Skip to main content

Four Ways to Skin a Cat: Inhibition of Bacterial Topoisomerases Leading to the Clinic

  • Chapter
  • First Online:

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 25))

Abstract

Four classes of antibacterial agents that operate by inhibition of the Type II topoisomerases, DNA gyrase and Topoisomerase IV, have progressed at least through Phase 2 clinical trials. Compounds from each of the four classes are not cross-resistant to one another as determined by analyses with laboratory and clinical resistant bacterial strains. Hence, they are defined herein as sharing a mode of action, in that they inhibit the same targets, but differing in mode of inhibition, in that they obstruct enzyme activity via divergent binding modes. Two of the classes, fluoroquinolones and aminocoumarins, were long ago approved for clinical use, though the use of the latter has been limited. Two newer classes, spiropyrimidinetriones and quinolines, are represented by the advanced drug candidates zoliflodacin and gepotidacin, each featuring a novel scaffold and a distinct binding motif. X-ray crystallography has shown fluoroquinolone and spiropyrimidinetrione binding at DNA cleavage sites of the topoisomerases. However, the two differ by their dependence on [Mg2+] for binding serving in part to explain the lack of cross-resistance. Quinolines bind to DNA-topoisomerase complexes offset from the cleavage sites as ascertained by X-ray crystallography. Novobiocin, the only aminocoumarin to receive regulatory approval, competes with ATP binding at a site quite remote from the DNA-binding domain. As novobiocin has been withdrawn from the clinic, considerable drug discovery efforts have focused on alternative ATP site binders (ATPase inhibitors). With widespread use of fluoroquinolones leading to resistance, the importance of developing novel antibiotics that would not be cross-resistant is clear. Reviewed herein are the current understandings of the respective mechanisms of inhibition and the respective topoisomerase binding modes for the four classes of antibacterials now with clinical proof of concept.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mullard A (2014) Momentum builds around new antibiotic business models. Nat Rev Drug Discov 13:711–713. doi:10.1038/nrd4455

    Article  PubMed  CAS  Google Scholar 

  2. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343. doi:10.1038/nature17042

    Article  CAS  PubMed  Google Scholar 

  3. Fernandes P, Martens E (2016) Antibiotics in late clinical development. Biochem Pharmacol. doi:10.1016/j.bcp.2016.09.025

    Article  PubMed  Google Scholar 

  4. Singh SB (2014) Confronting the challenges of discovery of novel antibacterial agents. Bioorg Med Chem Lett 24:3683–3689. doi:10.1016/j.bmcl.2014.06.053

    Article  PubMed  CAS  Google Scholar 

  5. Trauner A, Sassetti CM, Rubin EJ (2014) Genetic strategies for identifying new drug targets. Microbiol Spectr 2:1–16. doi:10.1128/microbiolspec.MGM2-0030-2013.Correspondence

    Article  Google Scholar 

  6. Jones JA, Virga KG, Gumina G et al (2016) Recent advances in the rational design and optimization of antibacterial agents. Med Chem Commun 7:1694–1715. doi:10.1039/C6MD00232C

    Article  CAS  Google Scholar 

  7. Tommasi R, Brown DG, Walkup GK et al (2015) ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 14:529–542. doi:10.1038/nrd4572

    Article  PubMed  CAS  Google Scholar 

  8. O’Neill J (2016) Tackling drug-resistance infections globally: final report and recommendations. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf. Accessed 23 Jan 2017

  9. The Pew Charitable Trusts (2016) A scientific roadmap for antibiotic discovery. The Pew Charitable Trusts. http://www.pewtrusts.org/~/media/assets/2016/05/ascientificroadmapforantibioticdiscovery.pdf. Accessed 23 Jan 2017

  10. Outterson K, Rex JH, Jinks T et al (2016) Accelerating global innovation to address antibacterial resistance: introducing CARB-X. Nat Rev Drug Discov 15:589–590. doi:10.1038/nrd.2016.155

    Article  PubMed  CAS  Google Scholar 

  11. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413. doi:10.1146/annurev.biochem.70.1.369

