Skip to main content

Structure and Activation Mechanism of GPCRs

  • Chapter
  • First Online:
Structure and Function of GPCRs

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 30))

Abstract

G-protein-coupled receptors (GPCRs) mediate a wide variety of physiological functions and are a rich source of drug targets. In response to activation by extracellular stimuli, GPCRs trigger cytoplasmic signalling pathways through intracellular partners such as G-proteins and arrestins. This chapter provides a general overview of the molecular mechanisms of GPCR activation gleaned from crystal structures, biophysical experiments, and computational analyses. Furthermore, existing challenges and unresolved mechanistic questions about GPCR signalling are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43(1):65–158

    Article  CAS  Google Scholar 

  2. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    Article  CAS  Google Scholar 

  3. Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25(1):4–12

    Article  CAS  Google Scholar 

  4. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10(12):819–830

    Article  CAS  Google Scholar 

  5. Eichel K, von Zastrow M (2018) Subcellular organization of GPCR signaling. Trends Pharmacol Sci 39(2):200–208

    Article  CAS  Google Scholar 

  6. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9(5):373–386

    Article  CAS  Google Scholar 

  7. Tate CG, Schertler GFX (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struct Biol 19(4):386–395

    Article  CAS  Google Scholar 

  8. Pándy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsøe K, Hauser AS, Bojarski AJ, Gloriam DE (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46(D1):D440–D446

    Article  Google Scholar 

  9. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555

    Article  CAS  Google Scholar 

  10. Carpenter B, Nehmé R, Warne T, Leslie AGW, Tate CG (2016) Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature 536(7614):104–107

    Article  CAS  Google Scholar 

  11. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523(7562):561–567

    Article  CAS  Google Scholar 

  12. Zhou XE, He Y, de Waal PW, Gao X, Kang Y, van Eps N, Yin Y et al (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170(3):457–469.e13

    Article  CAS  Google Scholar 

  13. Draper-Joyce CJ, Khoshouei M, Thal DM, Liang Y-L, Nguyen ATN, Furness SGB, Venugopal H et al (2018) Structure of the adenosine-bound human adenosine A receptor-G complex. Nature 558(7711):559–563

    Article  CAS  Google Scholar 

  14. García-Nafría J, Lee Y, Bai X, Carpenter B, Tate CG (2018) Cryo-EM structure of the adenosine A receptor coupled to an engineered heterotrimeric G protein. elife 7:e35946. https://doi.org/10.7554/eLife.35946

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, Latorraca NR et al (2018) Structure of the μ-opioid receptor-G protein complex. Nature 558(7711):547–552

    Article  CAS  Google Scholar 

  16. Liang Y-L, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM et al (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546(7656):118–123

    Article  CAS  Google Scholar 

  17. Thal DM, Vuckovic Z, Draper-Joyce CJ, Liang Y-L, Glukhova A, Christopoulos A, Sexton PM (2018) Recent advances in the determination of G protein-coupled receptor structures. Curr Opin Struct Biol 51:28–34

    Article  CAS  Google Scholar 

  18. Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT et al (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546(7657):248–253

    Article  CAS  Google Scholar 

  19. Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  20. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194

    Article  CAS  Google Scholar 

  21. Ngo T, Ilatovskiy AV, Stewart AG, Coleman JLJ, McRobb FM, Riek RP, Graham RM, Abagyan R, Kufareva I, Smith NJ (2017) Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. Nat Chem Biol 13(2):235–242

    Article  CAS  Google Scholar 

  22. Wacker D, Stevens RC, Roth BL (2017) How ligands illuminate GPCR molecular pharmacology. Cell 170(3):414–427

    Article  CAS  Google Scholar 

  23. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265

    Article  CAS  Google Scholar 

  24. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482(7386):547–551

    Article  CAS  Google Scholar 

  25. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H et al (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504(7478):101–106

    Article  CAS  Google Scholar 

  26. Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Robert Lane J, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    Article  CAS  Google Scholar 

  27. Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471(7340):651–655

    Article  CAS  Google Scholar 

  28. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745

    Article  CAS  Google Scholar 

  29. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE et al (2015) Structural insights into μ-opioid receptor activation. Nature 524(7565):315–321

    Article  CAS  Google Scholar 

  30. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326

    Article  CAS  Google Scholar 

  31. Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD et al (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172(1–2):55–67.e15

    Article  CAS  Google Scholar 

  32. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W et al (2012) Structure of the human κ-opioid receptor in complex with JDTic. Nature 485(7398):327–332

    Article  CAS  Google Scholar 

  33. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474(7352):521–525

    Article  CAS  Google Scholar 

  34. Manglik A, Kruse AC (2017) Structural basis for G protein-coupled receptor activation. Biochemistry 56(42):5628–5634

    Article  CAS  Google Scholar 

  35. Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117(1):139–155

    Article  CAS  Google Scholar 

  36. Deupi X, Standfuss J (2011) Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 21(4):541–551

    Article  CAS  Google Scholar 

  37. Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S et al (2016) Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536(7617):484–487

