Skip to main content

Lysine Methyltransferases and Their Inhibitors

  • Chapter
  • First Online:
Chemical Epigenetics

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 33))

  • 839 Accesses

Abstract

Since 2000, the histone methyltransferases that catalyze the methylation of a number of histone and nonhistone substrates have been discovered.

A growing body of literature is indicating that lysine methyltransferases (KMTs) play a crucial role for transcriptional regulation and are involved in cancer and various other human diseases, thus being of high interest as potential therapeutic targets.

In this book chapter, we highlight the discovery, characterization, and application of selective KMT inhibitors, useful for dissecting their physiological functions as well as their disease implications.

Over the past decade, there has been an impressive progress regarding the KMT inhibitor discovery, especially conjugating the research interest with the available and novel techniques including new assay methods, high-throughput screening, structural biology, and medicinal chemistry approaches. Our goal is to point out herein key advances, challenges, possible future opportunities, and directions, regarding KMT modulation in a preclinical and clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT2A:

5-Hydroxytryptamine receptor 2A

AML:

Acute myeloid leukemia

ASH2L:

ASH2 like histone lysine methyltransferase complex subunit

CARM1:

Coactivator-associated arginine methyltransferase 1

DLBCL:

Diffuse large B-cell lymphoma

DNMT:

DNA methyltransferase

DNMTi:

DNA methyltransferase inhibitor

DOT1L:

Disruptor of telomeric silencing 1-like

EED:

Embryonic ectoderm development

EHMT1:

Euchromatin histone methyltransferase 1 (see also GLP)

EHMT2:

Euchromatin histone methyltransferase 2 (see also G9a)

ERα:

Estrogen receptor alpha

EZH1:

Enhancer of zeste homologue 1

EZH2:

Enhancer of zeste homologue 2

FP:

Fluorescence polarization

G9a:

Euchromatic histone-lysine N-methyltransferase 2 (EHMT2)

GLP:

G9a-like protein (EHMT1)

GPCRs:

G protein-coupled receptor

H1:

Histamine receptor 1

H3K9:

Lysine 9 of histone 3

H3K9me2:

Demethylated lysine 9 of histone 3

HbF:

Hemoglobin F

HCT116:

Colon colorectal carcinoma cell line

HDACi:

Histone deacetylase inhibitors

HEK293T:

Human embryonic kidney cell line

HL60:

Human leukemia cell line

HSP90:

Heat shock protein 90

HTS:

High-throughput screening

IUGR:

Intrauterine growth restriction

KARPAS-422:

Lymphoma cell line

KMTs:

Lysine methyltransferases

LnCaP:

Prostate adenocarcinoma cells

MAP 3K2:

Mitogen-activated protein kinase kinase kinase 2

MCF10A:

Non-tumorigenic epithelial cell line

MCF7:

Breast cancer cell line

MDA-MB-231:

Human breast cancer cell line

MLL:

Mixed-lineage leukemia

MOA:

Mechanism of action

MV4–11 (MLL-AF4), MOLM-13 (MLL-AF9), and THP1 (MLL-AF9):

MLL-rearranged cell lines

MYND:

Myeloid translocation protein-8, Nervy, and DEAF-1

PARP1:

Poly(ADP-ribose)-polymerase 1

PC-3:

Prostate cancer cell line

PCNA:

Proliferating cell nuclear antigen

PK:

Physical-chemical (properties)

PKMTs:

Protein lysine methyltransferases

PML-NB:

Promyelocytic leukemia protein nuclear bodies

PMTs:

Protein methyltransferases

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PPI:

Protein-protein interaction

PRC2:

Polycomb-repressive complex 2

PRMTs:

Protein arginine methyltransferases

PWS:

Prader-Willi syndrome

Rb:

Retinoblastoma

RBBP5:

Retinoblastoma-binding protein 5

RE-IIBP:

Response element II-binding protein

RNMTs:

RNA methyltransferases

SAH:

S-adenosyl homocysteine

SAM:

S-adenosyl-l-methionine

SAR:

Structure-activity relationship

SCD:

Sickle cell disease

SCLC:

Small cell lung cancer

SET:

Nuclear proto-oncogene

SETD2:

SET domain containing 2 histone methyltransferase

SETD7:

SET domain containing 7 histone methyltransferase

SETD8:

SET domain containing 8 histone methyltransferase

SETDB1:

SET domain bifurcated 1

SMYD:

SET and MYND domain-containing

SUM159:

Breast cancer cell line

SUV:

Histone-lysine N-methyltransferase

SUZ12:

Subunit polycomb-repressive complex 2

U2OS:

Osteosarcoma cell line

U937:

Histiocytic lymphoma cell line

VEGFR1:

Vascular endothelial growth factor receptor 1

WDR5:

WD repeat-containing protein 5

WT:

Wild type

References

  1. Bennett RL, Licht JD (2018) Targeting epigenetics in cancer. Annu Rev Pharmacol Toxicol 58:187–207. https://doi.org/10.1146/annurev-pharmtox-010716-105106

    Article  CAS  PubMed  Google Scholar 

  2. Ribich S, Harvey D, Copeland RA (2017) Drug discovery and chemical biology of cancer epigenetics. Cell Chem Biol 24(9):1120–1147. https://doi.org/10.1016/j.chembiol.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  3. Huang J, Dorsey J, Chuikov S, Perez-Burgos L, Zhang X, Jenuwein T, Reinberg D, Berger SL (2010) G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 285(13):9636–9641. https://doi.org/10.1074/jbc.M109.062588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Inagawa M, Nakajima K, Makino T, Ogawa S, Kojima M, Ito S, Ikenishi A, Hayashi T, Schwartz RJ, Nakamura K, Obayashi T, Tachibana M, Shinkai Y, Maeda K, Miyagawa-Tomita S, Takeuchi T (2013) Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mech Dev 130(11–12):519–531. https://doi.org/10.1016/j.mod.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, Mann AO, Taoda Y, Gorman JA, Herreros-Villanueva M, Gress TM, Ellenrieder V, Bujanda L, Kim DH, Kozikowski AP, Koenig A, Billadeau DD (2013) Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol 33(20):3983–3993. https://doi.org/10.1128/MCB.00813-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Renneville A, Van Galen P, Canver MC, McConkey M, Krill-Burger JM, Dorfman DM, Holson EB, Bernstein BE, Orkin SH, Bauer DE, Ebert BL (2015) EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood 126(16):1930–1939. https://doi.org/10.1182/blood-2015-06-649087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25(3):473–481. https://doi.org/10.1016/j.molcel.2007.01.017

