Skip to main content

Targeting the Zinc-Dependent Histone Deacetylases (HDACs) for Drug Discovery

  • Chapter
  • First Online:
Chemical Epigenetics

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 33))

Abstract

In humans, the zinc-dependent histone deacetylases (HDACs) are a family of 11 nonredundant isoforms that catalyze the dynamic reversal of posttranslationally modified acyl-lysine residues back to lysine. At the epigenetic level, HDACs have a critical gene silencing effect, promoting the compaction of histone tails with DNA to prevent transcription. In addition, HDACs deacylate many nonhistone substrates in diverse cellular compartments to profoundly influence protein structure and function. While the action of HDACs is indispensable to normal physiology, their abnormal overexpression is linked to the majority of human diseases. Consequently, the inhibition of HDACs has become a valuable target for therapeutic applications. Numerous potent small molecules are known, of both natural product and synthetic origin, that inhibit HDACs, primarily by reversibly interacting with the zinc cation within the enzyme active site. At the present time, five such HDAC inhibitors have received regulatory approval for the treatment of hematological cancers. This review focuses on the typical zinc-binding groups employed in HDAC inhibitors and the major advances within each class in terms of potency, isoform selectivity, and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCL2:

B-cell lymphoma 2

CoREST:

Corepressor RE1 silencing transcription factor

EGFR:

Epidermal growth factor receptor

EMA:

European medicines agency

FDA:

Food and drug administration

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HMG-CoA:

3-Hydroxy-3-methyl-glutaryl-coenzyme A

MiDAC:

Mitotic deacetylase complex

NcoR:

Nuclear receptor corepressor

NODE:

Nanog and Oct4-associated deacetylase

NuRD:

Nucleosome remodeling deacetylase

PI3K:

Phosphatidylinositol 3-kinase

SAHA:

Suberoylanilide hydroxamic acid

Sin3:

Septation initiation network transcriptional regulatory protein 3

SMRT:

Silencing mediator of retinoid and thyroid receptors

References

  1. Philipps DMP (1963) The presence of acetyl groups in histones. Biochem J 87:258–263

    Google Scholar 

  2. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Gallwitz D, Sekeris CE (1969) The acetylation of histones of rat liver nuclei in vitro by acetyl-CoA. Z Physiol Chem 350:150–154

    CAS  Google Scholar 

  4. Inoue A, Fujimoto D (1969) Enzymatic deacetylation of histone. Biochem Biophys Res Commun 36:146–150

    PubMed  CAS  Google Scholar 

  5. He M, Han Z, Liu L et al (2018) Chemical biology approaches for investigating the functions of lysine acetyltransferases. Angew Chem Int Ed 57:1162–1184

    CAS  Google Scholar 

  6. Harmel R, Fiedler D (2018) Features and regulation of non-enzymatic posttranslational modifications. Nat Chem Biol 14:244–252

    PubMed  CAS  Google Scholar 

  7. Pérez-Salvia M, Esteller M (2017) Bromodomain inhibitors and cancer therapy: from structures to applications. Epigenetics 12:323–339

    PubMed  Google Scholar 

  8. Lyon K, Stasevich TJ (2017) Imaging translational and post-translational gene regulatory dynamics in living cells with antibody-based probes. Trends Genet 33:322–335

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Drazic A, Myklebust LM, Ree R et al (2016) The world of protein acetylation. Biochim Biophys Acta 1864:1372–1401

    PubMed  CAS  Google Scholar 

  10. Jiang H, Zhang X, Chen X et al (2018) Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem Rev 118:919–988

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19:1298–1306

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Yoshida M, Kudo N, Kosono S et al (2017) Chemical and structural biology of protein lysine deacetylases. Proc Jpn Acad Ser B 93:297–321

    CAS  Google Scholar 

  13. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713

    PubMed  PubMed Central  Google Scholar 

  14. Bertrand P (2010) Inside HDAC with HDAC inhibitors. Eur J Med Chem 45:2095–2116

    PubMed  CAS  Google Scholar 

  15. Micelli C, Rastelli G (2015) Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov Today 20:718–735

    PubMed  CAS  Google Scholar 

  16. Roche J, Bertrand P (2016) Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 121:451–483

    PubMed  CAS  Google Scholar 

  17. Kutil Z, Novakova Z, Meleshin M et al (2018) Histone deacetylase 11 is a fatty-acid deacylase. ACS Chem Biol 13:685–693

