Skip to main content

Antibiotic Adjuvants

  • Chapter
  • First Online:
Antibacterials

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 25))

Abstract

Bacteria are becoming increasingly resistant to currently available antibiotics, and the development of new antibiotics is not keeping pace. Alternative approaches to combatting drug-resistant bacteria are sorely needed. One such approach is the development of small-molecule antibiotic adjuvants. Adjuvants that thwart resistance mechanisms and render bacteria susceptible to antibiotics have the potential to prolong the life span and also to extend the spectrum of our current armamentarium of drugs. Several approaches to the development of potential adjuvant therapeutics have been investigated, based upon combatting various resistance mechanisms, and have identified promising adjuvant classes. These classes include adjuvants that inhibit modification or degradation of the antibiotic by enzymes (such as β-lactamases or the aminoglycoside-modifying enzymes), adjuvants that increase the intracellular concentration of the antibiotic by inhibiting efflux or facilitating antibiotic uptake, adjuvants that interfere with bacterial signaling systems that drive or coordinate resistance mechanisms, and finally adjuvants that target nonessential steps in bacterial cell wall synthesis. The antibiotic adjuvant approach is a promising orthogonal strategy for the development of new antibiotics to combat drug-resistant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright GD (2016) Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 24:862–871. doi:10.1016/j.tim.2016.06.009

    Article  PubMed  CAS  Google Scholar 

  2. Dolgin E (2010) Sequencing of superbugs seen as key to combating their spread. Nat Med 16:1054–1054. doi:10.1038/Nm1010-1054a

    Article  PubMed  Google Scholar 

  3. Lewis II JS, Owens A, Cadena J, Sabol K, Patterson JE, Jorgensen JH (2005) Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob Agents Chemother 49:1664–1665. doi:10.1128/AAC.49.4.1664-1665.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP (2001) Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357:1179. doi:10.1016/S0140-6736(00)04376-2

    Article  PubMed  CAS  Google Scholar 

  5. Pawlowski AC, Johnson JW, Wright GD (2016) Evolving medicinal chemistry strategies in antibiotic discovery. Curr Opin Biotechnol 42:108–117. doi:10.1016/j.copbio.2016.04.006

    Article  PubMed  CAS  Google Scholar 

  6. Gill EE, Franco OL, Hancock REW (2015) Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des 85:56–78. doi:10.1111/cbdd.12478

    Article  PubMed  CAS  Google Scholar 

  7. Roemer T, Boone C (2013) Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9:222–231. doi:10.1038/nchembio.1205

    Article  PubMed  CAS  Google Scholar 

  8. Rodriguez de Evgrafov M, Gumpert H, Munck C, Thomsen TT, Sommer MO (2015) Collateral resistance and sensitivity modulate evolution of high-level resistance to drug combination treatment in Staphylococcus aureus. Mol Biol Evol 32:1175–1185. doi:10.1093/molbev/msv006

    Article  PubMed  CAS  Google Scholar 

  9. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781. doi:10.1038/35021219

    Article  PubMed  CAS  Google Scholar 

  10. Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Delivery Rev 57:1451–1470. doi:10.1016/j.addr.2005.04.002

    Article  CAS  Google Scholar 

  11. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updates 13:151–171. doi:10.1016/j.drup.2010.08.003

    Article  CAS  Google Scholar 

  12. Volkers G, Palm GJ, Weiss MS, Wright GD, Hinrichs W (2011) Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett 585:1061–1066. doi:10.1016/j.febslet.2011.03.012

    Article  PubMed  CAS  Google Scholar 

  13. Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J (2010) β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 28:596–604. doi:10.1016/j.tibtech.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  14. Drawz SM, Papp-Wallace KM, Bonomo RA (2014) New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 58:1835–1846. doi:10.1128/AAC.00826-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Papp-Wallace KM, Bonomo RA (2016) New β-lactamase inhibitors in the clinic. Infect Dis Clin North Am 30:441–464. doi:10.1016/j.idc.2016.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23:160–201. doi:10.1128/CMR.00037-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bush K (2015) A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents 46:483–493. doi:10.1016/j.ijantimicag.2015.08.011

