Advertisement

The Antibiotic Future

  • Lynn L. SilverEmail author
Chapter
Part of the Topics in Medicinal Chemistry book series (TMC, volume 25)

Abstract

Will the future of antibacterial therapy rely on an ongoing pipeline of new small molecule, direct-acting antibacterial agents that inhibit or kill bacterial pathogens, referred to here as antibiotics? What role will these small-molecule antibiotics have in the control of the bacterial infections of the future? Although there is today increased activity in the field of new antibiotic discovery, the history of this field over the past 30 years is a history of low output. This low output of new antibiotics does not encourage confidence that they can be central to the future control of bacterial infection. This low productivity is often blamed upon financial disincentives in the pharmaceutical industry, and on regulatory difficulties. But I believe that a critical underlying reason for the dearth of novel products is the fundamental difficulty of the science, coupled with a failure to directly grapple with the key scientific challenges that prevent forward motion. The future fate of antibiotic discovery will depend upon the degree to which the rate limiting steps of discovery are fully recognized, and the discovery technology turns to overcoming these blockades.

Keywords

Antibiotic chemical space Antivirulence Combination therapy Druggability Entry barriers Frequency-of-resistance Hollow-fiber infection model Hypersensitive screening Monotherapy Multi-targeting Natural products Synergy 

References

  1. 1.
    Outterson K, Rex JH, Jinks T, Jackson P, Hallinan J, Karp S, Hung DT, Franceschi F, Merkeley T, Houchens C, Dixon DM, Kurilla MG, Aurigemma R, Larsen J (2016) Accelerating global innovation to address antibacterial resistance: introducing CARB-X. Nat Rev Drug Discov 15:589–590. doi: 10.1038/nrd.2016.155CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hwang TJ, Carpenter D, Kesselheim AS (2014) Target small firms for antibiotic innovation. Science 344:967–969. doi: 10.1126/science.1251419CrossRefPubMedGoogle Scholar
  3. 3.
    Balasegaram M, Clift C, Røttingen JA (2015) The global innovation model for antibiotics needs reinvention. J Law Med Ethics 43(Suppl 3):22–26. doi: 10.1111/jlme.12270CrossRefPubMedGoogle Scholar
  4. 4.
    Livermore DM (2011) Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 66:1941–1944. doi: 10.1093/jac/dkr262CrossRefPubMedGoogle Scholar
  5. 5.
    Lange RP, Locher HH, Wyss PC, Then RL (2007) The targets of currently used antibacterial agents: lessons for drug discovery. Curr Pharm Des 13:3140–3154. doi: 10.2174/138161207782110408CrossRefPubMedGoogle Scholar
  6. 6.
    Overbye KM, Barrett JF (2005) Antibiotics: where did we go wrong? Drug Discov Today 10:45–52. doi: 10.1016/S1359-6446(04)03285-4CrossRefPubMedGoogle Scholar
  7. 7.
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi: 10.1038/nrd2201CrossRefPubMedGoogle Scholar
  8. 8.
    Chan PF, Holmes DJ, Payne DJ (2004) Finding the gems using genomic discovery: antibacterial drug discovery strategies – the successes and the challenges. Drug Discov Today: Ther Strateg 1:519–527. doi: 10.1016/j.ddstr.2004.11.003CrossRefGoogle Scholar
  9. 9.
    Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109. doi: 10.1128/CMR.00030-10CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ (2010) Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 1213:5–19. doi: 10.1111/j.1749-6632.2010.05828.xCrossRefPubMedGoogle Scholar
  11. 11.
    Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27. doi: 10.1038/nrmicro1818CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Escaich S (2008) Antivirulence as a new antibacterial approach for chemotherapy. Curr Opin Chem Biol 12:400–408. doi: 10.1016/j.cbpa.2008.06.022CrossRefPubMedGoogle Scholar
  13. 13.
    Ruer S, Pinotsis N, Steadman D, et al. (2015) Virulence-targeted antibacterials: concept, promise, and susceptibility to resistance mechanisms. Chem Biol Drug Des 86:379–399. doi: 10.1111/cbdd.12517CrossRefPubMedGoogle Scholar
  14. 14.
    Dickey SW, Cheung GYC, Otto M (2017) Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. doi: 10.1038/nrd.2017.23
  15. 15.
    Johnson BK, Abramovitch RB (2017) Small molecules that sabotage bacterial virulence. Trends Pharmacol Sci 38:339–362. doi: 10.1016/j.tips.2017.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Czaplewski L, Bax R, Clokie M, et al. (2016) Alternatives to antibiotics – a pipeline portfolio review. Lancet Infect Dis 16:239–251. doi: 10.1016/s1473-3099(15)00466-1CrossRefPubMedGoogle Scholar
  17. 17.
    Lévy FM (1975) The fiftieth anniversary of diphtheria and tetanus immunization. Prev Med 4(2):226–237. doi: 10.1016/0091-7435(75)90084-5CrossRefPubMedGoogle Scholar
  18. 18.
    Krishnamurthy M, Moore RT, Rajamani S, et al. (2016) Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol 16:258. doi: 10.1186/s12866-016-0876-3CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Silver LL (2014) Antibacterials for any target. Nat Biotechnol 32:1102–1104. doi: 10.1038/nbt.3060CrossRefPubMedGoogle Scholar
  20. 20.
    Bikard D, Euler C, Jiang W, et al. (2014) Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat Biotechnol 32:1146–1150. doi: 10.1038/nbt.3043CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Citorik R, Mimee M, Lu T (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. doi: 10.1038/nbt.3011CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    LocusBiosciences (2016) Founded by pioneers in the CRISPR field: engineering a novel class of precision medicines. http://www.locus-bio.com/. Accessed 1 Apr 2017
  23. 23.