    PubMed  CAS  Google Scholar 

  18. Di Giorgio E, Brancolini C (2016) Regulation of class IIa HDAC activities: it is not only matter of subcellular localization. Epigenomics 8:251–269

    PubMed  Google Scholar 

  19. Desravines DC, Serna Martin I, Schneider R et al (2017) Structural characterization of the SMRT corepressor interacting with histone deacetylase. Sci Rep 7:3678

    PubMed  PubMed Central  Google Scholar 

  20. Hai Y, Christianson DW (2016) Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol 12:741–747

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Yanginlar C, Logie C (2018) HDAC11 is a regulator of diverse immune functions. Biochem Biophys Acta 1861:54–59

    CAS  Google Scholar 

  22. Zwergel C, Stazi G, Valente S et al (2016) Histone deacetylase inhibitors: updated studies in various epigenetic-related diseases. J Clin Epigenetics 2:1–7

    Google Scholar 

  23. Manal M, Chandrasekar MJN, Priya JG et al (2016) Inhibitors of histone deacetylase as antitumor agents: a critical review. Bioorg Chem 67:18–42

    PubMed  CAS  Google Scholar 

  24. Ganesan A (2018) Epigenetic drug discovery: a success story for cofactor interference. Philos Trans R Soc B 373:20170069

    Google Scholar 

  25. Khan A, Singh P, Srivastava K (2018) Synthesis, nature and utility of universal iron chelator – siderophore: a review. Microbiol Res 212:103–111

    PubMed  Google Scholar 

  26. Codd R (2008) Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coord Chem Rev 252:1387–1408

    CAS  Google Scholar 

  27. Yoshida M, Kijima M, Akita M et al (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    PubMed  CAS  Google Scholar 

  28. Richon VM, Emiliani S, Verdin E et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 95:3003–3007

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    PubMed  CAS  Google Scholar 

  30. Kawai K, Nagata N (2012) Metal–ligand interactions: an analysis of zinc binding groups using the Protein Data Bank. Eur J Med Chem 51:271–276

    PubMed  CAS  Google Scholar 

  31. Shen S, Kozikowski AP (2016) Why hydroxamates may not be the best histone deacetylase inhibitors – what some may have forgotten or would rather forget? ChemMedChem 11:15–21

    PubMed  CAS  Google Scholar 

  32. Finn PW, Loza E, Carstensten E (2016) The discovery and development of belinostat. In: Fischer J, Childers WE (eds) Successful drug discovery, vol 2. Wiley-VCH, Weinheim, pp 31–57

    Google Scholar 

  33. Atadja P, Perez L (2016) Discovery and development of Farydak (NVP-LBH589, panobinostat) as an anticancer drug. In: Fischer J, Childers WE (eds) Successful drug discovery, vol 2. Wiley-VCH, Weinheim, pp 59–88

    Google Scholar 

  34. Maolanon AR, Madsen AS, Olsen CA (2016) Innovative strategies for selective inhibition of histone deacetylases. Cell Chem Biol 23:759–768

    PubMed  CAS  Google Scholar 

  35. Novotny-Diermayr V, Sangthongpitag K, Hu CY et al (2010) SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol Cancer Ther 9:642–652

    PubMed  CAS  Google Scholar 

  36. Mandl-Weber S, Meinel FG, Jankowsky R et al (2010) The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br J Haematol 149:518–528

    PubMed  CAS  Google Scholar 

  37. Leoni F, Fossati G, Lewis EC et al (2005) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11:1–15

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Buggy JJ, Cao ZA, Bass KE et al (2006) CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo. Mol Cancer Ther 5:1309–1317

    PubMed  CAS  Google Scholar 

  39. Lu Q, Wang DS, Chen CS et al (2005) Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem 48:5530–5535

    PubMed  CAS  Google Scholar 

  40. Arts J, King P, Mariën A et al (2009) JNJ-26481585, a novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res 15:6841–6851

    PubMed  CAS  Google Scholar 

  41. Moffat D, Patel S, Day F et al (2010) Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J Med Chem 53:8663–8678

    PubMed  CAS  Google Scholar 

  42. Santo L, Hideshima T, Kung AL et al (2012) Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119:2579–2589

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Huang P, Almeciga-Pinto I, Jarpe M et al (2017) Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget 8:2694–2707