    Article  CAS  PubMed  Google Scholar 

  8. Liu F, Chen X, Allali-Hassani A, Quinn AM, Wigle TJ, Wasney GA, Dong A, Senisterra G, Chau I, Siarheyeva A, Norris JL, Kireev DB, Jadhav A, Herold JM, Janzen WP, Arrowsmith CH, Frye SV, Brown PJ, Simeonov A, Vedadi M, Jin J (2010) Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J Med Chem 53(15):5844–5857. https://doi.org/10.1021/jm100478y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu F, Barsyte-Lovejoy D, Allali-Hassani A, He Y, Herold JM, Chen X, Yates CM, Frye SV, Brown PJ, Huang J, Vedadi M, Arrowsmith CH, Jin J (2011) Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J Med Chem 54(17):6139–6150. https://doi.org/10.1021/jm200903z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V, Wigle TJ, Dimaggio PA, Wasney GA, Siarheyeva A, Dong A, Tempel W, Wang SC, Chen X, Chau I, Mangano TJ, Huang XP, Simpson CD, Pattenden SG, Norris JL, Kireev DB, Tripathy A, Edwards A, Roth BL, Janzen WP, Garcia BA, Petronis A, Ellis J, Brown PJ, Frye SV, Arrowsmith CH, Jin J (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7(8):566–574. https://doi.org/10.1038/nchembio.599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lehnertz B, Pabst C, Su L, Miller M, Liu F, Yi L, Zhang R, Krosl J, Yung E, Kirschner J, Rosten P, Underhill TM, Jin J, Hebert J, Sauvageau G, Humphries RK, Rossi FM (2014) The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev 28(4):317–327. https://doi.org/10.1101/gad.236794.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu F, Barsyte-Lovejoy D, Li F, Xiong Y, Korboukh V, Huang XP, Allali-Hassani A, Janzen WP, Roth BL, Frye SV, Arrowsmith CH, Brown PJ, Vedadi M, Jin J (2013) Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J Med Chem 56(21):8931–8942. https://doi.org/10.1021/jm401480r

    Article  CAS  PubMed  Google Scholar 

  13. Kim Y, Lee HM, Xiong Y, Sciaky N, Hulbert SW, Cao X, Everitt JI, Jin J, Roth BL, Jiang YH (2017) Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome. Nat Med 23(2):213–222. https://doi.org/10.1038/nm.4257

    Article  CAS  PubMed  Google Scholar 

  14. Xiong Y, Li F, Babault N, Dong A, Zeng H, Wu H, Chen X, Arrowsmith CH, Brown PJ, Liu J, Vedadi M, Jin J (2017) Discovery of potent and selective inhibitors for G9a-like protein (GLP) lysine methyltransferase. J Med Chem 60(5):1876–1891. https://doi.org/10.1021/acs.jmedchem.6b01645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sweis RF, Pliushchev M, Brown PJ, Guo J, Li F, Maag D, Petros AM, Soni NB, Tse C, Vedadi M, Michaelides MR, Chiang GG, Pappano WN (2014) Discovery and development of potent and selective inhibitors of histone methyltransferase g9a. ACS Med Chem Lett 5(2):205–209. https://doi.org/10.1021/ml400496h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pappano WN, Guo J, He Y, Ferguson D, Jagadeeswaran S, Osterling DJ, Gao W, Spence JK, Pliushchev M, Sweis RF, Buchanan FG, Michaelides MR, Shoemaker AR, Tse C, Chiang GG (2015) The histone methyltransferase inhibitor A-366 uncovers a role for G9a/GLP in the epigenetics of leukemia. PLoS One 10(7):e0131716. https://doi.org/10.1371/journal.pone.0131716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan Y, Wang Q, Paulk J, Kubicek S, Kemp MM, Adams DJ, Shamji AF, Wagner BK, Schreiber SL (2012) A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem Biol 7(7):1152–1157. https://doi.org/10.1021/cb300139y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cherblanc FL, Chapman KL, Brown R, Fuchter MJ (2013) Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases. Nat Chem Biol 9(3):136–137. https://doi.org/10.1038/nchembio.1187

    Article  CAS  PubMed  Google Scholar 

  19. Devkota K, Lohse B, Liu Q, Wang MW, Staerk D, Berthelsen J, Clausen RP (2014) Analogues of the natural product sinefungin as inhibitors of EHMT1 and EHMT2. ACS Med Chem Lett 5(4):293–297. https://doi.org/10.1021/ml4002503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kondengaden SM, Luo LF, Huang K, Zhu M, Zang L, Bataba E, Wang R, Luo C, Wang B, Li KK, Wang PG (2016) Discovery of novel small molecule inhibitors of lysine methyltransferase G9a and their mechanism in leukemia cell lines. Eur J Med Chem 122:382–393. https://doi.org/10.1016/j.ejmech.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  21. Herz HM, Garruss A, Shilatifard A (2013) SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38(12):621–639. https://doi.org/10.1016/j.tibs.2013.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawson KA, Teteak CJ, Gao J, Li N, Hacquebord J, Ghatan A, Zielinska-Kwiatkowska A, Song G, Chansky HA, Yang L (2013) ESET histone methyltransferase regulates osteoblastic differentiation of mesenchymal stem cells during postnatal bone development. FEBS Lett 587(24):3961–3967. https://doi.org/10.1016/j.febslet.2013.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karanth AV, Maniswami RR, Prashanth S, Govindaraj H, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S (2017) Emerging role of SETDB1 as a therapeutic target. Expert Opin Ther Targets 21(3):319–331. https://doi.org/10.1080/14728222.2017.1279604

    Article  CAS  PubMed  Google Scholar 

  24. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12(6):1591–1598

    Article  CAS  PubMed  Google Scholar 

  25. Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24(2):309–316. https://doi.org/10.1016/j.molcel.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  26. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337