    Silver LL (2007) Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 6:41–55. doi: 10.1038/nrd2022CrossRefPubMedGoogle Scholar
  24. 24.
    Silver LL, Bostian KA (1993) Discovery and development of new antibiotics: the problem of antibiotic resistance. Antimicrob Agents Chemother 37:377–383. doi: 10.1128/AAC.37.3.377CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brotz-Oesterhelt H, Brunner NA (2008) How many modes of action should an antibiotic have? Curr Opin Pharmacol 8:564–573. doi: 10.1038/nrmicro2133CrossRefPubMedGoogle Scholar
  26. 26.
    O’Dwyer K, Spivak A, Ingraham K, et al. (2015) Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob Agents Chemother 59:289–298. doi: 10.1128/AAC.03774-14CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Twynholm M, Dalessandro M, Barker K et al (2013) Termination of Phase II program due to emergence of resistance (EOR) on-therapy. Paper presented at the 53rd interscience congress on antimicrobial agents and chemotherapy, DenverGoogle Scholar
  28. 28.
    VanScoy BD, Bulik CC, Moseley C et al (2013) Hollow fiber infection model mimics both the time-to-resistance emergence and magnitude of E. coli resistance to GSK052 occurring in a Phase 2b clinical study. In: 53rd interscience congress on antimicrobial agents and chemotherapy, DenverGoogle Scholar
  29. 29.
    Sutterlin HA, Malinverni JC, Lee SH et al. (2017) Antibacterial new target discovery: sentinel examples, strategies, and surveying success. In: Topics in medicinal chemistry. Springer, Heidelberg, pp 1–29. doi: 10.1007/7355_2016_31
  30. 30.
    O’Neill AJ, Chopra I (2004) Preclinical evaluation of novel antibacterial agents by microbiological and molecular techniques. Expert Opin Investig Drugs 13:1045–1063. doi: 10.1517/13543784.13.8.1045CrossRefPubMedGoogle Scholar
  31. 31.
    Couce A, Blázquez J (2011) Estimating mutation rates in low-replication experiments. Mutat Res 714:26–32. doi: 10.1016/j.mrfmmm.2011.06.005CrossRefPubMedGoogle Scholar
  32. 32.
    Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20:4–17. doi: 10.1006/meth.1999.0901CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Young K (2006) In vitro antibacterial resistance selection and quantitation. Curr Protoc Pharmacol 34:13A.16.11–13A.16.22. doi: 10.1002/0471141755.ph13a06s34CrossRefGoogle Scholar
  34. 34.
    Hall BM, Ma C-X, Liang P, et al. (2009) Fluctuation AnaLysis CalculatOR: a web tool for the determination of mutation rate using Luria–Delbrück fluctuation analysis. Bioinformatics 25:1564–1565. doi: 10.1093/bioinformatics/btp253CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511. doi: 10.3410/f.3620966.3337067CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    O’Neill AJ, Chopra I, Martinez JL, et al. (2001) Use of mutator strains for characterization of novel antimicrobial agents. Antimicrob Agents Chemother 45:1599–1600. doi: 10.1128/aac.45.1.1599-1600.2001CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Miller K, O’Neill AJ, Chopra I (2004) Escherichia coli Mutators present an enhanced risk for emergence of antibiotic resistance during urinary tract infections. Antimicrob Agents Chemother 48:23–29. doi: 10.1128/aac.48.1.23-29.2004CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hall LMC, Henderson-Begg SK (2006) Hypermutable bacteria isolated from humans – a critical analysis. Microbiology 152:2505–2514. doi: 10.1099/mic.0.29079-0CrossRefPubMedGoogle Scholar
  39. 39.
    Oliver A (2010) Mutators in cystic fibrosis chronic lung infection: prevalence, mechanisms, and consequences for antimicrobial therapy. Int J Med Microbiol 300:563–572. doi: 10.1016/j.ijmm.2010.08.009CrossRefPubMedGoogle Scholar
  40. 40.
    Komp Lindgren P, Higgins PG, Seifert H, et al. (2016) Prevalence of hypermutators among clinical Acinetobacter baumannii isolates. J Antimicrob Chemother 71:661–665. doi: 10.1093/jac/dkv378CrossRefPubMedGoogle Scholar
  41. 41.
    Andersson DI, Hughes D (2009) Gene amplification and adaptive evolution in bacteria. Annu Rev Genet 43:167–195. doi: 10.1146/annurev-genet-102108-134805CrossRefPubMedGoogle Scholar
  42. 42.
    Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478. doi: 10.1038/nrmicro3270CrossRefPubMedGoogle Scholar
  43. 43.
    Hughes D, Andersson DI (2012) Selection of resistance at lethal and non-lethal antibiotic concentrations. Curr Opin Microbiol 15:555–560. doi: 10.1016/j.mib.2012.07.005CrossRefPubMedGoogle Scholar
  44. 44.
    Martinez J, Baquero F, Andersson D (2011) Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Curr Opin Pharmacol 11:439–445. doi: 10.1016/j.coph.2011.07.005CrossRefPubMedGoogle Scholar
  45. 45.
    Tam VH, Schilling AN, Neshat S, et al. (2005) Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:4920–4927. doi: 10.1128/AAC.49.12.4920-4927.2005CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Drusano GL (2003) Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis 36(Supp 1):S42–S50. doi: 10.1086/344653CrossRefPubMedGoogle Scholar
  47. 47.
