s40681-016-0001-9

  10. Spruijt CG, Gnerlich F, Smits AH et al (2013) Dynamic readers for 5-(Hydroxy) methylcytosine and its oxidized derivatives. Cell 152:1146–1159. https://doi.org/10.1016/j.cell.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  11. Traube C, Silver G, Reeder RW et al (2017) Delirium in critically ill children. Crit Care Med 45:584–590. https://doi.org/10.1097/CCM.0000000000002250

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine. J Biol Chem 286:35334–35338. https://doi.org/10.1074/jbc.C111.284620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwan K, Rahimoff R, Kirchner A et al (2018) 5-formylcytosine to cytosine conversion by C-C bond cleavage in vivo. Nat Chem Biol 14:72–78. https://doi.org/10.1038/nchembio.2531

    Article  CAS  PubMed  Google Scholar 

  14. Zhu J-K (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166. https://doi.org/10.1146/annurev-genet-102108-134205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  16. Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Genome Res 14:9–25. https://doi.org/10.1159/000130315

    Article  CAS  Google Scholar 

  17. Drahovsky D, Boehm TLJ (1980) Enzymatic dna methylation in higher eukaryotes. Int J Biochem 12:523–528. https://doi.org/10.1016/0020-711X(80)90002-6

    Article  CAS  PubMed  Google Scholar 

  18. Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: the carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203:971–983. https://doi.org/10.1016/0022-2836(88)90122-2

    Article  CAS  PubMed  Google Scholar 

  19. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220. https://doi.org/10.1038/890

    Article  CAS  PubMed  Google Scholar 

  20. Aapola U, Shibuya K, Scott HS et al (2000) Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5- methyltransferase 3 gene family. Genomics 65:293–298. https://doi.org/10.1006/GENO.2000.6168

    Article  CAS  PubMed  Google Scholar 

  21. Bourc’his D, Xu GL, Lin CS et al (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539. https://doi.org/10.1126/science.1065848

    Article  PubMed  Google Scholar 

  22. Jia D, Jurkowska RZ, Zhang X et al (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251. https://doi.org/10.1038/nature06146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19:81–92. https://doi.org/10.1038/nrg.2017.80

    Article  CAS  PubMed  Google Scholar 

  24. Rondelet G, Wouters J (2017) Human DNA (cytosine-5)-methyltransferases: a functional and structural perspective for epigenetic cancer therapy. Biochimie 139:137–147. https://doi.org/10.1016/J.BIOCHI.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  25. Jurkowski TP, Jeltsch A (2011) On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2. PLoS One 6:e28104. https://doi.org/10.1371/journal.pone.0028104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gowher H, Jeltsch A (2018) Mammalian DNA methyltransferases: new discoveries and open questions. Biochem Soc Trans 46:1191–1202. https://doi.org/10.1042/BST20170574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin S, Min J (2014) Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 39:536–547. https://doi.org/10.1016/j.tibs.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  28. Yarychkivska O, Shahabuddin Z, Comfort N et al (2018) BAH domains and a histone-like motif in DNA methyltransferase 1 (DNMT1) regulate de novo and maintenance methylation in vivo. J Biol Chem 293:19466–19475. https://doi.org/10.1074/jbc.RA118.004612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang ZM, Liu S, Lin K et al (2015) Crystal structure of human DNA methyltransferase 1. J Mol Biol 427:2520–2531. https://doi.org/10.1016/j.jmb.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ye F, Kong X, Zhang H et al (2018) Biochemical studies and molecular dynamic simulations reveal the molecular basis of conformational changes in DNA methyltransferase-1. ACS Chem Biol 13:772–781. https://doi.org/10.1021/acschembio.7b00890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Issa J-PJ, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15:3938–3946. https://doi.org/10.1158/1078-0432.CCR-08-2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692. https://doi.org/10.1016/j.cell.2007.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8:a019505. https://doi.org/10.1101/cshperspect.a019505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  35. Feinberg AP (2018) The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 378:1323–1334. https://doi.org/10.1056/NEJMra1402513