    Article  PubMed  CAS  Google Scholar 

  18. Ball P (2007) The clinical development and launch of amoxicillin/clavulanate for the treatment of a range of community-acquired infections. Int J Antimicrob Agents 30(Suppl 2):S113–S117. doi:10.1016/j.ijantimicag.2007.07.037

    Article  PubMed  CAS  Google Scholar 

  19. Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70. doi:10.1038/nrmicro727

    Article  PubMed  CAS  Google Scholar 

  20. Shlaes DM (2013) New β-lactam-β-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci 1277:105–114. doi:10.1111/nyas.12010

    Article  PubMed  CAS  Google Scholar 

  21. Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, Walkup GK, Fisher SL (2012) Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc Natl Acad Sci U S A 109(29):11663–11668. doi:10.1073/pnas.1205073109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Levasseur P, Girard AM, Miossec C, Pace J, Coleman K (2015) In vitro antibacterial activity of the ceftazidime-avibactam combination against Enterobacteriaceae, including strains with well-characterized β-lactamases. Antimicrob Agents Chemother 59:1931–1934. doi:10.1128/AAC.04218-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Klibanov OM, Phan D, Ferguson K (2015) Drug updates and approvals: 2015 in review. Nurse Pract 40:34–43. doi:10.1097/01.NPR.0000473071.26873.3c

    Article  PubMed  Google Scholar 

  24. Petersen PJ, Jones CH, Venkatesan AM, Bradford PA (2009) Efficacy of piperacillin combined with the penem β-lactamase inhibitor BLI-489 in murine models of systemic infection. Antimicrob Agents Chemother 53:1698–1700. doi:10.1128/AAC.01549-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bassetti M, Ginocchio F, Mikulska M (2011) New treatment options against Gram-negative organisms. Crit Care 15:215. doi:10.1186/cc9997

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paukner S, Hesse L, Prezelj A, Solmajer T, Urleb U (2009) In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spectrum β-lactamase inhibitor. Antimicrob Agents Chemother 53:505–511. doi:10.1128/AAC.00085-08

    Article  PubMed  CAS  Google Scholar 

  27. Livermore DM, Mushtaq S (2013) Activity of biapenem (RPX2003) combined with the boronate β-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 68:1825–1831. doi:10.1093/jac/dkt118

    Article  PubMed  CAS  Google Scholar 

  28. Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Quale J, Landman D (2015) Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against Gram-negative clinical isolates in New York City. Antimicrob Agents Chemother 59:4856–4860. doi:10.1128/AAC.00843-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Griffith DC, Loutit JS, Morgan EE, Durso S, Dudley MN (2016) Phase 1 study of the safety, tolerability, and pharmacokinetics of the β-lactamase inhibitor vaborbactam (RPX7009) in healthy adult subjects. Antimicrob Agents Chemother 60:6326–6332. doi:10.1128/AAC.00568-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. van Duin D, Bonomo RA (2016) Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis 63:234–241. doi:10.1093/cid/ciw243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 18:306–325. doi:10.1128/CMR.18.2.306-325.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, Walsh TR, Coombes BK, Wright GD (2014) Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510:503–506. doi:10.1038/nature13445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cornaglia G, Giamarellou H, Rossolini GM (2011) Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 11(5):381–393. doi:10.1016/S1473-3099(11)70056-1

    Article  PubMed  CAS  Google Scholar 

  34. Nordmann P, Poirel L, Walsh TR, Livermore DM (2011) The emerging NDM carbapenemases. Trends Microbiol 19:588–595. doi:10.1016/j.tim.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  35. Page MGP, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A (2011) In vitro and in vivo properties of BAL30376, a β-lactam and dual β-lactamase inhibitor combination with enhanced activity against Gram-negative bacilli that express multiple β-lactamases. Antimicrob Agents Chemother 55:1510–1519. doi:10.1128/AAC.01370-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hinchliffe P, Gonzalez MM, Mojica MF, Gonzalez JM, Castillo V, Saiz C, Kosmopoulou M, Tooke CL, Llarrull LI, Mahler G, Bonomo RA, Vila AJ, Spencer J (2016) Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A 113:E3745–E3754. doi:10.1073/pnas.1601368113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Labby KJ, Garneau-Tsodikova S (2013) Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 5(11):1285–1309. doi:10.4155/fmc.13.80