    Gumbo T, Louie A, Deziel MR, et al. (2005) Pharmacodynamic evidence that ciprofloxacin failure against tuberculosis is not due to poor microbial kill but to rapid emergence of resistance. Antimicrob Agents Chemother 49:3178–3181. doi: 10.1128/aac.49.8.3178-3181.2005CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    VanScoy B, McCauley J, Bhavnani SM, et al. (2016) Relationship between fosfomycin exposure and amplification of Escherichia coli subpopulations with reduced susceptibility in a hollow-fiber infection model. Antimicrob Agents Chemother 60:5141–5145. doi: 10.1128/AAC.00355-16CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Silver LL (2017) Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 7:a025262. doi: 10.1101/cshperspect.a025262CrossRefPubMedGoogle Scholar
  50. 50.
    Rodríguez-Rojas A, Maciá MD, Couce A, et al. (2010) Assessing the emergence of resistance: the absence of biological cost in vivo may compromise fosfomycin treatments for P. aeruginosa infections. PLoS One 5:e10193. doi: 10.1371/journal.pone.0010193CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    VanScoy BD, McCauley J, Ellis-Grosse EJ, et al. (2015) Exploration of the pharmacokinetic-pharmacodynamic relationships for fosfomycin efficacy using an in vitro infection model. Antimicrob Agents Chemother 59:7170–7177. doi: 10.1128/AAC.04955-14CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Castañeda-García A, Blázquez J, Rodríguez-Rojas A (2013) Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics 2:217–236. doi: 10.3390/antibiotics2020217CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Endimiani A, Patel G, Hujer KM, et al. (2010) In vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob Agents Chemother 54:526–529. doi: 10.1128/AAC.01235-09CrossRefPubMedGoogle Scholar
  54. 54.
    Falagas ME, Giannopoulou KP, Kokolakis GN, et al. (2008) Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 46:1069–1077. doi: 10.1086/527442CrossRefPubMedGoogle Scholar
  55. 55.
    Nilsson AI, Berg OG, Aspevall O, et al. (2003) Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother 47(9):2850–2858. doi: 10.1128/aac.47.9.2850-2858.2003CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Dong Y, Zhao X, Domagala J, et al. (1999) Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob Agents Chemother 43:1756–1758PubMedPubMedCentralGoogle Scholar
  57. 57.
    Leeds JA, Sachdeva M, Mullin S, et al. (2014) In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J Antimicrob Chemother 69:41–44. doi: 10.1093/jac/dkt302CrossRefPubMedGoogle Scholar
  58. 58.
    Locher HH, Caspers P, Bruyere T, et al. (2014) Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob Agents Chemother 58:901–908. doi: 10.1128/AAC.01831-13CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Scott L (2013) Fidaxomicin: a review of its use in patients with Clostridium difficile infection. Drugs 73(15):1733–1747. doi: 10.1007/s40265-013-0134-zCrossRefPubMedGoogle Scholar
  60. 60.
    Zhao X, Drlica K (2008) A unified anti-mutant dosing strategy. J Antimicrob Chemother 62:434–436. doi: 10.1093/jac/dkn229CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Martinez MN, Papich MG, Drusano GL (2012) Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 56:2795–2805. doi: 10.1128/AAC.05360-11CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Blondeau JM, Tillotson GS (2005) Antibiotic dosing: do we dose to cure the individual or do we treat the greater societal needs? Therapy 2:511–517. doi: 10.1586/14750708.2.4.511CrossRefGoogle Scholar
  63. 63.
    Drusano GL, Louie A, MacGowan A, et al. (2015) Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 1. Antimicrob Agents Chemother 60:1183–1193. doi: 10.1128/AAC.02177-15CrossRefPubMedGoogle Scholar
  64. 64.
    Srinivas N, Jetter P, Ueberbacher BJ, et al. (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013. doi: 10.1126/science.1182749CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zeng D, Zhao J, Chung HS, et al. (2013) Mutants resistant to LpxC inhibitors by rebalancing cellular homeostasis. J Biol Chem 288:5475–5486. doi: 10.1074/jbc.M112.447607CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Erwin AL (2016) Antibacterial drug discovery targeting the lipopolysaccharide biosynthetic enzyme LpxC. Cold Spring Harb Perspect Med 6:a025304. doi: 10.1101/cshperspect.a025304CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tomaras AP, McPherson CJ, Kuhn M, et al. (2014) LpxC inhibitors as new antibacterial agents and tools for studying regulation of lipid a biosynthesis in gram-negative pathogens. MBio 5:e01551–e01514. doi: 10.1128/mBio.01551-14CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Achaogen (2017) Achaogen is pursuing an advanced series of LpxC inhibitor compounds that are active against Pseudomonas aeruginosa. http://www.achaogen.com/lpxc-inhibitor-program/. Accessed 14 Apr 2017
  69. 69.
    Karlowsky JA, Kaplan N, Hafkin B, et al. (2009) AFN-1252, a FabI inhibitor, demonstrates a Staphylococcus-Specific Spectrum of activity. Antimicrob Agents Chemother 53:3544–3548. doi: 10.1128/aac.00400-09CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yao J, Rock CO (2016) Resistance mechanisms and the future of bacterial enoyl-acyl carrier protein reductase (FabI)antibiotics. Cold Spring Harb Perspect Med 6:a027045. doi: 10.1101/cshperspect.a027045CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Yao J, Maxwell JB, Rock CO (2013) Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI). J Biol Chem 288:36261–36271. doi: 10.1074/jbc.M113.512905CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Moore RD, Chaisson RE (1999) Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS 13:1933–1942CrossRefPubMedGoogle Scholar
  73. 73.
    Pirrone V, Thakkar N, Jacobson JM, et al. (2011) Combinatorial approaches to the prevention and treatment of HIV-1 infection. Antimicrob Agents Chemother 55:1831–1842. doi: 10.1128/AAC.00976-10CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Larder B, Darby G, Richman D (1989) HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243:1731–1734. doi: 10.1126/science.2467383CrossRefPubMedGoogle Scholar
  75. 75.