    Article  PubMed  CAS  Google Scholar 

  12. Bush N, Evans-Roberts K, Maxwell A (2015) DNA topoisomerases. EcoSal Plus. doi:10.1128/ecosalplus

    Article  PubMed  Google Scholar 

  13. Hooper DC, Jacoby GA (2015) Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 1354:12–31. doi:10.1111/nyas.12830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pan XS, Yague G, Fisher LM (2001) Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins. Antimicrob Agents Chemother 45:3140–3147. doi:10.1128/AAC.45.11.3140-3147.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Takei M, Fukuda H, Kishii R, Hosaka M (2001) Target preference of 15 quinolones against Staphylococcus aureus, based on antibacterial activities and target inhibition. Antimicrob Agents Chemother 45:3544–3547. doi:10.1128/AAC.45.12.3544-3547.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Azam MA, Thathan J, Jubie S (2015) Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: a review. Bioorg Chem 62:41–63. doi:10.1016/j.bioorg.2015.07.004

    Article  PubMed  CAS  Google Scholar 

  17. Bisacchi GS, Manchester JI (2015) A new-class antibacterial – almost. Lessons in drug discovery and development: a critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infect Dis 1:4–41. doi:10.1021/id500013t

    Article  PubMed  CAS  Google Scholar 

  18. Ehmann DE, Lahiri SD (2014) Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr Opin Pharmacol 18:76–83. doi:10.1016/j.coph.2014.09.007

    Article  PubMed  CAS  Google Scholar 

  19. Mayer C, Janin YL (2014) Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 114:2313–2342. doi:10.1021/cr4003984

    Article  PubMed  CAS  Google Scholar 

  20. Tomasic T, Peterlin ML (2014) Prospects for developing new antibacterials targeting bacterial type IIA topoisomerases. Curr Top Med Chem 14:130–151. doi:10.2174/1568026613666131113153251

    Article  PubMed  CAS  Google Scholar 

  21. Foerster S, Golparian D, Jacobsson S et al (2015) Genetic resistance determinants, in vitro time-kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front Microbiol 6:1–14. doi:10.3389/fmicb.2015.01377

    Article  Google Scholar 

  22. McKinney DC, Basarab GS, Cocozaki AI et al (2015) Structural insights lead to a negamycin analog with improved antimicrobial activity against gram-negative pathogens. ACS Med Chem Lett 6:930–935. doi:10.1021/acsmedchemlett.5b00205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hooper DC, Jacoby GA (2016) Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 6:a025320. doi:10.1101/cshperspect.a025320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Aldred KJ, Kerns RJ, Oshero N (2014) Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574

    Article  CAS  PubMed  Google Scholar 

  25. Ibrahim-Elmagboul IB, Livermore DM (1997) Sensitivity testing of ciprofloxacin for Pseudomonas aeruginosa. J Antimicrob Chemother 39:309–317. doi:10.1093/JAC/39.3.309

    Article  PubMed  CAS  Google Scholar 

  26. Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105:559–592. doi:10.1021/cr030101q

    Article  PubMed  CAS  Google Scholar 

  27. Deep A, Chaudhary U, Sikka R (2011) In the quest of drugs for bad bugs: are newer fluoroquinolones any better? J Lab Physicians 3:130–131. doi:10.4103/0974-2727.86851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Soge OO, Salipante SJ, No D et al (2016) In vitro activity of delafloxacin against clinical Neisseria gonorrhoeae isolates and selection of gonococcal delafloxacin resistance. Antimicrob Agents Chemother 60:3106–3111. doi:10.1128/AAC.02798-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tapsall JW, Shultz TR, Limnius EA et al (1998) Failure of azithromycin therapy in gonorrhea and discorrelation with laboratory test parameters. Sex Transm Dis 25:505–508

    Article  CAS  PubMed  Google Scholar 

  30. US Food and Drug Administration (2016) Administration USF and D FDA drug safety communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; warns about disabling side effects that can occur together. http://www.fda.gov/Drugs/DrugSafety/ucm500143.htm. Accessed 23 Jan 2017

  31. Kim GK (2010) The risk of fluoroquinolone-induced tendinopathy and tendon rupture: what does the clinician need to know? J Clin Aesthet Dermatol 3:49–54