    Article  CAS  PubMed  Google Scholar 

  36. Mikeska T, Craig J, Mikeska T, Craig JM (2014) DNA methylation biomarkers: cancer and beyond. Genes (Basel) 5:821–864. https://doi.org/10.3390/genes5030821

    Article  CAS  Google Scholar 

  37. Leygo C, Williams M, Jin HC et al (2017) DNA methylation as a noninvasive epigenetic biomarker for the detection of cancer. Dis Markers 2017:1–13. https://doi.org/10.1155/2017/3726595

    Article  CAS  Google Scholar 

  38. Ahuja N, Sharma AR, Baylin SB (2016) Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med 67:73–89. https://doi.org/10.1146/annurev-med-111314-035900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahuja N, Easwaran H, Baylin SB (2014) Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest 124:56–63. https://doi.org/10.1172/JCI69736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440. https://doi.org/10.1038/nature05919

    Article  CAS  PubMed  Google Scholar 

  41. Velasco G, Francastel C (2018) Genetics meets DNA methylation in rare diseases. Clin Genet 95:210–220. https://doi.org/10.1111/cge.13480

    Article  CAS  PubMed  Google Scholar 

  42. Lopez M, Halby L, Arimondo PB (2016) DNA methyltransferase inhibitors: development and applications. Adv Exp Med Biol 945:431–473. https://doi.org/10.1007/978-3-319-43624-1_16

    Article  CAS  PubMed  Google Scholar 

  43. Andersen GB, Tost J (2018) A summary of the biological processes, disease-associated changes, and clinical applications of DNA methylation. Methods Mol Biol 1708:3–30

    Article  CAS  PubMed  Google Scholar 

  44. Jones PA, Issa J-PJ, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17:630–641. https://doi.org/10.1038/nrg.2016.93

    Article  CAS  PubMed  Google Scholar 

  45. Okano M, Xie S, Li E (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res 26:2536–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tuorto F, Liebers R, Musch T et al (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905. https://doi.org/10.1038/nsmb.2357

    Article  CAS  PubMed  Google Scholar 

  47. Goll MG, Kirpekar F, Maggert KA et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398. https://doi.org/10.1126/science.1120976

    Article  CAS  PubMed  Google Scholar 

  48. Govindaraju G, Jabeena C, Sethumadhavan DV et al (2017) DNA methyltransferase homologue TRDMT1 in plasmodium falciparum specifically methylates endogenous aspartic acid tRNA. Biochim Biophys Acta-Gene Regul Mech 1860:1047–1057. https://doi.org/10.1016/j.bbagrm.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  49. Capuano F, Mülleder M, Kok R et al (2014) Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 86:3697–3702. https://doi.org/10.1021/ac500447w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zadražil S, Fučík V, Bartl P et al (1965) The structure of DNA from Escherichia coli cultured in the presence of 5-azacytidine. Biochim Biophys Acta Nucleic Acids Protein Synth 108:701–703. https://doi.org/10.1016/0005-2787(65)90066-3

    Article  Google Scholar 

  51. Sorm F, Vesely J (1964) The activity of a new antimetabolite, 5-azacytidine, against lymphoid. Neoplasma 11:123–130

    CAS  PubMed  Google Scholar 

  52. Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771–779

    Article  CAS  PubMed  Google Scholar 

  53. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    Article  CAS  PubMed  Google Scholar 

  54. Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33:9–10. https://doi.org/10.1016/0092-8674(83)90327-6

    Article  CAS  PubMed  Google Scholar 

  55. Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A 81:6993–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schermelleh L, Spada F, Easwaran HP et al (2005) Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods 2:751–756. https://doi.org/10.1038/nmeth794

    Article  CAS  PubMed  Google Scholar 

  57. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463. https://doi.org/10.1038/nature02625