    Article  CAS  PubMed  Google Scholar 

  27. Muramatsu D, Singh PB, Kimura H, Tachibana M, Shinkai Y (2013) Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J Biol Chem 288(35):25285–25296. https://doi.org/10.1074/jbc.M113.470724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sone K, Piao L, Nakakido M, Ueda K, Jenuwein T, Nakamura Y, Hamamoto R (2014) Critical role of lysine 134 methylation on histone H2AX for gamma-H2AX production and DNA repair. Nat Commun 5:5691. https://doi.org/10.1038/ncomms6691

    Article  CAS  PubMed  Google Scholar 

  29. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, Margolis DM, Karn J (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol 85(17):9078–9089. https://doi.org/10.1128/JVI.00836-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1(3):143–145. https://doi.org/10.1038/nchembio721

    Article  CAS  PubMed  Google Scholar 

  31. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2013) Reply to “Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases”. Nat Chem Biol 9(3):137. https://doi.org/10.1038/nchembio.1188

    Article  CAS  PubMed  Google Scholar 

  32. Chaib H, Nebbioso A, Prebet T, Castellano R, Garbit S, Restouin A, Vey N, Altucci L, Collette Y (2012) Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26(4):662–674. https://doi.org/10.1038/leu.2011.271

    Article  CAS  PubMed  Google Scholar 

  33. Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32(4):503–518. https://doi.org/10.1016/j.molcel.2008.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ketel CS, Andersen EF, Vargas ML, Suh J, Strome S, Simon JA (2005) Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. Mol Cell Biol 25(16):6857–6868. https://doi.org/10.1128/MCB.25.16.6857-6868.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vasanthakumar A, Xu D, Lun AT, Kueh AJ, van Gisbergen KP, Iannarella N, Li X, Yu L, Wang D, Williams BR, Lee SC, Majewski IJ, Godfrey DI, Smyth GK, Alexander WS, Herold MJ, Kallies A, Nutt SL, Allan RS (2017) A non-canonical function of Ezh2 preserves immune homeostasis. EMBO Rep 18(4):619–631. https://doi.org/10.15252/embr.201643237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim KH, Roberts CW (2016) Targeting EZH2 in cancer. Nat Med 22(2):128–134. https://doi.org/10.1038/nm.4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349. https://doi.org/10.1038/nature09784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125(2):301–313. https://doi.org/10.1016/j.cell.2006.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nichol JN, Dupere-Richer D, Ezponda T, Licht JD, Miller WHJ (2016) H3K27 methylation: a focal point of epigenetic deregulation in cancer. Adv Cancer Res 131:59–95. https://doi.org/10.1016/bs.acr.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Glazer RI, Knode MC, Tseng CK, Haines DR, Marquez VE (1986) 3-Deazaneplanocin A: a new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells. Biochem Pharmacol 35(24):4523–4527

    Article  CAS  PubMed  Google Scholar 

  41. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8(6):1579–1588. https://doi.org/10.1158/1535-7163.MCT-09-0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun F, Lee L, Zhang Z, Wang X, Yu Q, Duan X, Chan E (2015) Preclinical pharmacokinetic studies of 3-deazaneplanocin A, a potent epigenetic anticancer agent, and its human pharmacokinetic prediction using GastroPlus. Eur J Pharm Sci 77:290–302. https://doi.org/10.1016/j.ejps.2015.06.021

    Article  CAS  PubMed  Google Scholar 

  43. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8(11):890–896. https://doi.org/10.1038/nchembio.1084

    Article  CAS  PubMed  Google Scholar 

  44. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y, Smitheman KN, Ott HM, Pappalardi MB, Allen KE, Chen SB, Della Pietra 3rd A, Dul E, Hughes AM, Gilbert SA, Thrall SH, Tummino PJ, Kruger RG, Brandt M, Schwartz B, Creasy CL (2012) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A 109(8):2989–2994. https://doi.org/10.1073/pnas.1116418109

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yap TA, Winter JN, Leonard JP, Ribrag V, Constantinidou A, Giulino-Roth L, Michot J-M, Khan TA, Horner T, Carver J, Pene Dumetrescu T, He Z, McCabe MT, Creasy CL, Dhar A, Carpenter C, Johnson PM (2016) A phase I study of GSK2816126, an enhancer of zeste homolog 2(EZH2) inhibitor, in patients (pts) with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), other non-Hodgkin lymphomas (NHL), transformed follicular lymphoma (tFL), solid tumors and multiple myeloma (MM). Blood 128(22):4203

    Article  Google Scholar 

  46. Verma SK, Tian X, LaFrance LV, Duquenne C, Suarez DP, Newlander KA, Romeril SP, Burgess JL, Grant SW, Brackley JA, Graves AP, Scherzer DA, Shu A, Thompson C, Ott HM, Aller GS, Machutta CA, Diaz E, Jiang Y, Johnson NW, Knight SD, Kruger RG, McCabe MT, Dhanak D, Tummino PJ, Creasy CL, Miller WH (2012) Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med Chem Lett 3(12):1091–1096. https://doi.org/10.1021/ml3003346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, Zeng J, Li M, Fan H, Lin Y, Gu J, Ardayfio O, Zhang JH, Yan X, Fang J, Mi Y, Zhang M, Zhou T, Feng G, Chen Z, Li G, Yang T, Zhao K, Liu X, Yu Z, Lu CX, Atadja P, Li E (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 109(52):21360–21365. https://doi.org/10.1073/pnas.1210371110

    Article  PubMed  PubMed Central  Google Scholar 

  48. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, Liu F, Gao C, Huang XP, Kuznetsova E, Rougie M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown PJ, Frye SV, Arrowsmith CH, Hahn KM, Wang GG, Vedadi M, Jin J (2013) An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem Biol 8(6):1324–1334. https://doi.org/10.1021/cb400133j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG, Allison DF, Cai L, Rockowitz S, Liu S, Liu Y, Li F, Vedadi M, Frye SV, Garcia BA, Zheng D, Jin J, Wang GG (2015) Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 125(2):346–357. https://doi.org/10.1182/blood-2014-06-581082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nasveschuk CG, Gagnon A, Garapaty-Rao S, Balasubramanian S, Campbell R, Lee C, Zhao F, Bergeron L, Cummings R, Trojer P, Audia JE, Albrecht BK, Harmange JC (2014) Discovery and optimization of tetramethylpiperidinyl benzamides as inhibitors of EZH2. ACS Med Chem Lett 5(4):378–383. https://doi.org/10.1021/ml400494b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gehling VS, Vaswani RG, Nasveschuk CG, Duplessis M, Iyer P, Balasubramanian S, Zhao F, Good AC, Campbell R, Lee C, Dakin LA, Cook AS, Gagnon A, Harmange JC, Audia JE, Cummings RT, Normant E, Trojer P, Albrecht BK (2015) Discovery, design, and synthesis of indole-based EZH2 inhibitors. Bioorg Med Chem Lett 25(17):3644–3649. https://doi.org/10.1016/j.bmcl.2015.06.056