    PubMed  PubMed Central  Google Scholar 

  32. Sousa J, Alves G, Fortuna A, Falcão A (2014) Third and fourth generation fluoroquinolone antibacterials: a systematic review of safety and toxicity profiles. Curr Drug Saf 9:89–105. doi:10.2174/1574886308666140106154754

    Article  PubMed  CAS  Google Scholar 

  33. Drlica K, Malik M, Kerns RJ, Zhao X (2008) Quinolone-mediated bacterial death. Antimicrob Agents Chemother 52:385–392. doi:10.1128/AAC.01617-06

    Article  PubMed  CAS  Google Scholar 

  34. Kern G, Palmer T, Ehmann DE et al (2015) Inhibition of Neisseria gonorrhoeae type II topoisomerases by the novel spiropyrimidinetrione AZD0914. J Biol Chem 290:20984–20994. doi:10.1074/jbc.M115.663534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schröder W, Goerke C, Wolz C (2013) Opposing effects of aminocoumarins and fluoroquinolones on the SOS response and adaptability in Staphylococcus aureus. J Antimicrob Chemother 68:529–538. doi:10.1093/jac/dks456

    Article  PubMed  CAS  Google Scholar 

  36. Erill I, Campoy S, Barbé J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656. doi:10.1111/j.1574-6976.2007.00082.x

    Article  PubMed  CAS  Google Scholar 

  37. Laponogov I, Sohi MK, Veselkov DA et al (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol 16:667–669. doi:10.1038/nsmb.1604

    Article  PubMed  CAS  Google Scholar 

  38. Bax BD, Chan PF, Eggleston DS et al (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940. doi:10.1038/nature09197

    Article  PubMed  Google Scholar 

  39. Chan PF, Srikannathasan V, Huang J et al (2015) Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun 6:10048. doi:10.1038/ncomms10048

    Article  PubMed  CAS  Google Scholar 

  40. Aldred KJ, McPherson SA, Turnbough CL et al (2013) Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res 41:4628–4639. doi:10.1093/nar/gkt124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Unemo M, Shafer WM (2015) Future treatment of gonorrhoea – novel emerging drugs are essential and in progress? Expert Opin Emerg Drugs 20:1–4. doi:10.1517/14728214.2015.1039981

    Article  Google Scholar 

  42. Basarab GS, Kern GH, McNulty J et al (2015) Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial type II topoisomerases. Sci Rep 5:11827. doi:10.1038/srep11827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Miller AA, Bundy GL, Mott JE et al (2008) Discovery and characterization of QPT-1, the progenitor of a new class of bacterial topoisomerase inhibitors. Antimicrob Agents Chemother 52:2806–2812. doi:10.1128/AAC.00247-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Barbachyn MR (2004) Tricylic tetrahydroquinoline antibacterial agents. WO2004031195, 15 April 2004

    Google Scholar 

  45. Barbachyn MR (2006) Antibacterial agents. WO2006120563, 16 November 2006

    Google Scholar 

  46. Curtis M (2014) Tetracyclic tetrahydroquinoline antibacterial agents. US20140088093, 27 March 2014

    Google Scholar 

  47. Barbachyn MR (2007) 8-Pyrazinyl-S-spiropyrimidinetrione-oxazinoquinoline derivatives as antibacterial agents. WO2007072151, 28 June 2007

    Google Scholar 

  48. Basarab GS (2009) Spiro condensed barbituric acid derivatives for use as antibacterial. WO2009010801, 22 January 2009

    Google Scholar 

  49. Basarab GS, Galullo V, Degrace N et al (2014) Synthesis of a tetrahydronaphthyridine spiropyrimidinetrione DNA gyrase inhibiting antibacterial agent – differential substitution at all five carbon atoms of pyridine. Org Lett 16:6456–6459. doi:10.1021/ol503256h

    Article  PubMed  CAS  Google Scholar 

  50. Basarab GS, Doig P, Galullo V et al (2015) Discovery of novel DNA gyrase inhibiting spiropyrimidinetriones – benzisoxazole fusion with N-linked oxazolidinone substituents leading to a clinical candidate (ETX0914). J Med Chem 58:6264–6282. doi:10.1021/acs.jmedchem.5b00863