    Article  CAS  Google Scholar 

  38. Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM (2015) Universal allosteric mechanism for Gα activation by GPCRs. Nature 524(7564):173–179

    Article  CAS  Google Scholar 

  39. Wootten D, Christopoulos A, Sexton PM (2013) Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 12(8):630–644

    Article  CAS  Google Scholar 

  40. Thal DM, Glukhova A, Sexton PM, Christopoulos A (2018) Structural insights into G-protein-coupled receptor allostery. Nature 559(7712):45–53

    Article  CAS  Google Scholar 

  41. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH et al (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503(7475):295–299

    Article  CAS  Google Scholar 

  42. Hertig S, Latorraca NR, Dror RO (2016) Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations. PLoS Comput Biol 12(6):e1004746

    Article  Google Scholar 

  43. Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A et al (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533(7602):274–277

    Article  CAS  Google Scholar 

  44. Zheng Y, Qin L, Zacarías NVO, de Vries H, Han GW, Gustavsson M, Dabros M et al (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540(7633):458–461

    Article  CAS  Google Scholar 

  45. Oswald C, Rappas M, Kean J, Doré AS, Errey JC, Bennett K, Deflorian F et al (2016) Intracellular allosteric antagonism of the CCR9 receptor. Nature 540(7633):462–465

    Article  CAS  Google Scholar 

  46. Liu X, Ahn S, Kahsai AW, Meng K-C, Latorraca NR, Pani B, Venkatakrishnan AJ et al (2017) Mechanism of intracellular allosteric βAR antagonist revealed by X-ray crystal structure. Nature 548(7668):480–484

    Article  CAS  Google Scholar 

  47. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39(5):233–244

    Article  CAS  Google Scholar 

  48. Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AGW, Tate CG, Schertler GFX (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc Natl Acad Sci U S A 108(20):8228–8232

    Article  CAS  Google Scholar 

  49. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT et al (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161(5):1101–1111

    Article  CAS  Google Scholar 

  50. Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE (2009) Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci U S A 106(12):4689–4694

    Article  CAS  Google Scholar 

  51. Wacker D, Wang C, Katritch V, Han GW, Huang X-P, Vardy E, McCorvy JD et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340(6132):615–619

    Article  CAS  Google Scholar 

  52. Wang C, Jiang Y, Ma J, Huixian W, Wacker D, Katritch V, Han GW et al (2013) Structural basis for molecular recognition at serotonin receptors. Science 340(6132):610–614

    Article  CAS  Google Scholar 

  53. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE (2011) Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci U S A 108(46):18684–18689

    Article  CAS  Google Scholar 

  54. Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919

    Article  CAS  Google Scholar 

  55. Latorraca NR, Wang JK, Bauer B, Townshend RJL, Hollingsworth SA, Olivieri JE, Xu HE, Sommer ME, Dror RO (2018) Molecular mechanism of GPCR-mediated arrestin activation. Nature 557(7705):452–456

    Article  CAS  Google Scholar 

  56. Marino KA, Shang Y, Filizola M (2017) Insights into the function of opioid receptors from molecular dynamics simulations of available crystal structures. Br J Pharmacol 175:2834–2845. https://doi.org/10.1111/bph.13774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vaidehi N, Bhattacharya S (2016) Allosteric communication pipelines in G-protein-coupled receptors. Curr Opin Pharmacol 30:76–83

    Article  CAS  Google Scholar 

  58. Rodríguez D, Ranganathan A, Carlsson J (2015) Discovery of GPCR ligands by molecular docking screening: novel opportunities provided by crystal structures. Curr Top Med Chem 15(24):2484–2503

    Article  Google Scholar 

  59. Vaidehi N, Grisshammer R, Tate CG (2016) How can mutations thermostabilize G-protein-coupled receptors? Trends Pharmacol Sci 37(1):37–46

    Article  CAS  Google Scholar 

  60. Venkatakrishnan AJ, Flock T, Prado DE, Oates ME, Gough J, Madan Babu M (2014) Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol 27:129–137

    Article  CAS  Google Scholar 

  61. Sente A, Peer R, Srivastava A, Baidya M, Lesk AM, Balaji S, Shukla AK, Babu MM, Flock T (2018) Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat Struct Mol Biol 25(6):538–545

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges Stanford ChEM-H seed grant, Dror Lab, and Kobilka Lab at Stanford for supporting his research and Guillaume Lebon, Naomi R. Latorraca, Siri van Keulen, and Jonas Kaindl for critically reading the manuscript. The author has no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Venkatakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatakrishnan, A.J. (2019). Structure and Activation Mechanism of GPCRs. In: Lebon, G. (eds) Structure and Function of GPCRs. Topics in Medicinal Chemistry, vol 30. Springer, Cham. https://doi.org/10.1007/7355_2018_62

Download citation

Publish with us

Policies and ethics