    Article  CAS  PubMed  Google Scholar 

  58. Rogstad DK, Herring JL, Theruvathu JA et al (2009) Chemical decomposition of 5-aza-2′-deoxycytidine (Decitabine): kinetic analyses and identification of products by NMR, HPLC, and mass spectrometry. Chem Res Toxicol 22:1194–1204. https://doi.org/10.1021/tx900131u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Erdmann A, Halby L, Fahy J, Arimondo PB (2015) Targeting DNA methylation with small molecules: what’s next? J Med Chem 58:2569–2583. https://doi.org/10.1021/jm500843d

    Article  CAS  PubMed  Google Scholar 

  60. Fahy J, Jeltsch A, Arimondo PB (2012) DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies. Expert Opin Ther Pat 22:1427–1442. https://doi.org/10.1517/13543776.2012.729579

    Article  CAS  PubMed  Google Scholar 

  61. Agrawal K, Das V, Vyas P, Hajdúch M (2018) Nucleosidic DNA demethylating epigenetic drugs – a comprehensive review from discovery to clinic. Pharmacol Ther 188:45–79. https://doi.org/10.1016/J.PHARMTHERA.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  62. Chiappinelli KB, Zahnow CA, Ahuja N, Bylin SB (2016) Combining epigenetic and immunotherapy to combat cancer. Cancer Res 76:1683–1689. https://doi.org/10.1158/0008-5472.CAN-15-2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hossain MZ, Healey MA, Lee C et al (2013) DNA-intercalators causing rapid re-expression of methylated and silenced genes in cancer cells. Oncotarget 4:298–309. https://doi.org/10.18632/oncotarget.863

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cherepanova NA, Ivanov AA, Maltseva DV et al (2011) Dimeric bisbenzimidazoles inhibit the DNA methylation catalyzed by the murine Dnmt3a catalytic domain. J Enzyme Inhib Med Chem 26:295–300. https://doi.org/10.3109/14756366.2010.499098

    Article  CAS  PubMed  Google Scholar 

  65. Zwergel C, Valente S, Mai A (2015) DNA methyltransferases inhibitors from natural sources. Curr Top Med Chem 16:680–696. https://doi.org/10.2174/1568026615666150825141505

    Article  CAS  Google Scholar 

  66. Lopez M, Leroy M, Etievant C et al (2016) Drug discovery methods. Drug discovery in cancer epigenetics. Elsevier, Amsterdam, pp 63–95

    Chapter  Google Scholar 

  67. Song J, Teplova M, Ishibe-Murakami S, Patel DJ (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335:709–712. https://doi.org/10.1126/science.1214453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Siedlecki P, Zielenkiewicz P (2006) Mammalian DNA methyltransferases. Acta Biochim Pol 53:245–256

    Article  CAS  PubMed  Google Scholar 

  69. Lin X, Asgari K, Putzi MJ et al (2001) Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res 61:8611–8616. https://doi.org/10.1158/0008-5472.can-04-2957

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki T, Tanaka R, Hamada S et al (2010) Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 20:1124–1127. https://doi.org/10.1016/J.BMCL.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  71. Asgatay S, Champion C, Marloie G et al (2014) Synthesis and evaluation of analogues of N-phthaloyl-l-tryptophan (RG108) as inhibitors of DNA methyltransferase 1. J Med Chem 57:421–434. https://doi.org/10.1021/jm401419p

    Article  CAS  PubMed  Google Scholar 

  72. Penter L, Maier B, Frede U et al (2015) A rapid screening system evaluates novel inhibitors of DNA methylation and suggests F-box proteins as potential therapeutic targets for high-risk neuroblastoma. Target Oncol 10:523–533. https://doi.org/10.1007/s11523-014-0354-5

    Article  PubMed  Google Scholar 

  73. Stresemann C, Brueckner B, Musch T et al (2006) Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66:2794–2800. https://doi.org/10.1158/0008-5472.CAN-05-2821