    Article  PubMed  CAS  Google Scholar 

  51. Basarab GS, Brassil P, Doig P et al (2014) Novel DNA gyrase inhibiting spiropyrimidinetriones with a benzisoxazole scaffold: SAR and in vivo characterization. J Med Chem 57:9078–9095. doi:10.1021/jm501174m

    Article  PubMed  CAS  Google Scholar 

  52. STD Prevention Conference (2016) 5B5 A phase II trial of single-dose oral ETX0914 (AZD0914) for treatment of uncomplicated urogenital gonorrhea. https://cdc.confex.com/cdc/std2016/webprogram/Paper37739.html. Accessed 23 Jan 2017

  53. Srikannathasan V, Wohlkonig A, Shillings A et al (2015) Crystallization and initial crystallographic analysis of covalent DNA-cleavage complexes of Staphyloccocus aureus DNA gyrase with QPT-1, moxifloxacin and etoposide. Acta Crystallogr Sect F Struct Biol Commun 71:1242–1246. doi:10.1107/S2053230X15015290

    Article  CAS  Google Scholar 

  54. Arnoldi E, Pan X-S, Fisher LM (2013) Functional determinants of gate-DNA selection and cleavage by bacterial type II topoisomerases. Nucleic Acids Res 41:9411–9423. doi:10.1093/nar/gkt696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Huband MD, Bradford PA, Otterson LG et al (2015) In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against gram-positive, fastidious gram-negative, and atypical bacteria. Antimicrob Agents Chemother 59:467–474. doi:10.1128/AAC.04124-14

    Article  PubMed  CAS  Google Scholar 

  56. Alm RA, Lahiri SD, Kutschke A et al (2015) Characterization of the novel DNA gyrase inhibitor AZD0914: low resistance potential and lack of cross-resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 59:1478–1486. doi:10.1128/AAC.04456-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chapman JS, Georgopapdakou NH (1988) Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 32:438–442. doi:10.1128/aac

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kostyanev T, Bonten MJM, O’Brien S et al (2016) The innovative medicines initiative’s new drugs for bad bugs programme: European public-private partnerships for the development of new strategies to tackle antibiotic resistance. J Antimicrob Chemother 71:290–295. doi:10.1093/jac/dkv339

    Article  PubMed  CAS  Google Scholar 

  59. Waites KB, Crabb DM, Duffy LB, Huband MD (2015) In vitro antibacterial activity of AZD0914 against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother 59:3627–3629. doi:10.1128/AAC.04945-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Biedenbach DJ, Huband MD, Hackel M et al (2015) In vitro activity of AZD0914, a novel bacterial DNA gyrase/topoisomerase IV inhibitor, against clinically relevant gram-positive and fastidious gram-negative pathogens. Antimicrob Agents Chemother 59:6053–6063. doi:10.1128/AAC.01016-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Su X-H, Wang B-X, Le W-J et al (2016) Multidrug-resistant Neisseria gonorrhoeae isolates from Nanjing, China, are sensitive to killing by a novel DNA gyrase inhibitor, ETX0914 (AZD0914). Antimicrob Agents Chemother 60:621–623. doi:10.1128/AAC.01211-15

    Article  PubMed  CAS  Google Scholar 

  62. Unemo M, Ringlander J, Wiggins C et al (2015) High in vitro susceptibility to the novel spiropyrimidinetrione ETX0914 (also known as AZD0914) among 873 contemporary clinical Neisseria gonorrhoeae isolates in 21 European countries during 2012-2014. Antimicrob Agents Chemother 59:5220–5225. doi:10.1128/AAC.00786-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ellsworth EL, Tran TP, Showalter HDH et al (2006) 3-aminoquinazolinediones as a new class of antibacterial agents demonstrating excellent antibacterial activity against wild-type and multidrug resistant organisms. J Med Chem 49:6435–6438. doi:10.1021/jm060505l

    Article  PubMed  CAS  Google Scholar 

  64. Laponogov I, Pan X-S, Veselkov DA et al (2010) Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One 5:e11338. doi:10.1371/journal.pone.0011338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Pucci MJ, Podos SD, Thanassi JA et al (2011) In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens. Antimicrob Agents Chemother 55:2860–2871. doi:10.1128/AAC.01666-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Savage VJ, Charrier C, Salisbury A-M et al (2016) Biological profiling of novel tricyclic inhibitors of bacterial DNA gyrase and topoisomerase IV. J Antimicrob Chemother 71:1905–1913. doi:10.1093/jac/dkw061