    Larder B, Kemp S, Harrigan P (1995) Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269:696–699. doi: 10.1126/science.7542804CrossRefPubMedGoogle Scholar
  76. 76.
    Ho DD, Bieniasz PD (2008) HIV-1 at 25. Cell 133(4):561–565. doi: 10.1016/j.cell.2008.05.00CrossRefPubMedGoogle Scholar
  77. 77.
    Aghemo A, De Francesco R (2013) New horizons in hepatitis C antiviral therapy with direct-acting antivirals. Hepatology 58:428–438. doi: 10.1002/hep.26371CrossRefPubMedGoogle Scholar
  78. 78.
    Lange CM, Jacobson IM, Rice CM, et al. (2014) Emerging therapies for the treatment of hepatitis C. EMBO Mol Med 6:4–15. doi: 10.1002/emmm.201303131CrossRefPubMedGoogle Scholar
  79. 79.
    Kwong AD (2014) The HCV revolution did not happen overnight. ACS Med Chem Lett 5:214–220. doi: 10.1021/ml500070qCrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Shahid I, Almalki WH, Hafeez MH, et al. (2016) Hepatitis C virus infection treatment: an era of game changer direct acting antivirals and novel treatment strategies. Crit Rev Microbiol 42:535–547. doi: 10.3109/1040841x.2014.970123CrossRefPubMedGoogle Scholar
  81. 81.
    Kerantzas CA, Jacobs Jr WR (2017) Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. MBio 8:e01586–e01516. doi: 10.1128/mBio.01586-16CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Arathoon EG, Hamilton JR, Hench CE, et al. (1990) Efficacy of short courses of oral novobiocin-rifampin in eradicating carrier state of methicillin-resistant Staphylococcus aureus and in vitro killing studies of clinical isolates. Antimicrob Agents Chemother 34:1655–1659. doi: 10.1128/AAC.34.9.1655CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Walsh TJ, Standiford HC, Reboli AC, et al. (1993) Randomized double-blinded trial of rifampin with either novobiocin or trimethoprim-sulfamethoxazole against methicillin-resistant Staphylococcus aureus colonization: prevention of antimicrobial resistance and effect of host factors on outcome. Antimicrob Agents Chemother 37:1334–1342. doi: 10.1128/AAC.37.6.1334CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Howden BP, Grayson ML (2006) Dumb and dumber – the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus. Clin Infect Dis 42:394–400. doi: 10.1086/499365CrossRefPubMedGoogle Scholar
  85. 85.
    Mandell GL, Moorman DR (1980) Treatment of experimental staphylococcal infections: effect of rifampin alone and in combination on development of rifampin resistance. Antimicrob Agents Chemother 17:658–662. doi: 10.1128/aac.17.4.658CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Huovinen P (2001) Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32:1608–1614. doi: 10.1086/320532CrossRefPubMedGoogle Scholar
  87. 87.
    Randall CP, Rasina D, Jirgensons A, et al. (2016) Targeting multiple aminoacyl-tRNA synthetases overcomes the resistance liabilities associated with antibacterial inhibitors acting on a single such enzyme. Antimicrob Agents Chemother 60:6359–6361. doi: 10.1128/AAC.00674-16CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hurdle JG, O’Neill AJ, Ingham E, et al. (2004) Analysis of mupirocin resistance and fitness in Staphylococcus aureus by molecular genetic and structural modeling techniques. Antimicrob Agents Chemother 48:4366–4376. doi: 10.1128/AAC.48.11.4366-4376.2004CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ochsner UA, Jarvis TC (2013) Aminoacyl-tRNA synthetase inhibitors. In: Gualerzi C, Brandi L, Fabbretti A, Pon C (eds) Antibiotics: targets, mechanisms and resistance. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 387–410. doi: 10.1002/9783527659685.ch16CrossRefGoogle Scholar
  90. 90.
    Drusano GL, Neely M, Van Guilder M, et al. (2014) Analysis of combination drug therapy to develop regimens with shortened duration of treatment for tuberculosis. PLoS One 9:e101311. doi: 10.1371/journal.pone.0101311CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Srivastava S, Sherman C, Meek C, et al. (2011) Pharmacokinetic mismatch does not lead to emergence of isoniazid or rifampin-resistant Mycobacterium tuberculosis, but better antimicrobial effect: a new paradigm for anti-tuberculosis drug scheduling. Antimicrob Agents Chemother 55:5085–5089. doi: 10.1128/AAC.00269-11CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Pasipanodya JG, Gumbo T (2011) A new evolutionary and pharmacokinetic-pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Curr Opin Pharmacol 11:457–463. doi: 10.1016/j.coph.2011.07.001CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Drusano GL, Hope W, MacGowan A, et al. (2015) Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 2. Antimicrob Agents Chemother 60:1194–1201. doi: 10.1128/AAC.02231-15CrossRefPubMedGoogle Scholar
  94. 94.
    Hameed PS, Manjrekar P, Chinnapattu M, et al. (2014) Pyrazolopyrimidines establish MurC as a vulnerable target in Pseudomonas aeruginosa and Escherichia coli. ACS Chem Biol 9:2274–2282. doi: 10.1021/cb500360cCrossRefGoogle Scholar
  95. 95.
    Mistry A, Warren MS, Cusick JK, et al. (2013) High-level pacidamycin resistance in Pseudomonas aeruginosa is mediated by an Opp oligopeptide permease encoded by the opp-fabI operon. Antimicrob Agents Chemother 57:5565–5571. doi: 10.1128/aac.01198-13CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Mann PA, Muller A, Xiao L, et al. (2013) Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 8:2442–2451. doi: 10.1021/cb400487fCrossRefPubMedGoogle Scholar
  97. 97.