    Article  PubMed  CAS  Google Scholar 

  38. Gao F, Yan X, Shakya T, Baettig OM, Ait-Mohand-Brunet S, Berghuis AM, Wright GD, Auclair K (2006) Synthesis and SAR of truncated bisubstrate inhibitors of aminoglycoside 6'-N-acetyltransferases. J Med Chem 49:5273–5281. doi:10.1021/jm060732n

    Article  PubMed  CAS  Google Scholar 

  39. Lin DL, Tran T, Alam JY, Herron SR, Ramirez MS, Tolmasky ME (2014) Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib by zinc: reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore. Antimicrob Agents Chemother 58:4238–4241. doi:10.1128/Aac.00129-14

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Green KD, Johnson BR, Garneau-Tsodikova S (2015) Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts. Antimicrob Agents Chemother 59:4148–4156. doi:10.1128/AAC.00885-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chiem K, Fuentes BA, Lin DL, Tran T, Jackson A, Ramirez MS, Tolmasky ME (2015) Inhibition of aminoglycoside 6'-N-acetyltransferase Type Ib-mediated amikacin resistance in Klebsiella pneumoniae by zinc and copper pyrithione. Antimicrob Agents Chemother 59:5851–5853. doi:10.1128/Aac.01106-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shakya T, Stogios PJ, Waglechner N, Evdokimova E, Ejim L, Blanchard JE, McArthur AG, Savchenko A, Wright GD (2011) A small molecule discrimination map of the antibiotic resistance kinome. Chem Biol 18:1591–1601. doi:10.1016/j.chembiol.2011.10.018

    Article  PubMed  CAS  Google Scholar 

  43. Suga T, Ishii T, Iwatsuki M, Yamamoto T, Nonaka K, Masuma R, Matsui H, Hanaki H, Omura S, Shiomi K (2012) Aranorosin circumvents arbekacin-resistance in MRSA by inhibiting the bifunctional enzyme AAC(6′)/APH(2″). J Antibiot 65:527–529. doi:10.1038/ja.2012.53

    Article  PubMed  CAS  Google Scholar 

  44. Hernick M (2013) Mycothiol: a target for potentiation of rifampin and other antibiotics against Mycobacterium tuberculosis. Expert Rev Anti-Infect Ther 11:49–67. doi:10.1586/Eri.12.152

    Article  PubMed  CAS  Google Scholar 

  45. Gutierrez-Lugo MT, Baker H, Shiloach J, Boshoff H, Bewley CA (2009) Dequalinium, a new inhibitor of Mycobacterium tuberculosis mycothiol ligase identified by high-throughput screening. J Biomol Screen 14:643–652. doi:10.1177/1087057109335743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ramon-Garcia S, Ng C, Anderson H, Chao JD, Zheng XJ, Pfeifer T, Av-Gay Y, Roberge M, Thompson CJ (2011) Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother 55:3861–3869. doi:10.1128/Aac.00474-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pieren M, Tigges M (2012) Adjuvant strategies for potentiation of antibiotics to overcome antimicrobial resistance. Curr Opin Pharmacol 12:551–555. doi:10.1016/j.coph.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  48. Maravic G (2004) Macrolide resistance based on the Erm-mediated rRNA methylation. Curr Drug Targets Infect Disord 4:193–202. doi:10.2174/1568005043340777

    Article  PubMed  CAS  Google Scholar 

  49. Clancy J, Schmieder BJ, Petitpas JW, Manousos M, Williams JA, Faiella JA, Girard AE, McGuirk PR (1995) Assays to detect and characterize synthetic agents that inhibit the ErmC methyltransferase. J Antibiot (Tokyo) 48:1273–1279. doi:10.7164/antibiotics.48.1273