    PubMed  Google Scholar 

  44. Lecointre B, Narozny R, Borrello MT et al (2018) Isoform-selective HDAC1/6/8 inhibitors with an imidazo-ketopiperazine cap containing stereochemical diversity. Philos Trans R Soc B 373:20170364

    Google Scholar 

  45. Gaisina IN, Tueckmantel W, Ugolkov A et al (2016) Identification of HDAC6-selective inhibitors of low cancer cell cytotoxicity. ChemMedChem 11:81–92

    PubMed  CAS  Google Scholar 

  46. Sellmer A, Stangl H, Beyer M et al (2018) Marbostat-100 defines a new class of potent and selective antiinflammatory and antirheumatic histone deacetylase 6 inhibitors. J Med Chem 61:3454–3477

    PubMed  CAS  Google Scholar 

  47. Balasubramanian S, Ramos J, Luo W et al (2008) A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22:1026–1034

    PubMed  CAS  Google Scholar 

  48. Ingham OJ, Paranal RM, Smith WB et al (2016) Development of a potent and selective HDAC8 inhibitor. ACS Med Chem Lett 7:929–932

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Luckhurst CA, Breccia P, Stott AJ et al (2015) Potent, selective, and CNS-penetrant tetrasubstituted cyclopropane class IIa histone deacetylase (HDAC) inhibitors. ACS Med Chem Lett 7:34–39

    PubMed  PubMed Central  Google Scholar 

  50. Ossenkoppele GJ, Lowenberg B, Zachee P et al (2013) A phase I first-in-human study with tefinostat – a monocyte/macrophage targeted histone deacetylase inhibitor – in patients with advanced haematological malignancies. Br J Haematol 162:191–201

    PubMed  CAS  Google Scholar 

  51. Zheng S, Guo S, Zhong Q et al (2018) Biocompatible boron-containing prodrugs of belinostat for the potential treatment of solid tumors. ACS Med Chem Lett 9:149–154

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Ganesan A (2016) Multitarget drugs: an epigenetic epiphany. ChemMedChem 11:1227–1241

    PubMed  CAS  Google Scholar 

  53. de Lera AR, Ganesan A (2016) Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics 8:105

    PubMed  PubMed Central  Google Scholar 

  54. Cai X, Zhai HX, Wang J et al (2010) Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem 53:2000–2009

    PubMed  CAS  Google Scholar 

  55. Qian C, Lai CJ, Bao R et al (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res 18:4104–4113

    PubMed  CAS  Google Scholar 

  56. Shigematsu N, Ueda H, Takase S et al (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J Antibiot 47:311–314

    PubMed  CAS  Google Scholar 

  57. Nakajima H, Kim YB, Terano H et al (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241:126–133

    PubMed  CAS  Google Scholar 

  58. Furumai R, Matsuyama A, Kobashi N et al (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62:4916–4921

    PubMed  CAS  Google Scholar 

  59. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807

    PubMed  CAS  Google Scholar 

  60. Wang C, Henkes LM, Doughty LB et al (2011) Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J Nat Prod 74:2031–2038

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Ganesan A (2015) Macrocyclic inhibitors of zinc-dependent histone deacetylases (HDACs). In: Levin J (ed) Macrocycles in drug discovery. RSC, Cambridge, pp 109–140

    Google Scholar 

  62. Maolanon AR, Kristensen HM, Leman LJ et al (2017) Natural and synthetic macrocyclic inhibitors of the histone deacetylase enzymes. Chembiochem 18:5–49

    PubMed  CAS  Google Scholar 

  63. Ganesan A (2016) Romidepsin and the zinc-binding thiol family of natural product HDAC inhibitors. In: Fischer J, Childers WE (eds) Successful drug discovery, vol 2. Wiley-VCH, Weinheim, pp 13–30

    Google Scholar 

  64. Stolze SC, Kaiser M (2013) Case studies of the synthesis of bioactive cyclodepsipeptide natural products. Molecules 18:1337–1367

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Chen QY, Chaturvedi PR, Luesch H (2018) Process development and scale-up total synthesis of largazole, a potent class I histone deacetylase inhibitor. Org Process Res Dev 22:190–199