    Barbour AG, Mayer LW, Spratt BG (1981) Mecillinam resistance in Escherichia coli: dissociation of growth inhibition and morphologic change. J Infect Dis 143:114–121. doi: 10.1093/infdis/143.1.114CrossRefPubMedGoogle Scholar
  98. 98.
    Sakamoto Y, Furukawa S, Ogihara H, et al. (2003) Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 67(9):2030–2033. doi: 10.1271/bbb.67.2030CrossRefPubMedGoogle Scholar
  99. 99.
    Wang H, Gill CJ, Lee SH, et al. (2013) Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol 20:272–284. doi: 10.1016/j.chembiol.2012.11.013CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Haydon DJ, Stokes NR, Ure R, et al. (2008) An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321:1673–1675. doi: 10.1126/science.1159961CrossRefPubMedGoogle Scholar
  101. 101.
    Kaul M, Mark L, Zhang Y, et al. (2015) TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 59:4845–4855. doi: 10.1128/AAC.00708-15CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Robertson GT, Doyle TB, Du Q, et al. (2007) A novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM. J Bacteriol 189:6870–6881. doi: 10.1128/jb.00805-07CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    McLeod SM, Fleming PR, MacCormack K, et al. (2015) Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening. J Bacteriol 197:1075–1082. doi: 10.1128/JB.02352-14CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Inukai M, Takeuchi M, Shimizu K (1984) Effects of globomycin on the morphology of bacteria and the isolation of resistant mutants. Agric Biol Chem 48(2):513–518. doi: 10.1271/bbb1961.48.513CrossRefGoogle Scholar
  105. 105.
    Kaplan N, Albert M, Awrey D, et al. (2012) Mode of action, in vitro activity, and in vivo efficacy of AFN-1252, a selective antistaphylococcal FabI inhibitor. Antimicrob Agents Chemother 56:5865–5874. doi: 10.1128/AAC.01411-12CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    de Jonge BL, Walkup GK, Lahiri SD, et al. (2013) Discovery of inhibitors of 4′-phosphopantetheine adenylyltransferase (PPAT) to validate PPAT as a target for antibacterial therapy. Antimicrob Agents Chemother 57:6005–6015. doi: 10.1128/AAC.01661-13CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Freiberg C, Brunner NA, Schiffer G, et al. (2004) Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem 279:26066–26073. doi: 10.1074/jbc.M402989200CrossRefPubMedGoogle Scholar
  108. 108.
    Freiberg C, Pohlmann J, Nell PG, et al. (2006) Novel bacterial acetyl coenzyme a carboxylase inhibitors with antibiotic efficacy in vivo. Antimicrob Agents Chemother 50:2707–2712. doi: 10.1128/AAC.00012-06CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Miller JR, Dunham S, Mochalkin I, et al. (2009) A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc Natl Acad Sci U S A 106:1737–1742. doi: 10.1073/pnas.0811275106CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Vickers AA, Potter NJ, Fishwick CWG, et al. (2009) Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. J Antimicrob Chemother 63:1112–1117. doi: 10.1093/jac/dkp090CrossRefPubMedGoogle Scholar
  111. 111.
    Kawatkar SP, Keating TA, Olivier NB, et al. (2014) Antibacterial inhibitors of gram-positive thymidylate kinase: SAR and chiral preference of a new hydrophobic binding region. J Med Chem 57:4584–4597. doi: 10.1021/jm500463cCrossRefPubMedGoogle Scholar
  112. 112.
    Painter RE, Adam GC, Arocho M, et al. (2015) Elucidation of DnaE as the antibacterial target of the natural product, nargenicin. Chem Biol 22:1362–1373. doi: 10.1016/j.chembiol.2015.08.015CrossRefPubMedGoogle Scholar
  113. 113.
    Kuhl A, Svenstrup N, Ladel C, et al. (2005) Biological characterization of novel inhibitors of the gram-positive DNA polymerase IIIC enzyme. Antimicrob Agents Chemother 49:987–995. doi: 10.1128/aac.49.3.987-995.2005CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Mills SD, Eakin AE, Buurman ET, et al. (2011) Novel bacterial NAD+-dependent DNA ligase inhibitors with broad spectrum activity and antibacterial efficacy in vivo. Antimicrob Agents Chemother 55:1088–1096. doi: 10.1128/aac.01181-10CrossRefPubMedGoogle Scholar
  115. 115.
    O’Neill AJ, Cove JH, Chopra I (2001) Mutation frequencies for resistance to fusidic acid and rifampicin in Staphylococcus aureus. J Antimicrob Chemother 47:647–650. doi: 10.1093/jac/47.5.647CrossRefPubMedGoogle Scholar
  116. 116.
    Leeds JA, LaMarche MJ, Brewer JT, et al. (2011) In vitro and in vivo activities of novel, semisynthetic thiopeptide inhibitors of bacterial elongation factor Tu. Antimicrob Agents Chemother 55:5277–5283. doi: 10.1128/aac.00582-11CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Sulavik MC, Houseweart C, Cramer C, et al. (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 45:1126–1136. doi: 10.1128/aac.45.4.1126-1136.2001CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Pucci MJ, Bronson JJ, Barrett JF, et al. (2004) Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Antimicrob Agents Chemother 48:3697–3701. doi: 10.1128/aac.48.10.3697-3701.2004CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Montgomery JI, Smith JF, Tomaras AP, et al. (2014) Discovery and characterization of a novel class of pyrazolopyrimidinedione tRNA synthesis inhibitors. J Antibiot 68:361–367. doi: 10.1038/ja.2014.163CrossRefPubMedGoogle Scholar
  120. 120.