    Article  CAS  PubMed  Google Scholar 

  52. Vaswani RG, Gehling VS, Dakin LA, Cook AS, Nasveschuk CG, Duplessis M, Iyer P, Balasubramanian S, Zhao F, Good AC, Campbell R, Lee C, Cantone N, Cummings RT, Normant E, Bellon SF, Albrecht BK, Harmange JC, Trojer P, Audia JE, Zhang Y, Justin N, Chen S, Wilson JR, Gamblin SJ (2016) Identification of (R)-N-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J Med Chem 59(21):9928–9941. https://doi.org/10.1021/acs.jmedchem.6b01315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A, Porter Scott M, Chesworth R, Moyer MP, Copeland RA, Richon VM, Pollock RM, Kuntz KW, Keilhack H (2013) Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A 110(19):7922–7927. https://doi.org/10.1073/pnas.1303800110

    Article  PubMed  PubMed Central  Google Scholar 

  54. Morera L, Lubbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57. https://doi.org/10.1186/s13148-016-0223-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ribrag V, Soria J-C, Michot J-M, Schmitt A, Postel-Vinay S, Bijou F, Thomson B, Keilhack H, Blakemore SJ, Reyderman L (2015) Phase 1 study of tazemetostat (EPZ-6438), an inhibitor of enhancer of zeste-homolog 2 (EZH2): preliminary safety and activity in relapsed or refractory non-Hodgkin lymphoma (NHL) patients. Blood 126(23):473–473

    Article  Google Scholar 

  56. Clinical Trials. www.clinicaltrials.gov. Accessed 26 Jan 2018

  57. Lu B, Shen X, Zhang L, Liu D, Zhang C, Cao J, Shen R, Zhang J, Wang D, Wan H, Xu Z, Ho M-H, Zhang M, Zhang L, He F, Tao W (2018) Discovery of EBI-2511: a highly potent and orally active EZH2 inhibitor for the treatment of non-Hodgkin’s lymphoma. ACS Med Chem Lett 9(2):98–102. https://doi.org/10.1021/acsmedchemlett.7b00437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Honma D, Kanno O, Watanabe J, Kinoshita J, Hirasawa M, Nosaka E, Shiroishi M, Takizawa T, Yasumatsu I, Horiuchi T, Nakao A, Suzuki K, Yamasaki T, Nakajima K, Hayakawa M, Yamazaki T, Yadav AS, Adachi N (2017) Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci 108(10):2069–2078. https://doi.org/10.1111/cas.13326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCabe MT, Mohammad HP, Barbash O, Kruger RG (2017) Targeting histone methylation in cancer. Cancer J 23(5):292–301. https://doi.org/10.1097/PPO.0000000000000283

    Article  CAS  PubMed  Google Scholar 

  60. Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD, Orkin SH (2013) Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 9(10):643–650. https://doi.org/10.1038/nchembio.1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kong X, Chen L, Jiao L, Jiang X, Lian F, Lu J, Zhu K, Du D, Liu J, Ding H, Zhang N, Shen J, Zheng M, Chen K, Liu X, Jiang H, Luo C (2014) Astemizole arrests the proliferation of cancer cells by disrupting the EZH2-EED interaction of polycomb repressive complex 2. J Med Chem 57(22):9512–9521. https://doi.org/10.1021/jm501230c

    Article  CAS  PubMed  Google Scholar 

  62. Chen H, Gao S, Li J, Liu D, Sheng C, Yao C, Jiang W, Wu J, Chen S, Huang W (2015) Wedelolactone disrupts the interaction of EZH2-EED complex and inhibits PRC2-dependent cancer. Oncotarget 6(15):13049–13059. https://doi.org/10.18632/oncotarget.3790

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li L, Zhang H, Zhang M, Zhao M, Feng L, Luo X, Gao Z, Huang Y, Ardayfio O, Zhang JH, Lin Y, Fan H, Mi Y, Li G, Liu L, Feng L, Luo F, Teng L, Qi W, Ottl J, Lingel A, Bussiere DE, Yu Z, Atadja P, Lu C, Li E, Gu J, Zhao K (2017) Discovery and molecular basis of a diverse set of polycomb repressive complex 2 inhibitors recognition by EED. PLoS One 12(1):e0169855. https://doi.org/10.1371/journal.pone.0169855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lingel A, Sendzik M, Huang Y, Shultz MD, Cantwell J, Dillon MP, Fu X, Fuller J, Gabriel T, Gu J, Jiang X, Li L, Liang F, McKenna M, Qi W, Rao W, Sheng X, Shu W, Sutton J, Taft B, Wang L, Zeng J, Zhang H, Zhang M, Zhao K, Lindvall M, Bussiere DE (2017) Structure-guided design of EED binders allosterically inhibiting the epigenetic polycomb repressive complex 2 (PRC2) methyltransferase. J Med Chem 60(1):415–427. https://doi.org/10.1021/acs.jmedchem.6b01473

    Article  CAS  PubMed  Google Scholar 

  65. Huang Y, Zhang J, Yu Z, Zhang H, Wang Y, Lingel A, Qi W, Gu XJ, Zhao K, Shultz MD, Wang L, Fu X, Sun Y, Zhang Q, Jiang X, Zhang JW, Zhang C, Li L, Zeng J, Feng L, Zhang C, Liu Y, Zhang M, Zhang L, Zhao M, Gao Z, Liu X, Fang D, Guo H, Mi Y, Gabriel T, Dillon MP, Atadja P, Oyang C (2017) Discovery of first-in-class, potent and orally bioavailable EED inhibitor with robust anti-cancer efficacy. J Med Chem 60(6):2215–2226. https://doi.org/10.1021/acs.jmedchem.6b01576