    Article  CAS  PubMed  Google Scholar 

  74. Graça I, Sousa EJ, Baptista T et al (2014) Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des 20:1803–1811

    Article  PubMed  Google Scholar 

  75. Machnes ZM, Huang TCT, Chang PKY et al (2013) DNA methylation mediates persistent epileptiform activity in vitro and in vivo. PLoS One 8:e76299. https://doi.org/10.1371/journal.pone.0076299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang S, Tang B, Fan C et al (2015) Effect of DNMT inhibitor on bovine parthenogenetic embryo development. Biochem Biophys Res Commun 466:505–511. https://doi.org/10.1016/j.bbrc.2015.09.060

    Article  CAS  PubMed  Google Scholar 

  77. Meadows JP, Guzman-Karlsson MC, Phillips S et al (2015) DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal 8:ra61. https://doi.org/10.1126/scisignal.aab0715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chestnut BA, Chang Q, Price A et al (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636. https://doi.org/10.1523/JNEUROSCI.1639-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rondelet G, Fleury L, Faux C et al (2017) Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med Chem 9:1465–1481. https://doi.org/10.4155/fmc-2017-0074

    Article  CAS  PubMed  Google Scholar 

  80. Datta J, Ghoshal K, Denny WA et al (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 69:4277–4285. https://doi.org/10.1158/0008-5472.CAN-08-3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gros C, Fleury L, Nahoum V et al (2015) New insights on the mechanism of quinoline-based DNA methyltransferase inhibitors. J Biol Chem 290:6293–6302. https://doi.org/10.1074/jbc.M114.594671

    Article  CAS  PubMed  Google Scholar 

  82. Valente S, Liu Y, Schnekenburger M et al (2014) Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem 57:701–713. https://doi.org/10.1021/jm4012627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ceccaldi A, Rajavelu A, Champion C et al (2011) C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Chembiochem 12:1337–1345. https://doi.org/10.1002/cbic.201100130

    Article  CAS  PubMed  Google Scholar 

  84. Villar-Garea A, Fraga MF, Espada J, Esteller M (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63:4984–4989

    CAS  PubMed  Google Scholar 

  85. Lee BH, Yegnasubramanian S, Lin X, Nelson WG (2005) Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 280:40749–40756. https://doi.org/10.1074/jbc.M505593200

    Article  CAS  PubMed  Google Scholar 

  86. Castellano S, Kuck D, Sala M et al (2008) Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 51:2321–2325. https://doi.org/10.1021/jm7015705

    Article  CAS  PubMed  Google Scholar 

  87. Castellano S, Kuck D, Viviano M et al (2011) Synthesis and biochemical evaluation of δ(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J Med Chem 54:7663–7677. https://doi.org/10.1021/jm2010404

    Article  CAS  PubMed  Google Scholar 

  88. Halby L, Champion C, Sénamaud-Beaufort C et al (2012) Rapid synthesis of new DNMT inhibitors derivatives of procainamide. Chembiochem 13:157–165. https://doi.org/10.1002/cbic.201100522

    Article  CAS  PubMed  Google Scholar 

  89. Fagan RL, Cryderman DE, Kopelovich L et al (2013) Laccaic acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1. J Biol Chem 288:23858–23867. https://doi.org/10.1074/jbc.M113.480517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ceccaldi A, Rajavelu A, Ragozin S et al (2013) Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol 8:543–548. https://doi.org/10.1021/cb300565z

    Article  CAS  PubMed  Google Scholar 

  91. Kilgore JA, Du X, Melito L et al (2013) Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. J Biol Chem 288:19673–19684. https://doi.org/10.1074/jbc.M112.443895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen S, Wang Y, Zhou W et al (2014) Identifying novel selective non-nucleoside DNA methyltransferase 1 inhibitors through docking-based virtual screening. J Med Chem 57:9028–9041. https://doi.org/10.1021/jm501134e