    Ochsner UA, Young CL, Stone KC, et al. (2005) Mode of action and biochemical characterization of REP8839, a novel inhibitor of methionyl-tRNA synthetase. Antimicrob Agents Chemother 49:4253–4262. doi: 10.1128/aac.49.10.4253-4262.2005CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Min S, Ingraham K, Huang J, et al. (2015) Frequency of spontaneous resistance to peptide deformylase inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. Antimicrob Agents Chemother 59:4644–4652. doi: 10.1128/AAC.00484-15CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Conlon BP, Nakayasu ES, Fleck LE, et al. (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. doi: 10.1038/nature12790. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature12790.html#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Howe JA, Wang H, Fischmann TO, et al. (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526:672–677CrossRefPubMedGoogle Scholar
  124. 124.
    Matsushima A, Takakura S, Fujihara N, et al. (2010) High prevalence of mutators among Enterobacter cloacae nosocomial isolates and their association with antimicrobial resistance and repetitive detection. Clin Microbiol Infect 16:1488–1493. doi: 10.1111/j.1469-0691.2010.03145.xCrossRefPubMedGoogle Scholar
  125. 125.
    Projan SJ (2008) Whither antibacterial drug discovery? Drug Discov Today 13(7–8):279–280. doi: 10.1016/j.drudis.2008.03.010CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Chait R, Vetsigian K, Kishony R (2012) What counters antibiotic resistance in nature? Nat Chem Biol 8:2–5. doi: 10.1038/nchembio.745CrossRefGoogle Scholar
  127. 127.
    Baym M, Stone LK, Kishony R (2016) Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351:aad3292. doi: 10.1126/science.aad3292CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Yeh PJ, Hegreness MJ, Aiden AP, et al. (2009) Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol 7:460–466. doi: 10.1038/nrmicro2133CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Silver LL (2013) Viable screening targets related to the bacterial cell wall. Ann N Y Acad Sci 1277:29–53. doi: 10.1111/nyas.12006CrossRefPubMedGoogle Scholar
  130. 130.
    Bugg TDH, Braddick D, Dowson CG, et al. (2011) Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol 29:167–173. doi: 10.1016/j.tibtech.2010.12.006CrossRefPubMedGoogle Scholar
  131. 131.
    Katz AH, Caufield CE (2003) Structure-based design approaches to cell wall biosynthesis inhibitors. Curr Pharm Des 9:857–866. doi: 10.2174/1381612033455305CrossRefPubMedGoogle Scholar
  132. 132.
    Schneider T, Sahl H-G (2010) An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 300:161–169. doi: 10.1016/j.ijmm.2009.10.005CrossRefPubMedGoogle Scholar
  133. 133.
    Janardhanan J, Chang M, Mobashery S (2016) The oxadiazole antibacterials. Curr Opin Microbiol 33:13–17. doi: 10.1016/j.mib.2016.05.009CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Spink E, Ding D, Peng Z, et al. (2015) Structure-activity relationship for the oxadiazole class of antibiotics. J Med Chem 58:1380–1389. doi: 10.1021/jm501661fCrossRefPubMedGoogle Scholar
  135. 135.
    Tomasic T, Zidar N, Kovac A, et al. (2010) 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. ChemMedChem 5:286–295. doi: 10.1002/cmdc.200900449CrossRefPubMedGoogle Scholar
  136. 136.
    Ling LL, Schneider T, Peoples AJ, et al. (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi: 10.1038/nature14098CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Homma T, Nuxoll A, Brown Gandt A, et al. (2016) Dual targeting of cell wall precursors by teixobactin leads to cell lysis. Antimicrob Agents Chemother 60:6510–6517. doi: 10.1128/AAC.01050-16CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Arenz S, Wilson DN (2016) Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb Perspect Med 6:a025361. doi: 10.1101/cshperspect.a025361CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Eyal Z, Matzov D, Krupkin M, et al. (2016) A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci Rep 6:39004. doi: 10.1038/srep39004CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    The-Pew-Charitable-Trusts (2014) Antibiotics currently in clinical development. http://www.pewtrusts.org/en/multimedia/data-visualizations/2014/antibiotics-currently-in-clinical-development. Accessed 14 Apr 2017
  141. 141.
    Melinta (2017) ESKAPE pathogen program. http://melinta.com/pipeline/eskape-pathogen-program/. Accessed 14 Apr 2017
  142. 142.
    Appili (2017) Pipeline. http://www.appilitherapeutics.com/pipeline/. Accessed 14 Apr 2017
  143. 143.
    Tse-Dinh Y-C (2016) Targeting bacterial topoisomerases: how to counter mechanisms of resistance. Future Med Chem 8:1085–1100. doi: 10.4155/fmc-2016-0042CrossRefPubMedGoogle Scholar
  144. 144.
    Kern G, Palmer T, Ehmann DE, et al. (2015) Inhibition of Neisseria gonorrhoeae type II topoisomerases by the novel spiropyrimidinetrione AZD0914. J Biol Chem 290(34):20984–20994. doi: 10.1074/jbc.M115.663534CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Biedenbach DJ, Bouchillon SK, Hackel M, et al. (2016) In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother 60:1918–1923. doi: 10.1128/aac.02820-15CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Barbachyn MR (2008) Recent advances in the discovery of hybrid antibacterial agents. Annu Rep Med Chem 43:281–290. doi: 10.1016/S0065-7743(08)00017-1CrossRefGoogle Scholar
  147. 147.
    Ma Z, Lynch AS (2016) Development of a dual-acting antibacterial agent (TNP-2092) for the treatment of persistent bacterial infections. J Med Chem 59:6645–6657. doi: 10.1021/acs.jmedchem.6b00485CrossRefPubMedGoogle Scholar
  148. 148.