    Article  CAS  PubMed  Google Scholar 

  66. He Y, Selvaraju S, Curtin ML, Jakob CG, Zhu H, Comess KM, Shaw B, The J, Lima-Fernandes E, Szewczyk MM, Cheng D, Klinge KL, Li HQ, Pliushchev M, Algire MA, Maag D, Guo J, Dietrich J, Panchal SC, Petros AM, Sweis RF, Torrent M, Bigelow LJ, Senisterra G, Li F, Kennedy S, Wu Q, Osterling DJ, Lindley DJ, Gao W, Galasinski S, Barsyte-Lovejoy D, Vedadi M, Buchanan FG, Arrowsmith CH, Chiang GG, Sun C, Pappano WN (2017) The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol 13(4):389–395. https://doi.org/10.1038/nchembio.2306

    Article  CAS  PubMed  Google Scholar 

  67. Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, Zhang M, Zhang J, Yu Z, Li L, Teng L, Chuai S, Zhang C, Zhao M, Chan H, Chen Z, Fang D, Fei Q, Feng L, Feng L, Gao Y, Ge H, Ge X, Li G, Lingel A, Lin Y, Liu Y, Luo F, Shi M, Wang L, Wang Z, Yu Y, Zeng J, Zeng C, Zhang L, Zhang Q, Zhou S, Oyang C, Atadja P, Li E (2017) An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol 13(4):381–388. https://doi.org/10.1038/nchembio.2304

    Article  CAS  PubMed  Google Scholar 

  68. Barnash KD, The J, Norris-Drouin JL, Cholensky SH, Worley BM, Li F, Stuckey JI, Brown PJ, Vedadi M, Arrowsmith CH, Frye SV, James LI (2017) Discovery of peptidomimetic ligands of EED as allosteric inhibitors of PRC2. ACS Comb Sci 19(3):161–172. https://doi.org/10.1021/acscombsci.6b00174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lai WKM, Pugh BF (2017) Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 18(9):548–562. https://doi.org/10.1038/nrm.2017.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chan HM, Gu X-J, Huang Y, Li L, Mi Y, Qi W, Sendzik M, Sun Y, Wang L, Yu Z (2017) Triazolopyrimidine compounds and uses thereof. United States of America Patent US9580437(B2)

    Google Scholar 

  71. Stazi G, Zwergel C, Mai A, Valente S (2017) EZH2 inhibitors: a patent review (2014–2016). Expert Opin Ther Pat 27(7):797–813. https://doi.org/10.1080/13543776.2017.1316976

    Article  CAS  PubMed  Google Scholar 

  72. Grinshtein N, Rioseco CC, Marcellus R, Uehling D, Aman A, Lun X, Muto O, Podmore L, Lever J, Shen Y, Blough MD, Cairncross GJ, Robbins SM, Jones SJ, Marra MA, Al-Awar R, Senger DL, Kaplan DR (2016) Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget 7(37):59360–59376. https://doi.org/10.18632/oncotarget.10661

    Article  PubMed  PubMed Central  Google Scholar 

  73. Frederiks F, Tzouros M, Oudgenoeg G, van Welsem T, Fornerod M, Krijgsveld J, van Leeuwen F (2008) Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat Struct Mol Biol 15(6):550–557. https://doi.org/10.1038/nsmb.1432

    Article  CAS  PubMed  Google Scholar 

  74. Anglin JL, Song Y (2013) A medicinal chemistry perspective for targeting histone H3 lysine-79 methyltransferase DOT1L. J Med Chem 56(22):8972–8983. https://doi.org/10.1021/jm4007752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Woo Park J, Kim KB, Kim JY, Chae YC, Jeong OS, Seo SB (2015) RE-IIBP methylates H3K79 and induces MEIS1-mediated apoptosis via H2BK120 ubiquitination by RNF20. Sci Rep 5:12485. https://doi.org/10.1038/srep12485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12(12):1052–1058

    Article  CAS  PubMed  Google Scholar 

  77. Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112(5):711–723

    Article  CAS  PubMed  Google Scholar 

  78. Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28(6):329–335. https://doi.org/10.1016/S0968-0004(03)00090-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285(5):3341–3350. https://doi.org/10.1074/jbc.M109.063784

    Article  CAS  PubMed  Google Scholar 

  80. Jo SY, Granowicz EM, Maillard I, Thomas D, Hess JL (2011) Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 117(18):4759–4768. https://doi.org/10.1182/blood-2010-12-327668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang L, Deng L, Chen F, Yao Y, Wu B, Wei L, Mo Q, Song Y (2014) Inhibition of histone H3K79 methylation selectively inhibits proliferation, self-renewal and metastatic potential of breast cancer. Oncotarget 5(21):10665–10677. https://doi.org/10.18632/oncotarget.2496

    Article  PubMed  PubMed Central  Google Scholar 

  82. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65. https://doi.org/10.1016/j.ccr.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu W, Chory EJ, Wernimont AK, Tempel W, Scopton A, Federation A, Marineau JJ, Qi J, Barsyte-Lovejoy D, Yi J, Marcellus R, Iacob RE, Engen JR, Griffin C, Aman A, Wienholds E, Li F, Pineda J, Estiu G, Shatseva T, Hajian T, Al-Awar R, Dick JE, Vedadi M, Brown PJ, Arrowsmith CH, Bradner JE, Schapira M (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 3:1288. https://doi.org/10.1038/ncomms2304

    Article  CAS  PubMed  Google Scholar 

  84. Chen L, Deshpande AJ, Banka D, Bernt KM, Dias S, Buske C, Olhava EJ, Daigle SR, Richon VM, Pollock RM, Armstrong SA (2013) Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 27(4):813–822. https://doi.org/10.1038/leu.2012.327

    Article  CAS  PubMed  Google Scholar 

  85. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, Allain CJ, Klaus CR, Raimondi A, Scott MP, Waters NJ, Chesworth R, Moyer MP, Copeland RA, Richon VM, Pollock RM (2013) Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122(6):1017–1025. https://doi.org/10.1182/blood-2013-04-497644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Waters NJ, Smith SA, Olhava EJ, Duncan KW, Burton RD, O’Neill J, Rodrigue ME, Pollock RM, Moyer MP, Chesworth R (2016) Metabolism and disposition of the DOT1L inhibitor, pinometostat (EPZ-5676), in rat, dog and human. Cancer Chemother Pharmacol 77(1):43–62. https://doi.org/10.1007/s00280-015-2929-y