    CAS  Google Scholar 

  66. Poli G, di Fabio R, Ferrante L et al (2017) Largazole analogues as histone deacetylase inhibitors and anticancer agents: an overview of structure–activity relationships. ChemMedChem 12:1917–1926

    PubMed  CAS  Google Scholar 

  67. Benelkebir H, Marie S, Hayden A et al (2011) Total synthesis of largazole and analogues: HDAC inhibition, antiproliferative activity and metabolic stability. Bioorg Med Chem 19:3650–3658

    PubMed  CAS  Google Scholar 

  68. Yao Y, Tu Z, Liao C et al (2015) Discovery of novel class I histone deacetylase inhibitors with promising in vitro and in vivo antitumor activities. J Med Chem 58:7672–7680

    PubMed  CAS  Google Scholar 

  69. Almaliti J, Al-Hamashi AA, Negmeldin AT et al (2016) Largazole analogues embodying radical changes in the depsipeptide ring: development of a more selective and highly potent analogue. J Med Chem 59:10642–10660

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Kitir B, Maolanon AR, Ohm RG et al (2017) Chemical editing of macrocyclic natural products and kinetic profiling reveal slow, tight-binding histone deacetylase inhibitors with picomolar affinities. Biochemistry 56:5134–5146

    PubMed  CAS  Google Scholar 

  71. Gu W, Nusinzon I, Smith RD Jr et al (2006) Carbonyl- and sulfur-containing analogs of suberoylanilide hydroxamic acid: potent inhibition of histone deacetylases. Bioorg Med Chem 14:3320–3329

    PubMed  CAS  Google Scholar 

  72. Saito A, Yamashita T, Mariko Y et al (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96:4592–4597

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Fournel M, Bonfils C, Hou Y et al (2008) MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther 7:759–768

    PubMed  CAS  Google Scholar 

  74. Lu XP, Ning ZQ, Li ZB et al (2016) Discovery and development of HDAC subtype selective inhibitor chidamide: potential immunomodulatory activity against cancers. In: Fischer J, Childers WE (eds) Successful drug discovery, vol 2. Wiley-VCH, Weinheim, pp 89–114

    Google Scholar 

  75. Ning ZQ, Li ZB, Newman MJ et al (2012) Chidamide (CS055/HBI-8000): a new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother Pharmacol 69:901–909

    PubMed  CAS  Google Scholar 

  76. Witter DJ, Harrington P, Wilson KJ et al (2008) Optimization of biaryl selective HDAC1&2 inhibitors (SHI-1:2). Bioorg Med Chem Lett 18:726–731

    PubMed  CAS  Google Scholar 

  77. McClure JJ, Inks ES, Zhang C et al (2017) Comparison of the deacylase and deacetylase activity of zinc-dependent HDACs. ACS Chem Biol 12:1644–1655

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113

    PubMed  CAS  Google Scholar 

  79. Kim SW, Hooker JM, Otto N et al (2013) Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Biol 40:912–918

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Wen S, Carey KL, Nakao Y et al (2007) Total synthesis of azumamide A and azumamide E, evaluation as histone deacetylase inhibitors, and design of a more potent analogue. Org Lett 9:1105–1108

    PubMed  CAS  Google Scholar 

  81. Porter NJ, Christianson DW (2017) Binding of the microbial cyclic tetrapeptide trapoxin A to the class I histone deacetylase HDAC8. ACS Chem Biol 12:2281–2286

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Olsen CA, Montero A, Leman LJ et al (2012) Macrocyclic peptoid−peptide hybrids as inhibitors of class I histone deacetylases. ACS Med Chem Lett 3:749–753

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Islam MN, Islam MS, Hoque MA et al (2014) Bicyclic tetrapeptides as potent HDAC inhibitors: effect of aliphatic loop position and hydrophobicity on inhibitory activity. Bioorg Med Chem 22:3862–3870

    PubMed  CAS  Google Scholar 

  84. Traoré MDM, Zwick V, Simões-Pires CA et al (2017) Hydroxyl ketone-based histone deacetylase inhibitors to gain insight into class I HDAC selectivity versus that of HDAC6. ACS Omega 2:1550–1562

    PubMed  PubMed Central  Google Scholar 

  85. Whitehead L, Dobler MR, Radetich B et al (2011) Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg Med Chem 19:4626–4634