    Missner A, Pohl P (2009) 110 years of the Meyer–Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10:1405–1414. doi: 10.1002/cphc.200900270CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Lipinski C, Lombardo F, Dominy B, et al. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. doi: 10.1016/S0169-409X(96)00423-1CrossRefGoogle Scholar
  150. 150.
    Veber DF, Johnson SR, Cheng H-Y, et al. (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. doi: 10.1021/jm020017nCrossRefPubMedGoogle Scholar
  151. 151.
    Lipinski CA (2003) Physicochemical properties and the discovery of orally active drugs: technical and people issues. In: Hicks M, Kettner C (eds) Molecular informatics: confronting complexity. Beilstein-Institut, BozenGoogle Scholar
  152. 152.
    Zhang MQ, Wilkinson B (2007) Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol 18:478–488. doi: 10.1016/j.copbio.2007.10.005CrossRefPubMedGoogle Scholar
  153. 153.
    McFarland JW, Berger CM, Froshauer SA, et al. (1997) Quantitative SAR among macrolide antibacterial agents: in vitro and in vivo potency against Pasteurella multocida. J Med Chem 40:1340–1346. doi: 10.1021/jm960436iCrossRefPubMedGoogle Scholar
  154. 154.
    Nikaido H, Thanassi DG (1993) Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob Agents Chemother 37:1393–1399CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Rezai T, Yu B, Millhauser GL, et al. (2006) Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J Am Chem Soc 128:2510–2511. doi: 10.1021/ja0563455CrossRefPubMedGoogle Scholar
  156. 156.
    Li XZ, Ma D, Livermore DM, et al. (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother 38:1742–1752. doi: 10.1128/aac.38.8.1742CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Cai H, Rose K, Liang L-H, et al. (2009) Development of a LC/MS-based drug accumulation assay in Pseudomonas aeruginosa. Anal Biochem 385:321–325. doi: 10.1016/j.ab.2008.10.041CrossRefPubMedGoogle Scholar
  158. 158.
    Davis TD, Gerry CJ, Tan DS (2014) General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS Chem Biol 9:2535–2544. doi: 10.1021/cb5003015CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Carey PR, Heidari-Torkabadi H (2015) New techniques in antibiotic discovery and resistance: Raman spectroscopy. Ann N Y Acad Sci 1354:67–81. doi: 10.1111/nyas.12847CrossRefPubMedGoogle Scholar
  160. 160.
    Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32PubMedPubMedCentralGoogle Scholar
  161. 161.
    Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi: 10.1128/mmbr.67.4.593-656.2003CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Zgurskaya HI, López CA, Gnanakaran S (2015) Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis 1:512–522. doi: 10.1021/acsinfecdis.5b00097CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Silver LL (2016) A gestalt approach to gram-negative entry. Bioorg Med Chem 24:6379–6389. doi: 10.1016/j.bmc.2016.06.044CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Manchester JI, Buurman ET, Bisacchi GS, et al. (2012) Molecular determinants of AcrB-mediated bacterial efflux implications for drug discovery. J Med Chem 55:2532–2537. doi: 10.1021/jm201275dCrossRefPubMedGoogle Scholar
  165. 165.
    Nikaido H, Pagès J-M (2012) Broad specificity efflux pumps and their role in multidrug resistance of gram negative bacteria. FEMS Microbiol Rev 36:340–363. doi: 10.1111/j.1574-6976.2011.00290.xCrossRefPubMedGoogle Scholar
  166. 166.
    Tommasi R, Brown DG, Walkup GK, et al. (2015) ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 14:529–542. doi: 10.1038/nrd4572CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Krishnamoorthy G, Wolloscheck D, Weeks JW, et al. (2016) Breaking the permeability barrier of Escherichia coli by controlled hyperporination of the outer membrane. Antimicrob Agents Chemother 60:7372–7381. doi: 10.1128/AAC.01882-16CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Scorciapino M, Acosta-Gutierrez S, Benkerrou D, et al. (2017) Rationalizing the permeation of polar antibiotics into gram-negative bacteria. J Phys Condens Matter 29:113001. doi: 10.1088/1361-648X/aa543bCrossRefPubMedGoogle Scholar
  169. 169.
    Graef F, Vukosavljevic B, Michel JP, et al. (2016) The bacterial cell envelope as delimiter of anti-infective bioavailability – an in vitro permeation model of the gram-negative bacterial inner membrane. J Control Release 243:214–224. doi: 10.1016/j.jconrel.2016.10.018CrossRefPubMedGoogle Scholar
  170. 170.
    Lewis K (2010) Challenges and opportunities in antibiotic discovery. In: Choffnes E, Relman DA, Mack A (eds) Antibiotic resistance: implications for global health and novel intervention strategies: workshop summary. National Academies Press, Washington, pp 233–256Google Scholar
  171. 171.
    Silver LL (2008) Are natural products still the best source for antibacterial discovery? The bacterial entry factor. Expert Opin Drug Discov 3:487–500. doi: 10.1517/17460441.3.5.487CrossRefPubMedGoogle Scholar
  172. 172.
    Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12(5):371–387. doi: 10.1038/nrd3975CrossRefPubMedGoogle Scholar
  173. 173.
    Cinquin B, Maigre L, Pinet E, et al. (2015) Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level. Sci Rep 5:17968. doi: 10.1038/srep17968CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Tian H, Six DA, Krucker T, et al. (2017) Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry. Anal Chem 89:5050–5057. doi: 10.1021/acs.analchem.7b00466CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Richter MF, Drown BS, Riley AP, et al. (2017) Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545:299–304. doi: 10.1038/nature22308CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Pewtrusts (2016) A scientific roadmap for antibiotic discovery. http://www.pewtrusts.org/en/research-and-analysis/reports/2016/05/a-scientific-roadmap-for-antibiotic-discovery. Accessed 14 Apr 2017
  177. 177.