    Article  CAS  PubMed  Google Scholar 

  87. Basavapathruni A, Olhava EJ, Daigle SR, Therkelsen CA, Jin L, Boriack-Sjodin PA, Allain CJ, Klaus CR, Raimondi A, Scott MP, Dovletoglou A, Richon VM, Pollock RM, Copeland RA, Moyer MP, Chesworth R, Pearson PG, Waters NJ (2014) Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor. Biopharm Drug Dispos 35(4):237–252. https://doi.org/10.1002/bdd.1889

    Article  CAS  PubMed  Google Scholar 

  88. Yao Y, Chen P, Diao J, Cheng G, Deng L, Anglin JL, Prasad BV, Song Y (2011) Selective inhibitors of histone methyltransferase DOT1L: design, synthesis, and crystallographic studies. J Am Chem Soc 133(42):16746–16749. https://doi.org/10.1021/ja206312b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scheufler C, Mobitz H, Gaul C, Ragot C, Be C, Fernandez C, Beyer KS, Tiedt R, Stauffer F (2016) Optimization of a fragment-based screening hit toward potent DOT1L inhibitors interacting in an induced binding pocket. ACS Med Chem Lett 7(8):730–734. https://doi.org/10.1021/acsmedchemlett.6b00168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen C, Zhu H, Stauffer F, Caravatti G, Vollmer S, Machauer R, Holzer P, Mobitz H, Scheufler C, Klumpp M, Tiedt R, Beyer KS, Calkins K, Guthy D, Kiffe M, Zhang J, Gaul C (2016) Discovery of novel Dot1L inhibitors through a structure-based fragmentation approach. ACS Med Chem Lett 7(8):735–740. https://doi.org/10.1021/acsmedchemlett.6b00167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mobitz H, Machauer R, Holzer P, Vaupel A, Stauffer F, Ragot C, Caravatti G, Scheufler C, Fernandez C, Hommel U, Tiedt R, Beyer KS, Chen C, Zhu H, Gaul C (2017) Discovery of potent, selective, and structurally novel Dot1L inhibitors by a fragment linking approach. ACS Med Chem Lett 8(3):338–343. https://doi.org/10.1021/acsmedchemlett.6b00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rao RC, Dou Y (2015) Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer 15(6):334–346. https://doi.org/10.1038/nrc3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J, Chen J, Cao L, Li D, Shi P, Tian C, Zhang J, Dou Y, Li G, Chen Y, Lei M (2016) Structural basis for activity regulation of MLL family methyltransferases. Nature 530(7591):447–452. https://doi.org/10.1038/nature16952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13(8):713–719. https://doi.org/10.1038/nsmb1128

    Article  CAS  PubMed  Google Scholar 

  95. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123(2):207–218. https://doi.org/10.1016/j.cell.2005.09.025

    Article  CAS  PubMed  Google Scholar 

  96. Cao F, Townsend EC, Karatas H, Xu J, Li L, Lee S, Liu L, Chen Y, Ouillette P, Zhu J, Hess JL, Atadja P, Lei M, Qin ZS, Malek S, Wang S, Dou Y (2014) Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol Cell 53(2):247–261. https://doi.org/10.1016/j.molcel.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karatas H, Li Y, Liu L, Ji J, Lee S, Chen Y, Yang J, Huang L, Bernard D, Xu J, Townsend EC, Cao F, Ran X, Li X, Wen B, Sun D, Stuckey JA, Lei M, Dou Y, Wang S (2017) Discovery of a highly potent, cell-permeable macrocyclic peptidomimetic (MM-589) targeting the WD repeat domain 5 protein (WDR5)-mixed lineage leukemia (MLL) protein-protein interaction. J Med Chem 60(12):4818–4839. https://doi.org/10.1021/acs.jmedchem.6b01796

    Article  CAS  PubMed  Google Scholar 

  98. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, Skucha A, Vittori S, Kuznetsova E, Smil D, Barsyte-Lovejoy D, Li F, Poda G, Schapira M, Wu H, Dong A, Senisterra G, Stukalov A, Huber KVM, Schonegger A, Marcellus R, Bilban M, Bock C, Brown PJ, Zuber J, Bennett KL, Al-Awar R, Delwel R, Nerlov C, Arrowsmith CH, Superti-Furga G (2015) Pharmacological targeting of the Wdr5-MLL interaction in C/EBPalpha N-terminal leukemia. Nat Chem Biol 11(8):571–578. https://doi.org/10.1038/nchembio.1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, Barsyte-Lovejoy D, Al-awar R, Katona BW, Shilatifard A, Huang J, Hua X, Arrowsmith CH, Berger SL (2015) Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525(7568):206–211. https://doi.org/10.1038/nature15251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Borkin D, He S, Miao H, Kempinska K, Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, Wen B, Zong H, Jones M, Danet-Desnoyers G, Guzman ML, Talpaz M, Bixby DL, Sun D, Hess JL, Muntean AG, Maillard I, Cierpicki T, Grembecka J (2015) Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27(4):589–602. https://doi.org/10.1016/j.ccell.2015.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou JX, Dhawan S, Fu H, Snyder E, Bottino R, Kundu S, Kim SK, Bhushan A (2013) Combined modulation of polycomb and trithorax genes rejuvenates beta cell replication. J Clin Invest 123(11):4849–4858. https://doi.org/10.1172/JCI69468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. He S, Senter TJ, Pollock J, Han C, Upadhyay SK, Purohit T, Gogliotti RD, Lindsley CW, Cierpicki T, Stauffer SR, Grembecka J (2014) High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein-protein interaction. J Med Chem 57(4):1543–1556. https://doi.org/10.1021/jm401868d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Keating ST, El-Osta A (2013) Transcriptional regulation by the Set7 lysine methyltransferase. Epigenetics 8(4):361–372. https://doi.org/10.4161/epi.24234