    Article  CAS  PubMed  Google Scholar 

  93. Ye Y, Stivers JT (2010) Fluorescence-based high-throughput assay for human DNA (cytosine-5)-methyltransferase 1. Anal Biochem 401:168–172. https://doi.org/10.1016/j.ab.2010.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Halby L, Marechal N, Pechalrieu D et al (2018) Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philos Trans R Soc Lond B Biol Sci 373:20170072. https://doi.org/10.1098/rstb.2017.0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miletić V, Odorčić I, Nikolić P, Svedružić ŽM (2017) In silico design of the first DNA-independent mechanism-based inhibitor of mammalian DNA methyltransferase Dnmt 1. PLoS One 12:e0174410. https://doi.org/10.1371/journal.pone.0174410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Halby L, Menon Y, Rilova E et al (2017) Rational design of bisubstrate-type analogues as inhibitors of DNA methyltransferases in cancer cells. J Med Chem 60:4665–4679. https://doi.org/10.1021/acs.jmedchem.7b00176

    Article  CAS  PubMed  Google Scholar 

  97. Ganesan A (2016) Multitarget drugs: an epigenetic epiphany. ChemMedChem 11:1227–1241. https://doi.org/10.1002/cmdc.201500394

    Article  CAS  PubMed  Google Scholar 

  98. Rotili D, Tarantino D, Marrocco B et al (2014) Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity. PLoS One 9:e96941. https://doi.org/10.1371/journal.pone.0096941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. San José-Enériz E, Agirre X, Rabal O et al (2017) Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nat Commun 8:15424. https://doi.org/10.1038/ncomms15424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yuan Z, Sun Q, Li D et al (2017) Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur J Med Chem 134:281–292. https://doi.org/10.1016/J.EJMECH.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  101. Erdmann A, Arimondo PB, Guianvarc’h D (2016) Structure-guided optimization of DNA methyltransferase inhibitors. Epi-informatics. Elsevier, Amsterdam, pp 53–73

    Chapter  Google Scholar 

  102. Castillo-Aguilera O, Depreux P, Halby L et al (2017) DNA methylation targeting: the DNMT/HMT crosstalk challenge. Biomol Ther 7:3. https://doi.org/10.3390/biom7010003

    Article  CAS  Google Scholar 

  103. Mo A, Mukamel EA, Davis FP et al (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86:1369–1384. https://doi.org/10.1016/j.neuron.2015.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mayer W, Niveleau A, Walter J et al (2000) Embryogenesis: demethylation of the zygotic paternal genome. Nature 403:501–502. https://doi.org/10.1038/35000656

    Article  CAS  PubMed  Google Scholar 

  105. Lorsbach RB, Moore J, Mathew S et al (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641. https://doi.org/10.1038/sj.leu.2402834

    Article  CAS  PubMed  Google Scholar 

  106. Borst P, Sabatini R (2008) Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol 62:235–251. https://doi.org/10.1146/annurev.micro.62.081307.162750

    Article  CAS  PubMed  Google Scholar 

  107. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303. https://doi.org/10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sudhamalla B, Dey D, Breski M, Islam K (2017) A rapid mass spectrometric method for the measurement of catalytic activity of ten-eleven translocation enzymes. Anal Biochem 534:28–35. https://doi.org/10.1016/j.ab.2017.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He Y-F, Li B-Z, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ito S, D’alessio AC, Taranova OV et al (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133. https://doi.org/10.1038/nature09303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Iyer LM, Zhang D, Maxwell Burroughs A, Aravind L (2013) Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Res 41:7635–7655. https://doi.org/10.1093/nar/gkt573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hashimoto H, Pais JE, Zhang X et al (2014) Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 506:391–395. https://doi.org/10.1038/nature12905