    Shore CK, Coukell A (2016) Roadmap for antibiotic discovery. Nat Microbiol 1:16083. doi: 10.1038/nmicrobiol.2016.83CrossRefPubMedGoogle Scholar
  178. 178.
    Kim A, Kutschke A, Ehmann DE, et al. (2015) Pharmacodynamic profiling of a siderophore-conjugated monocarbam in Pseudomonas aeruginosa: assessing the risk for resistance and attenuated efficacy. Antimicrob Agents Chemother 59:7743–7752. doi: 10.1128/AAC.00831-15CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Tomaras AP, Crandon JL, McPherson CJ, et al. (2013) Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:4197–4207. doi: 10.1128/AAC.00629-13CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Ghosh M, Miller PA, Mollmann U, et al. (2017) Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multi-drug resistant Acinetobacter baumannii both in vitro and in vivo. J Med Chem 60:4577–4583. doi: 10.1021/acs.jmedchem.7b00102CrossRefPubMedGoogle Scholar
  181. 181.
    Ito A, Nishikawa T, Matsumoto S, et al. (2016) Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:7396–7401. doi: 10.1128/AAC.01405-16CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Hancock REW (1984) Alterations in outer membrane permeability. Annu Rev Microbiol 38:237–264. doi: 10.1146/annurev.mi.38.100184.001321CrossRefPubMedGoogle Scholar
  183. 183.
    Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 1788:289–294. doi: 10.1016/j.bbamem.2008.08.023CrossRefPubMedGoogle Scholar
  184. 184.
    Plesiat P, Nikaido H (1992) Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol 6:1323–1333. doi: 10.1111/j.1365-2958.1992.tb00853.xCrossRefPubMedGoogle Scholar
  185. 185.
    Miller JR, Ingolia TD (1989) Cloning and characterization of β-lactam biosynthetic genes. Mol Microbiol 3:689–695. doi: 10.1111/j.1365-2958.1989.tb00217.xCrossRefPubMedGoogle Scholar
  186. 186.
    Nakashima T, Takahashi Y, Omura S (2016) Search for new compounds from Kitasato microbial library by physicochemical screening. Biochem Pharmacol 134:42–55. doi: 10.1016/j.bcp.2016.09.026CrossRefPubMedGoogle Scholar
  187. 187.
    Genilloud O (2014) The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek 106:173–188. doi: 10.1007/s10482-014-0204-6CrossRefPubMedGoogle Scholar
  188. 188.
    Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129. doi: 10.1038/nrd4510CrossRefPubMedGoogle Scholar
  189. 189.
    Gaudencio SP, Pereira F (2015) Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 32:779–810. doi: 10.1039/c4np00134fCrossRefPubMedGoogle Scholar
  190. 190.
    Silver LL (2015) Natural products as a source of drug leads to overcome drug resistance. Future Microbiol 10:1711–1718. doi: 10.2217/fmb.15.67CrossRefPubMedGoogle Scholar
  191. 191.
    Silver LL (2012) Rational approaches to antibacterial discovery: pre-genomic directed and phenotypic screening. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development. Springer, New York, pp 33–75. doi: 10.1007/978-1-4614-1400-1_2CrossRefGoogle Scholar
  192. 192.
    Monciardini P, Iorio M, Maffioli S, et al. (2014) Discovering new bioactive molecules from microbial sources. J Microbial Biotechnol 7:209–220. doi: 10.1111/1751-7915.12123CrossRefGoogle Scholar
  193. 193.
    Abrahams Garth L, Kumar A, Savvi S, et al. (2012) Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening. Chem Biol 19:844–854. doi: 10.1016/j.chembiol.2012.05.020CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Adamek M, Spohn M, Stegmann E, et al. (2017) Mining bacterial genomes for secondary metabolite gene clusters. Methods Mol Biol 1520:23–47. doi: 10.1007/978-1-4939-6634-9_2CrossRefPubMedGoogle Scholar
  195. 195.
    Lewis K (2016) New approaches to antimicrobial discovery. Biochem Pharmacol 134:87–98. doi: 10.1016/j.bcp.2016.11.002CrossRefPubMedGoogle Scholar
  196. 196.
    Olano C, Méndez C, Salas J (2014) Strategies for the design and discovery of novel antibiotics using genetic engineering and genome mining. In: Villa TG, Veiga-Crespo P (eds) Antimicrobial compounds. Springer, Berlin Heidelberg, pp 1–25. doi: 10.1007/978-3-642-40444-3_1CrossRefGoogle Scholar
  197. 197.
    Bachmann B, Lanen S, Baltz R (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184. doi: 10.1007/s10295-013-1389-9CrossRefPubMedGoogle Scholar
  198. 198.
    Müller R, Wink J (2013) Future potential for anti-infectives – how to exploit biodiversity and genomic potential. Int J Med Microbiol 304:3–13. doi: 10.1016/j.ijmm.2013.09.004CrossRefPubMedGoogle Scholar
  199. 199.
    Wohlleben W, Mast Y, Stegmann E, et al. (2016) Antibiotic drug discovery. Microb Biotechnol 9:541–548. doi: 10.1111/1751-7915.12388CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Wang J, Soisson SM, Young K, et al. (2006) Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 44:358–361. doi: 10.1038/nature04784CrossRefGoogle Scholar
  201. 201.
    Wang J, Kodali S, Lee SH, et al. (2007) Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci U S A 104(18):7612–7616. doi: 10.1073/pnas.0700746104CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    CARB-X. CARB-X injects up to $48 million to accelerate first powered by CARB-X portfolio of drug discovery and development projects to tackle antibiotic resistance. http://www.carb-x.org/press. Accessed 14 Apr 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.LL Silver ConsultingSpringfieldUSA

Personalised recommendations