    Article  PubMed  CAS  Google Scholar 

  67. Savage VJ, Charrier C, Salisbury A-M et al (2016) Efficacy of a novel tricyclic topoisomerase inhibitor in a murine model of Neisseria gonorrhoeae infection. Antimicrob Agents Chemother 60:5592–5594. doi:10.1128/AAC.00913-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Laponogov I, Veselkov DA, Crevel IM-T et al (2013) Structure of an “open” clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res 41:9911–9923. doi:10.1093/nar/gkt749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Pan XS, Gould KA, Fisher LM (2009) Probing the differential interactions of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV. Antimicrob Agents Chemother 53:3822–3831. doi:10.1128/AAC.00113-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Aldred KJ, Schwanz HA, Li G et al (2013) Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug–enzyme interactions. ACS Chem Biol 8:2660–2668. doi:10.1021/cb400592n

    Article  PubMed  CAS  Google Scholar 

  71. Ross JE, Scangarella-Oman NE, Flamm RK, Jones RN (2014) Determination of disk diffusion and MIC quality control guidelines for GSK2140944, a novel bacterial type II topoisomerase inhibitor antimicrobial agent. J Clin Microbiol 52:2629–2632. doi:10.1128/JCM.00656-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Jones RN, Fedler KA, Scangarella-Oman NE et al (2016) Multicenter investigation of gepotidacin (GSK2140944) agar dilution quality control determinations for Neisseria gonorrhoeae ATCC 49226. Antimicrob Agents Chemother 60:4404–4406. doi:10.1128/AAC.00527-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Biedenbach DJ, Bouchillon SK, Hackel M et al (2016) In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother 60:1918–1923. doi:10.1128/AAC.02820-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Pasteur LM (1853) Recherces sur les alcaoides des quinquinas. C R Hebd Seances Acad Sci 37:110–114

    Google Scholar 

  75. Biddle HC (1912) The converison of cinchonine and quinine into their poisonous isomers, cinchotoxine and quinotoxine, and the relation of this to the toxicity of the cinchona alkaloids. J Am Chem Soc 34:500–515. doi:10.1021/ja02205a017

    Article  CAS  Google Scholar 

  76. Rabe P (1910) Zur Kenntnis der Chinaalkaloide XII. Justus Liebigs Ann Chem 373:85–120. doi:10.1002/jlac.19103730108

    Article  CAS  Google Scholar 

  77. Lecrubier C, Uzan A, Samama M (1972) Action of a new cerebral vasodilator, viquidil, on the aggregation of blood platelets in vitro. Arzneimittelforschung 22:1341–1346

    Google Scholar 

  78. Kenny M, Lenehan TJ, Lambe R et al (1983) The effect of PK 5078, a new serotonin uptake inhibitor, on serotonin levels and uptake in human platelets, following administration to healthy volunteers. Eur J Clin Pharmacol 25:23–28. doi:10.1007/BF00544009

    Article  PubMed  CAS  Google Scholar 

  79. Khanna NM (1994) A process for the preparation of 1-(6′-methoxy-4′-quinolinyl)-3-(3″-vinyl-1″-(dialkylaminoalkyl or heterocyclylalkyl)-4″-piperidyl)-2-methylenepropan-1-ones and their water soluble salts. IN174013, 27 August 1994

    Google Scholar 

  80. Coates WJ (1999) Preparation of piperidinylalkylquinolines as antibacterials. WO1999037635, 29 July 1999

    Google Scholar 

  81. Gomez L, Hack MD, Wu J et al (2007) Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: synthesis and preliminary SAR analysis. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2007.03.003

    Article  PubMed  Google Scholar 

  82. Widdowson K, Hennessy A (2010) Advances in structure-based drug design of novel bacterial topoisomerase inhibitors. Future Med Chem 2:1619–1622. doi:10.4155/fmc.10.250