    Article  CAS  PubMed  Google Scholar 

  113. Aik W, McDonough MA, Thalhammer A et al (2012) Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr Opin Struct Biol 22:691–700. https://doi.org/10.1016/j.sbi.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  114. Hu L, Li Z, Cheng J et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555. https://doi.org/10.1016/j.cell.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  115. Shen L, Song C-X, He C, Zhang Y (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614. https://doi.org/10.1146/annurev-biochem-060713-035513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McDonough MA, Loenarz C, Chowdhury R et al (2010) Structural studies on human 2-oxoglutarate dependent oxygenases. Curr Opin Struct Biol 20:659–672. https://doi.org/10.1016/j.sbi.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  117. Loenarz C, Schofield CJ (2008) Expanding chemical biology of 2-oxoglutarate oxygenases. Nat Chem Biol 4:152–156. https://doi.org/10.1038/nchembio0308-152

    Article  CAS  PubMed  Google Scholar 

  118. Hu L, Lu J, Cheng J et al (2015) Structural insight into substrate preference for TET-mediated oxidation. Nature 527:118–122. https://doi.org/10.1038/nature15713

    Article  CAS  PubMed  Google Scholar 

  119. Fu L, Guerrero CR, Zhong N et al (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 136:11582–11585. https://doi.org/10.1021/ja505305z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schröder AS, Parsa E, Iwan K et al (2016) 2′-(R)-fluorinated mC, hmC, fC and caC triphosphates are substrates for DNA polymerases and TET-enzymes. Chem Commun 52:14361–14364. https://doi.org/10.1039/C6CC07517G

    Article  CAS  Google Scholar 

  121. Pais JE, Dai N, Tamanaha E et al (2015) Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine. Proc Natl Acad Sci 112:4316–4321. https://doi.org/10.1073/pnas.1417939112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pfaffeneder T, Spada F, Wagner M et al (2014) Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol 10:574–581. https://doi.org/10.1038/nchembio.1532

    Article  CAS  PubMed  Google Scholar 

  123. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022. https://doi.org/10.1101/gad.2037511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Globisch D, Münzel M, Müller M et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367. https://doi.org/10.1371/journal.pone.0015367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bachman M, Uribe-Lewis S, Yang X et al (2015) 5-formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol 11:555–557. https://doi.org/10.1038/nchembio.1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu Y, Wu F, Tan L et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464. https://doi.org/10.1016/J.MOLCEL.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Raiber E-A, Murat P, Chirgadze DY et al (2015) 5-Formylcytosine alters the structure of the DNA double helix. Nat Struct Mol Biol 22:44–49. https://doi.org/10.1038/nsmb.2936

    Article  CAS  PubMed  Google Scholar 

  128. Hardwick JS, Ptchelkine D, El-Sagheer AH et al (2017) 5-Formylcytosine does not change the global structure of DNA. Nat Struct Mol Biol 24:544–552. https://doi.org/10.1038/nsmb.3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Raiber E-A, Portella G, Cuesta SM et al (2017) 5-Formylcytosine controls nucleosome positioning through covalent histone-DNA interaction. bioRxiv:224444. https://doi.org/10.1101/224444

  130. Kellinger MW, Song C-X, Chong J et al (2012) 5-Formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat Struct Mol Biol 19:831–833. https://doi.org/10.1038/nsmb.2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Iurlaro M, Ficz G, Oxley D et al (2013) A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 14:R119. https://doi.org/10.1186/gb-2013-14-10-r119

    Article  PubMed  PubMed Central  Google Scholar 

  132. Huang H, Jiang X, Li Z et al (2013) TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci 110:11994–11999. https://doi.org/10.1073/pnas.1310656110

    Article  PubMed  PubMed Central  Google Scholar 

  133. Takai H, Masuda K, Sato T et al (2014) 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex. Cell Rep 9:48–60. https://doi.org/10.1016/j.celrep.2014.08.071

    Article  CAS  PubMed  Google Scholar 

  134. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–750. https://doi.org/10.1101/gad.276568.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Langemeijer SMC, Kuiper RP, Berends M et al (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41:838–842. https://doi.org/10.1038/ng.391

    Article  CAS  PubMed  Google Scholar 

  136. Weissmann S, Alpermann T, Grossmann V et al (2012) Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26:934–942. https://doi.org/10.1038/leu.2011.326