    PubMed  CAS  Google Scholar 

  86. Lobera M, Madauss KP, Pohlhaus DT et al (2013) Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol 9:319–325

    PubMed  CAS  Google Scholar 

  87. Attenni B, Ontoria JM, Cruz JC et al (2009) Histone deacetylase inhibitors with a primary amide zinc binding group display antitumor activity in xenograft model. Bioorg Med Chem Lett 19:3081–3084

    PubMed  CAS  Google Scholar 

  88. Li X, Peterson YK, Inks ES et al (2018) Class I HDAC inhibitors display different antitumor mechanism in leukemia and prostatic cancer cells depending on their p53 status. J Med Chem 61:2589–2603

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Ononye SN, VanHeyst MD, Oblak EZ et al (2013) Tropolones as lead-like natural products: the development of potent and selective histone deacetylase inhibitors. ACS Med Chem Lett 4:757–761

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Kleinschek A, Meyners C, Digiorgio E et al (2016) Potent and selective non-hydroxamate histone deacetylase 8 inhibitors. ChemMedChem 11:2598–2606

    PubMed  CAS  Google Scholar 

  91. Ontoria JM, Altamura S, Di Marco A et al (2009) Identification of novel, selective, and stable inhibitors of class II histone deacetylases. Validation studies of the inhibition of the enzymatic activity of HDAC4 by small molecules as a novel approach for cancer therapy. J Med Chem 52:6782–6789

    PubMed  CAS  Google Scholar 

  92. Boskovic ZV, Kemp MM, Freedy AM et al (2016) Inhibition of zinc-dependent histone deacetylases with a chemically triggered electrophile. ACS Chem Biol 11:1844–1851

    PubMed  CAS  Google Scholar 

  93. Millard CJ, Watson PJ, Fairall L et al (2017) Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol Sci 38:363–377

    PubMed  CAS  Google Scholar 

  94. Villagra A, Sahakian E, Seto E (2016) Preparation and biochemical analysis of classical histone deacetylases. Methods Enzymol 573:161–181

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Newbold A, Falkenberg KJ, Prince HM et al (2016) How do tumor cells respond to HDAC inhibition? FEBS J 283:4032–4046

    PubMed  CAS  Google Scholar 

  96. Bolden JE, Shi W, Jankowski K et al (2013) HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis 4:e519

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Tiffon C, Adams J, van der Fits L et al (2011) The histone deacetylase inhibitors vorinostat and romidepsin downmodulate IL-10 expression in cutaneous T-cell lymphoma cells. Br J Pharmacol 162:1590–1602

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Das Gupta K, Shakespear MR, Iyer A et al (2016) Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Trans Immunol 5:e62

    Google Scholar 

  99. Zhang Q, Dai Y, Cai Z et al (2018) HDAC inhibitors: novel immunosuppressants for Allo- and Xeno- transplantation. Chem Select 3:176–187

    CAS  Google Scholar 

  100. Thorlund K, Horwitz MS, Fife BT et al (2017) Landscape review of current HIV ‘kick and kill’ cure research – some kicking, not enough killing. BMC Infect Dis 17:595

    PubMed  PubMed Central  Google Scholar 

  101. Ghosh SK, Perrine SP, Williams RM et al (2012) Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood 119:1008–1017

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Warnault V, Darcq E, Levine A et al (2013) Chromatin remodeling – a novel strategy to control excessive alcohol drinking. Transl Psychiatry 3:e231

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Qin L, Ma K, Wang ZJ et al (2018) Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 21:564–575

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Ooi JY, Tuano NK, Rafehi H et al (2015) HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics 10:418–430

    PubMed  PubMed Central  Google Scholar 

  105. Akimova T, Beier UH, Liu Y et al (2012) Histone/protein deacetylases and T-cell immune responses. Blood 119:2443–2451

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Tsuji G, Okiyama N, Villarroel VA et al (2015) Histone deacetylase 6 inhibition impairs effector CD8 T-cell functions during skin inflammation. J Allergy Clin Immunol 135:1228–1239

    PubMed  CAS  Google Scholar 

  107. Bowers ME, Xia B, Carreiro S et al (2015) The class I HDAC inhibitor RGFP963 enhances consolidation of cued fear extinction. Learn Mem 22:225–231