    Article  PubMed  CAS  Google Scholar 

  83. Jamieson C, Moir EM, Rankovic Z, Wishart G (2006) Medicinal chemistry of hERG optimizations: highlights and hang-ups. J Med Chem 49:12–14. doi:10.1021/jm060379l

    Article  CAS  Google Scholar 

  84. Du L, Li M, You Q (2009) The interactions between hERG potassium channel and blockers. Curr Top Med Chem 9:330–338. doi:10.2174/156802609788317829

    Article  PubMed  CAS  Google Scholar 

  85. Kratz JM, Schuster D, Edtbauer M et al (2014) Experimentally validated hERG pharmacophore models as cardiotoxicity prediction tools. J Chem Inf Model 54:2887–2901. doi:10.1021/ci5001955

    Article  PubMed  CAS  Google Scholar 

  86. Black MT, Stachyra T, Platel D et al (2008) Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases. Antimicrob Agents Chemother 52:3339–3349. doi:10.1128/AAC.00496-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Reck F, Alm RA, Brassil P et al (2012) Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced pKa. J Med Chem 55:6916–6933. doi:10.1021/jm300690s

    Article  PubMed  CAS  Google Scholar 

  88. Surivet J-P, Zumbrunn C, Rueedi G et al (2013) Design, synthesis, and characterization of novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram-positive activity. J Med Chem 56:7396–7415. doi:10.1021/jm400963y

    Article  PubMed  CAS  Google Scholar 

  89. Axten, JM (2004) Preparation of quinolines and 1,​5-​naphthyridines as antibacterial agents. WO200405814, 15 July 2004

    Google Scholar 

  90. Lahiri SD, Kutschke A, McCormack K, Alm RA (2015) Insights into the mechanism of inhibition of novel bacteria topoisomerase inhibitors from characterization of resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 59:5278–5287. doi:10.1128/AAC.00571-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Biospace Life Sciences (2008) Novexel discontinues development of NXL101. http://www.biospace.com/News/novexel-discontinues-development-of-nxl-101/102001. Accessed 23 Jan 2017

  92. Dubois VFS, Smania G, Yu H et al (2017) Translating QT interval prolongation from conscious dogs to humans. Br J Clin Pharmacol 83:349–362. doi:10.1111/bcp.13123

    Article  PubMed  CAS  Google Scholar 

  93. GSK (2015) Study ID 107895. https://www.gsk-clinicalstudyregister.com/study/107895?search=study&#ps. Accessed 23 Jan 2017

  94. Bouchillon SK, Hackel M, Miller LA, Scangarella-Omen NE (2013) In vitro activity of GSK2140944, a novel topoisomerase inhibitor, against isolates associated with lower respiratory tract and skin infections. Poster presented at the 53rd international congress of antimicrobial agents and chemotherapy, p F-1216, Denver, CO, 10–13 Sept 2013

    Google Scholar 

  95. Tiffany CA, McDonald M, Patel A et al (2013) Safey and pharmacokinetics of single escalating oral doses of GSK2140944, a novel bacterial topoisomerase inhibitor. Poster presented at the 53rd international congress of antimicrobial agents and chemotherapy, p F-1218, Denver, CO, 10–13 Sept 2013

    Google Scholar 

  96. ClinicalTrials.gov (2016) 11 studies found for: GSK2140944. https://clinicaltrials.gov/ct2/results?term=GSK2140944&Search=Search. Accessed 23 Jan 2017

  97. GSK (2016) Study ID 116704. https://www.gsk-clinicalstudyregister.com/study/116704?search=compound&compound=gsk2140944#rs. Accessed 23 Jan 2017

  98. Dougherty TJ, Nayar A, Newman JV et al (2014) NBTI 5463 is a novel bacterial type II topoisomerase inhibitor with activity against gram-negative bacteria and in vivo efficacy. Antimicrob Agents Chemother 58:2657–2664. doi:10.1128/AAC.02778-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433. doi:10.1016/j.chembiol.2010.04.012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Charlton RW (1969) Recent advances in antibiotics. South African Med J 43:311–316

    CAS  Google Scholar 

  101. Basarab GS, Manchester JI, Bist S et al (2013) Fragment-to-hit-to-lead discovery of a novel pyridylurea scaffold of ATP competitive dual targeting type II topoisomerase inhibiting antibacterial agents. J Med Chem 56:8712–8735. doi:10.1021/jm401208b