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barsyte-Lovejoy D, Li F, Oudhoff MJ, Tatlock JH, Dong A, Zeng H, Wu H, Freeman SA, Schapira M, Senisterra GA, Kuznetsova E, Marcellus R, Allali-Hassani A, Kennedy S, Lambert JP, Couzens AL, Aman A, Gingras AC, Al-Awar R, Fish PV, Gerstenberger BS, Roberts L, Benn CL, Grimley RL, Braam MJ, Rossi FM, Sudol M, Brown PJ, Bunnage ME, Owen DR, Zaph C, Vedadi M, Arrowsmith CH (2014) (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proc Natl Acad Sci U S A 111(35):12853–12858. https://doi.org/10.1073/pnas.1407358111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Niu Y, Shi D, Li L, Guo J, Liu H, Yao X (2017) Revealing inhibition difference between PFI-2 enantiomers against SETD7 by molecular dynamics simulations, binding free energy calculations and unbinding pathway analysis. Sci Rep 7:46547. https://doi.org/10.1038/srep46547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Francis NJ, Rowlands M, Workman P, Jones K, Aherne W (2012) Small-molecule inhibitors of the protein methyltransferase SET7/9 identified in a high-throughput screen. J Biomol Screen 17(8):1102–1109. https://doi.org/10.1177/1087057112452137

    Article  CAS  PubMed  Google Scholar 

  107. Mori S, Iwase K, Iwanami N, Tanaka Y, Kagechika H, Hirano T (2010) Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9. Bioorg Med Chem 18(23):8158–8166. https://doi.org/10.1016/j.bmc.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  108. Meng F, Cheng S, Ding H, Liu S, Liu Y, Zhu K, Chen S, Lu J, Xie Y, Li L, Liu R, Shi Z, Zhou Y, Liu YC, Zheng M, Jiang H, Lu W, Liu H, Luo C (2015) Discovery and optimization of novel, selective histone methyltransferase SET7 inhibitors by pharmacophore- and docking-based virtual screening. J Med Chem 58(20):8166–8181. https://doi.org/10.1021/acs.jmedchem.5b01154

    Article  CAS  PubMed  Google Scholar 

  109. Takemoto Y, Ito A, Niwa H, Okamura M, Fujiwara T, Hirano T, Handa N, Umehara T, Sonoda T, Ogawa K, Tariq M, Nishino N, Dan S, Kagechika H, Yamori T, Yokoyama S, Yoshida M (2016) Identification of cyproheptadine as an inhibitor of SET domain containing lysine methyltransferase 7/9 (Set7/9) that regulates estrogen-dependent transcription. J Med Chem 59(8):3650–3660. https://doi.org/10.1021/acs.jmedchem.5b01732

    Article  CAS  PubMed  Google Scholar 

  110. Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z (2015) Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16(1):1406–1428. https://doi.org/10.3390/ijms16011406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reynoird N, Mazur PK, Stellfeld T, Flores NM, Lofgren SM, Carlson SM, Brambilla E, Hainaut P, Kaznowska EB, Arrowsmith CH, Khatri P, Stresemann C, Gozani O, Sage J (2016) Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev 30(7):772–785. https://doi.org/10.1101/gad.275529.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ferguson AD, Larsen NA, Howard T, Pollard H, Green I, Grande C, Cheung T, Garcia-Arenas R, Cowen S, Wu J, Godin R, Chen H, Keen N (2011) Structural basis of substrate methylation and inhibition of SMYD2. Structure 19(9):1262–1273. https://doi.org/10.1016/j.str.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  113. Sweis RF, Wang Z, Algire M, Arrowsmith CH, Brown PJ, Chiang GG, Guo J, Jakob CG, Kennedy S, Li F, Maag D, Shaw B, Soni NB, Vedadi M, Pappano WN (2015) Discovery of A-893, a new cell-active benzoxazinone inhibitor of lysine methyltransferase SMYD2. ACS Med Chem Lett 6(6):695–700. https://doi.org/10.1021/acsmedchemlett.5b00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nguyen H, Allali-Hassani A, Antonysamy S, Chang S, Chen LH, Curtis C, Emtage S, Fan L, Gheyi T, Li F, Liu S, Martin JR, Mendel D, Olsen JB, Pelletier L, Shatseva T, Wu S, Zhang FF, Arrowsmith CH, Brown PJ, Campbell RM, Garcia BA, Barsyte-Lovejoy D, Mader M, Vedadi M (2015) LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2. J Biol Chem 290(22):13641–13653. https://doi.org/10.1074/jbc.M114.626861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eggert E, Hillig RC, Koehr S, Stockigt D, Weiske J, Barak N, Mowat J, Brumby T, Christ CD, Ter Laak A, Lang T, Fernandez-Montalvan AE, Badock V, Weinmann H, Hartung IV, Barsyte-Lovejoy D, Szewczyk M, Kennedy S, Li F, Vedadi M, Brown PJ, Santhakumar V, Arrowsmith CH, Stellfeld T, Stresemann C (2016) Discovery and characterization of a highly potent and selective aminopyrazoline-based in vivo probe (BAY-598) for the protein lysine methyltransferase SMYD2. J Med Chem 59(10):4578–4600. https://doi.org/10.1021/acs.jmedchem.5b01890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang L, Xu AM (2017) SET and MYND domain containing protein 3 in cancer. Am J Transl Res 9(1):1–14

    PubMed  PubMed Central  Google Scholar 

  117. Mitchell LH, Boriack-Sjodin PA, Smith S, Thomenius M, Rioux N, Munchhof M, Mills JE, Klaus C, Totman J, Riera TV, Raimondi A, Jacques SL, West K, Foley M, Waters NJ, Kuntz KW, Wigle TJ, Scott MP, Copeland RA, Smith JJ, Chesworth R (2016) Novel oxindole sulfonamides and sulfamides: EPZ031686, the first orally bioavailable small molecule SMYD3 inhibitor. ACS Med Chem Lett 7(2):134–138. https://doi.org/10.1021/acsmedchemlett.5b00272

    Article  CAS  PubMed  Google Scholar 

  118. Van Aller GS, Graves AP, Elkins PA, Bonnette WG, McDevitt PJ, Zappacosta F, Annan RS, Dean TW, Su DS, Carpenter CL, Mohammad HP, Kruger RG (2016) Structure-based design of a novel SMYD3 inhibitor that bridges the SAM-and MEKK2-binding pockets. Structure 24(5):774–781. https://doi.org/10.1016/j.str.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  119. McDaniel SL, Strahl BD (2017) Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 74(18):3317–3334. https://doi.org/10.1007/s00018-017-2517-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhu Y, Zhu L, Lu L, Zhang L, Zhang G, Wang Q, Yang P (2014) Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro. Oncol Rep 32(1):431–436. https://doi.org/10.3892/or.2014.3189