    PubMed  PubMed Central  Google Scholar 

  108. Bodas M, Mazur S, Min T et al (2018) Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses. Respir Res 19:2

    PubMed  PubMed Central  Google Scholar 

  109. Dirice E, Ng RWS, Martinez R et al (2017) Isoform-selective inhibitor of histone deacetylase 3 (HDAC3) limits pancreatic islet infiltration and protects female nonobese diabetic mice from diabetes. J Biol Chem 292:17598–17608

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Jia H, Wang Y, Morris CD et al (2016) The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice. PLoS One 11:e0152498

    PubMed  PubMed Central  Google Scholar 

  111. Usui T, Okada M, Mizuno W et al (2012) HDAC4 mediates development of hypertension via vascular inflammation in spontaneous hypertensive rats. Am J Physiol Heart Circ Physiol 302:H1894–H1904

    PubMed  CAS  Google Scholar 

  112. Choi SY, Ryu Y, Kee HJ et al (2015) Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul Pharmacol 72:130–140

    PubMed  CAS  Google Scholar 

  113. Ferrari A, Fiorino E, Longo R et al (2017) Attenuation of diet-induced obesity and induction of white fat browning with a chemical inhibitor of histone deacetylases. Int J Obes (Lond) 41:289–298

    CAS  Google Scholar 

  114. Choong CJ, Sasaki T, Hayakawa H et al (2016) A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson’s disease. Neurobiol Aging 37:103–116

    PubMed  CAS  Google Scholar 

  115. Conforti F, Davies ER, Calderwood CJ et al (2017) The histone deacetylase inhibitor, romidepsin, as a potential treatment for pulmonary fibrosis. Oncotarget 8:48737–48754

    PubMed  PubMed Central  Google Scholar 

  116. Trifunović D, Arango-Gonzalez B, Comitato A et al (2016) HDAC inhibition in the cpfl1 mouse protects degenerating cone photoreceptors in vivo. Hum Mol Genet 25:4462–4472

    PubMed  Google Scholar 

  117. Li Y, Zhao T, Liu B et al (2015) Inhibition of histone deacetylase 6 improves long-term survival in a lethal septic model. J Trauma Acute Care Surg 78:378–385

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Pfaller MA, Messer SA, Georgopapadakou N et al (2009) Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 47:3797–3804

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Kuchler K, Jenull S, Shivarathri R et al (2016) Fungal KATs/KDACs: a new highway to better antifungal drugs? PLoS Pathog 12:e1005938

    PubMed  PubMed Central  Google Scholar 

  120. Hailu GS, Robaa D, Forgione M et al (2017) Lysine deacetylase inhibitors in parasites: past, present, and future perspectives. J Med Chem 60:4780–4804

    PubMed  CAS  Google Scholar 

  121. Sumanadasa SD, Goodman CD, Lucke AJ et al (2012) Antimalarial activity of the anticancer histone deacetylase inhibitor SB939. Antimicrob Agents Chemother 56:3849–3856

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Chua MJ, Arnold MS, Xu W et al (2017) Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. Int J Parasitol Drugs Drug Resist 7:42–50

    PubMed  Google Scholar 

  123. Ontoria JM, Paonessa G, Ponzi S et al (2016) Discovery of a selective series of inhibitors of Plasmodium falciparum HDACs. ACS Med Chem Lett 7:454–459

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Heimburg T, Chakrabarti A, Lancelot J et al (2016) Structure-based design and synthesis of novel inhibitors targeting HDAC8 from Schistosoma mansoni for the treatment of schistosomiasis. J Med Chem 59:2423–2435

    PubMed  CAS  Google Scholar 

  125. Meyners C, Wolff B, Kleinschek A et al (2017) Perfluorinated hydroxamic acids are potent and selective inhibitors of HDAC-like enzymes from Pseudomonas aeruginosa. Bioorg Med Chem Lett 27:1508–1512

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ganesan .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest: Author declares that he has no conflict of interest.

Ethical approval: Not applicable.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganesan, A. (2019). Targeting the Zinc-Dependent Histone Deacetylases (HDACs) for Drug Discovery. In: Mai, A. (eds) Chemical Epigenetics. Topics in Medicinal Chemistry, vol 33. Springer, Cham. https://doi.org/10.1007/7355_2019_68

Download citation

Publish with us

Policies and ethics