    Article  CAS  PubMed  Google Scholar 

  137. Quivoron C, Couronné L, Della Valle V et al (2011) TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20:25–38. https://doi.org/10.1016/J.CCR.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  138. Quesada V, Conde L, Villamor N et al (2012) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44:47–52. https://doi.org/10.1038/ng.1032

    Article  CAS  Google Scholar 

  139. Yang H, Liu Y, Bai F et al (2013) Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32:663–669. https://doi.org/10.1038/onc.2012.67

    Article  CAS  PubMed  Google Scholar 

  140. Bachman M, Uribe-Lewis S, Yang X et al (2014) 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 6:1049–1055. https://doi.org/10.1038/nchem.2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Song C-X, Yi C, He C (2012) Mapping recently identified nucleotide variants in the genome and transcriptome. Nat Biotechnol 30:1107–1116. https://doi.org/10.1038/nbt.2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Terragni J, Bitinaite J, Zheng Y, Pradhan S (2012) Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Biochemistry 51:1009–1019. https://doi.org/10.1021/bi2014739

    Article  CAS  PubMed  Google Scholar 

  143. Booth MJ, Raiber E-A, Balasubramanian S (2015) Chemical methods for decoding cytosine modifications in DNA. Chem Rev 115:2240–2254. https://doi.org/10.1021/cr5002904

    Article  CAS  PubMed  Google Scholar 

  144. Tahiliani M, Koh KP, Shen Y et al (2015) Conversion 5-hydroxymethylcytosine in Mammalian DNA by MuL partner TETi. Science 324:930–936

    Article  Google Scholar 

  145. Münzel M, Globisch D, Brückl T et al (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed 49:5375–5377. https://doi.org/10.1002/anie.201002033

    Article  CAS  Google Scholar 

  146. Kinney SM, Chin HG, Vaisvila R et al (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286:24685–24693. https://doi.org/10.1074/jbc.M110.217083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Szwagierczak A, Bultmann S, Schmidt CS et al (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38:e181–e181. https://doi.org/10.1093/nar/gkq684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Booth MJ, Branco MR, Ficz G et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937. https://doi.org/10.1126/science.1220671

    Article  CAS  PubMed  Google Scholar 

  149. Pastor WA, Pape UJ, Huang Y et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–397. https://doi.org/10.1038/nature10102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Song CX, Szulwach KE, Fu Y et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–75. https://doi.org/10.1038/nbt.1732

    Article  CAS  PubMed  Google Scholar 

  151. Yu M, Hon GC, Szulwach KE et al (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7:2159–2170. https://doi.org/10.1038/nprot.2012.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465. https://doi.org/10.1038/nmeth.1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Song C-X, Clark TA, Lu X-Y et al (2011) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9:75–77. https://doi.org/10.1038/nmeth.1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534. https://doi.org/10.1038/nrg.2017.33

    Article  CAS  PubMed  Google Scholar 

  155. Shen L, Zhang Y (2012) Enzymatic analysis of tet proteins: key enzymes in the metabolism of DNA methylation, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  156. Liu MY, Denizio JE, Kohli RM (2016) Quantification of oxidized 5-methylcytosine bases and TET enzyme activity, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  157. Song CX, Szulwach KE, Dai Q et al (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691. https://doi.org/10.1016/j.cell.2013.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nishio K, Belle R, Katoh T et al (2018) Thioether macrocyclic peptides selected against TET1 compact catalytic domain inhibit TET1 catalytic activity. Chembiochem:1–8. https://doi.org/10.1002/cbic.201800047

  159. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30. https://doi.org/10.1016/j.ccr.2010.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Laukka T, Mariani CJ, Ihantola T et al (2016) Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J Biol Chem 291:4256–4265. https://doi.org/10.1074/jbc.M115.688762