    Article  PubMed  CAS  Google Scholar 

  102. Eakin AE, Green O, Hales N et al (2012) Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents. Antimicrob Agents Chemother 56:1240–1246. doi:10.1128/AAC.05485-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cheng AC, Coleman RG, Smyth KT et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotech 25:71–75. doi:10.1038/nbt1273

    Article  CAS  Google Scholar 

  104. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389. doi:10.1021/ci800324m

    Article  PubMed  CAS  Google Scholar 

  105. Tsai FTF, Singh OMP, Skarzynski T et al (1997) The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins Struct Funct Genet 28:41–52. doi:10.1002/(SICI)1097-0134(199705)28:1<41::AID-PROT4>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  106. Lewis RJ, Singh OM, Smith CV et al (1996) The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J 15:1412–1420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Lu J, Patel S, Sharma N et al (2014) Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chem Biol 9:2023–2031. doi:10.1021/cb5001197

    Article  PubMed  CAS  Google Scholar 

  108. Basarab GS, Hill PJ, Garner CE et al (2014) Optimization of pyrrolamide topoisomerase II inhibitors toward identification of an antibacterial clinical candidate (AZD5099). J Med Chem 57:6060–6082. doi:10.1021/jm500462x

    Article  PubMed  CAS  Google Scholar 

  109. Škedelj V, TomaŠić T, MaŠič LP, Zega A (2011) ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 54:915–929. doi:10.1021/jm101121s

    Article  PubMed  CAS  Google Scholar 

  110. Basarab GS, Nichols W, Eakin AE (2015) Design of antibacterial agents. In: Tang Y-W, Sussman M, Liu D et al (eds) Molecular medical microbiology, 2nd edn. Academic Press, London, Waltham, and San Diego, pp 611–626

    Google Scholar 

  111. Tari LW, Li X, Trzoss M et al (2013) Tricyclic GyrB/ParE (TriBE) inhibitors: a new class of broad-spectrum dual-targeting antibacterial agents. PLoS One 8:1–14. doi:10.1371/journal.pone.0084409

    Article  CAS  Google Scholar 

  112. Tyndale EM (2013) Preparation of heterocyclic urea compounds as antibacterial agents. WO2013091011, 27 June 2013

    Google Scholar 

  113. Bifulco N (2010) Heterocyclic urea derivatives and methods of use thereof. WO2010136817, 2 December 2010

    Google Scholar 

  114. O’Dowd H, Shannon DE, Chandupatla KR et al (2015) Discovery and characterization of a water-soluble prodrug of a dual inhibitor of bacterial DNA gyrase and topoisomerase IV. ACS Med Chem Lett 6:822–826. doi:10.1021/acsmedchemlett.5b00196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zabawa TP, Parr TR, Lister T (2016) Treatment of gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol 33:7–12. doi:10.1016/j.mib.2016.05.005

    Article  PubMed  CAS  Google Scholar 

  116. Thayer AM (2016) Antibiotics: will the bugs always win? Chem Eng News 94:36–43

    Google Scholar 

  117. Jacoby GA, Corcoran MA, Hooper DC (2015) Protective effect of Qnr on agents other than quinolones that target DNA gyrase. Antimicrob Agents Chemother 59:6689–6695. doi:10.1128/AAC.01292-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Phillips JW, Goetz MA, Smith SK et al (2011) Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol 18:955–965. doi:10.1016/j.chembiol.2011.06.011

    Article  PubMed  CAS  Google Scholar 

  119. Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485:439–440. doi:10.1038/485439a

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Considerable appreciation is due to Dr. Charles J. Eyermann for useful discussions and for the preparation of the graphics in this review. Dr. Ed Buurman graciously provided a critical review and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Basarab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Basarab, G.S. (2017). Four Ways to Skin a Cat: Inhibition of Bacterial Topoisomerases Leading to the Clinic. In: Fisher, J.F., Mobashery, S., Miller, M.J. (eds) Antibacterials. Topics in Medicinal Chemistry, vol 25. Springer, Cham. https://doi.org/10.1007/7355_2017_7

Download citation

Publish with us

Policies and ethics