    Article  CAS  PubMed  Google Scholar 

  121. Zheng W, Ibanez G, Wu H, Blum G, Zeng H, Dong A, Li F, Hajian T, Allali-Hassani A, Amaya MF, Siarheyeva A, Yu W, Brown PJ, Schapira M, Vedadi M, Min J, Luo M (2012) Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J Am Chem Soc 134(43):18004–18014. https://doi.org/10.1021/ja307060p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beck DB, Oda H, Shen SS, Reinberg D (2012) PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 26(4):325–337. https://doi.org/10.1101/gad.177444.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Milite C, Feoli A, Viviano M, Rescigno D, Cianciulli A, Balzano AL, Mai A, Castellano S, Sbardella G (2016) The emerging role of lysine methyltransferase SETD8 in human diseases. Clin Epigenetics 8:102. https://doi.org/10.1186/s13148-016-0268-4

    Article  PubMed  PubMed Central  Google Scholar 

  124. Reinberg D, Trojer P, Sbardella G (2007) Selective inhibitors for transferases. Google Patents

    Google Scholar 

  125. Valente S, Lepore I, Dell’Aversana C, Tardugno M, Castellano S, Sbardella G, Tomassi S, Di Maro S, Novellino E, Di Santo R, Costi R, Altucci L, Mai A (2012) Identification of PR-SET7 and EZH2 selective inhibitors inducing cell death in human leukemia U937 cells. Biochimie 94(11):2308–2313. https://doi.org/10.1016/j.biochi.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  126. Williams DE, Dalisay DS, Li F, Amphlett J, Maneerat W, Chavez MA, Wang YA, Matainaho T, Yu W, Brown PJ, Arrowsmith CH, Vedadi M, Andersen RJ (2013) Nahuoic acid A produced by a Streptomyces sp. isolated from a marine sediment is a selective SAM-competitive inhibitor of the histone methyltransferase SETD8. Org Lett 15(2):414–417. https://doi.org/10.1021/ol303416k

    Article  CAS  PubMed  Google Scholar 

  127. Williams DE, Izard F, Arnould S, Dalisay DS, Tantapakul C, Maneerat W, Matainaho T, Julien E, Andersen RJ (2016) Structures of nahuoic acids B-E produced in culture by a Streptomyces sp. isolated from a marine sediment and evidence for the inhibition of the histone methyl transferase SETD8 in human cancer cells by nahuoic acid A. J Org Chem 81(4):1324–1332. https://doi.org/10.1021/acs.joc.5b02569

    Article  CAS  PubMed  Google Scholar 

  128. Ma A, Yu W, Li F, Bleich RM, Herold JM, Butler KV, Norris JL, Korboukh V, Tripathy A, Janzen WP, Arrowsmith CH, Frye SV, Vedadi M, Brown PJ, Jin J (2014) Discovery of a selective, substrate-competitive inhibitor of the lysine methyltransferase SETD8. J Med Chem 57(15):6822–6833. https://doi.org/10.1021/jm500871s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ma A, Yu W, Xiong Y, Butler KV, Brown PJ, Jin J (2014) Structure-activity relationship studies of SETD8 inhibitors. MedChemComm 5(12):1892–1898. https://doi.org/10.1039/C4MD00317A

    Article  CAS  PubMed  Google Scholar 

  130. Veschi V, Liu Z, Voss TC, Ozbun L, Gryder B, Yan C, Hu Y, Ma A, Jin J, Mazur SJ, Lam N, Souza BK, Giannini G, Hager GL, Arrowsmith CH, Khan J, Appella E, Thiele CJ (2017) Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell 31(1):50–63. https://doi.org/10.1016/j.ccell.2016.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Butler KV, Ma A, Yu W, Li F, Tempel W, Babault N, Pittella-Silva F, Shao J, Wang J, Luo M, Vedadi M, Brown PJ, Arrowsmith CH, Jin J (2016) Structure-based design of a covalent inhibitor of the SET domain-containing protein 8 (SETD8) lysine methyltransferase. J Med Chem 59(21):9881–9889. https://doi.org/10.1021/acs.jmedchem.6b01244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blum G, Ibanez G, Rao X, Shum D, Radu C, Djaballah H, Rice JC, Luo M (2014) Small-molecule inhibitors of SETD8 with cellular activity. ACS Chem Biol 9(11):2471–2478. https://doi.org/10.1021/cb500515r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Judge RA, Zhu H, Upadhyay AK, Bodelle PM, Hutchins CW, Torrent M, Marin VL, Yu W, Vedadi M, Li F, Brown PJ, Pappano WN, Sun C, Petros AM (2016) Turning a substrate peptide into a potent inhibitor for the histone methyltransferase SETD8. ACS Med Chem Lett 7(12):1102–1106. https://doi.org/10.1021/acsmedchemlett.6b00303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bromberg KD, Mitchell TR, Upadhyay AK, Jakob CG, Jhala MA, Comess KM, Lasko LM, Li C, Tuzon CT, Dai Y, Li F, Eram MS, Nuber A, Soni NB, Manaves V, Algire MA, Sweis RF, Torrent M, Schotta G, Sun C, Michaelides MR, Shoemaker AR, Arrowsmith CH, Brown PJ, Santhakumar V, Martin A, Rice JC, Chiang GG, Vedadi M, Barsyte-Lovejoy D, Pappano WN (2017) The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. Nat Chem Biol 13(3):317–324. https://doi.org/10.1038/nchembio.2282

    Article  CAS  PubMed  Google Scholar 

  135. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400. https://doi.org/10.1038/ng1531

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Valente .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest: The authors declare no conflict of interest.

Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stazi, G., Zwergel, C., Valente, S. (2019). Lysine Methyltransferases and Their Inhibitors. In: Mai, A. (eds) Chemical Epigenetics. Topics in Medicinal Chemistry, vol 33. Springer, Cham. https://doi.org/10.1007/7355_2019_72

Download citation

Publish with us

Policies and ethics