    Article  CAS  PubMed  Google Scholar 

  161. Alves J, Vidugiris G, Goueli SA, Zegzouti H (2018) Bioluminescent high-throughput succinate detection method for monitoring the activity of JMJC histone demethylases and Fe(II)/2-oxoglutarate-dependent dioxygenases. SLAS Discov 23:242–254. https://doi.org/10.1177/2472555217745657

    Article  CAS  PubMed  Google Scholar 

  162. Rose NR, Ng SS, Mecinović J et al (2008) Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem 51:7053–7056. https://doi.org/10.1021/jm800936s

    Article  CAS  PubMed  Google Scholar 

  163. Marholz LJ, Wang W, Zheng Y, Wang X (2016) A fluorescence polarization biophysical assay for the Naegleria DNA hydroxylase Tet1. ACS Med Chem Lett 7(2):167–171. https://doi.org/10.1021/acsmedchemlett.5b00366

    Article  CAS  PubMed  Google Scholar 

  164. Gross S, Cairns RA, Minden MD et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344. https://doi.org/10.1084/jem.20092506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744. https://doi.org/10.1038/nature08617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234. https://doi.org/10.1016/j.ccr.2010.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324:261–265. https://doi.org/10.1126/science.1170944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Opocher G, Schiavi F (2011) Functional consequences of succinate dehydrogenase mutations. Endocr Pract 17:64–71. https://doi.org/10.4158/EP11070.RA

    Article  PubMed  Google Scholar 

  169. Rose NR, McDonough MA, King ONF et al (2011) Inhibition of 2-oxoglutarate dependent oxygenases. Chem Soc Rev 40:4364. https://doi.org/10.1039/c0cs00203h

    Article  CAS  PubMed  Google Scholar 

  170. Tarhonskaya H, Nowak RP, Johansson C et al (2017) Studies on the interaction of the histone demethylase KDM5B with tricarboxylic acid cycle intermediates. J Mol Biol 429:2895–2906. https://doi.org/10.1016/J.JMB.2017.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Koivunen P, Hirsilä M, Remes AM et al (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524–4532. https://doi.org/10.1074/jbc.M610415200

    Article  CAS  PubMed  Google Scholar 

  172. Hopkinson RJ, Tumber A, Yapp C et al (2013) 5-carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chem Sci 4:3110. https://doi.org/10.1039/c3sc51122g

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

RB is supported by the Engineering and Physical Science Research Council and University of Oxford. AK gratefully acknowledges the Royal Society for the Dorothy Hodgkin Fellowship and the European Research Council Starting Grant (EPITOOLS-679479) and the Cancer Research UK Oxford Centre Development Fund (C5255/A18085). We apologise for the incomplete citations of research due to space constraints.

The authors acknowledge the EU COST Action CM1406. PBA is supported by PlanCancer2014-2019 (EPIG-2014-01).

Compliance with Ethical Standards

Funding: RB is supported by the Engineering and Physical Science Research Council and University of Oxford. AK gratefully acknowledges the Royal Society for the Dorothy Hodgkin Fellowship and the European Research Council Starting Grant (EPITOOLS-679479) and the Cancer Research UK Oxford Centre. We apologise for the incomplete citations of research due to space constraints.

The authors acknowledge the EU COST Action CM1406. PBA is supported by PlanCancer 2014–2019 (EPIG-2014-01). PBA was recipient of the French Oversea Fellowship of the French Government and Churchill College Cambridge UK.

Conflict of Interest:

Roman Belle declares that he has no conflict of interest. Akane Kawamura declares that she has no conflict of interest and Paola B. Arimondo declares that she has no conflict of interest.

Ethical Approval:

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akane Kawamura or Paola B. Arimondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belle, R., Kawamura, A., Arimondo, P.B. (2019). Chemical Compounds Targeting DNA Methylation and Hydroxymethylation. In: Mai, A. (eds) Chemical Epigenetics. Topics in Medicinal Chemistry, vol 33. Springer, Cham. https://doi.org/10.1007/7355_2019_76

Download citation

Publish with us

Policies and ethics