    Article  CAS  Google Scholar 

  50. Feder M, Purta E, Koscinski L, Cubrilo S, Maravic Vlahovicek G, Bujnicki JM (2008) Virtual screening and experimental verification to identify potential inhibitors of the ErmC methyltransferase responsible for bacterial resistance against macrolide antibiotics. ChemMedChem 3:316–322. doi:10.1002/cmdc.200700201

    Article  PubMed  CAS  Google Scholar 

  51. Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11. doi:10.1093/jac/dkg050

    Article  PubMed  CAS  Google Scholar 

  52. Li XZ, Plesiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jang S (2016) Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol 54:1–8. doi:10.1007/s12275-016-5159-z

    Article  PubMed  CAS  Google Scholar 

  54. Abreu AC, McBain AJ, Simoes M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29:1007–1021. doi:10.1039/c2np20035j

    Article  PubMed  CAS  Google Scholar 

  55. Markham PN, Westhaus E, Klyachko K, Johnson ME, Neyfakh AA (1999) Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob Agents Chemother 43:2404–2408

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Markham PN, Neyfakh AA (1996) Inhibition of the multidrug transporter NorA prevents emergence of norfloxacin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 40:2673–2674

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Fujita M, Shiota S, Kuroda T, Hatano T, Yoshida T, Mizushima T, Tsuchiya T (2005) Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 49:391–396

    Article  CAS  PubMed  Google Scholar 

  58. Kalle AM, Rizvi A (2011) Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob Agents Chemother 55:439–442. doi:10.1128/AAC.00735-10

    Article  PubMed  CAS  Google Scholar 

  59. Sabatini S, Gosetto F, Serritella S, Manfroni G, Tabarrini O, Iraci N, Brincat JP, Carosati E, Villarini M, Kaatz GW, Cecchetti V (2012) Pyrazolo[4,3-c][1,2]benzothiazines-5,5-dioxide: a promising new class of Staphylococcus aureus NorA efflux pump inhibitors. J Med Chem 55:3568–3572. doi:10.1021/jm201446h

    Article  PubMed  CAS  Google Scholar 

  60. Lepri S, Buonerba F, Goracci L, Velilla I, Ruzziconi R, Schindler BD, Seo SM, Kaatz GW, Cruciani G (2016) Indole-based weapons to fight antibiotic resistance: a SAR study. J Med Chem 59:867–891. doi:10.1021/acs.jmedchem.5b01219

    Article  PubMed  CAS  Google Scholar 

  61. Kaatz GW, Moudgal VV, Seo SM, Kristiansen JE (2003) Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chmother 47:719–726. doi:10.1128/Aac.47.2.719-726.2003

    Article  CAS  Google Scholar 

  62. Mirza ZM, Kumar A, Kalia NP, Zargar A, Khan IA (2011) Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J Med Microbiol 60:1472–1478. doi:10.1099/jmm.0.033167-0

    Article  PubMed  CAS  Google Scholar 

  63. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chamberland S, Renau T, Leger R, Hecker S, Watkins W, Hoshino K, Ishida H, Lee VJ (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116. doi:10.1128/AAC.45.1.105-116.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Pages JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794:826–833. doi:10.1016/j.bbapap.2008.12.011

    Article  PubMed  CAS  Google Scholar 

  65. Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918. doi:10.1016/j.bcp.2005.12.008

    Article  PubMed  CAS  Google Scholar 

  66. Chalhoub H, Saenz Y, Rodriguez-Villalobos H, Denis O, Kahl BC, Tulkens PM, Van Bambeke F (2016) High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. Int J Antimicrob Agents 48:740–743. doi:10.1016/j.ijantimicag.2016.09.012

    Article  PubMed  CAS  Google Scholar 

  67. Bohnert JA, Schuster S, Kern WV, Karcz T, Olejarz A, Kaczor A, Handzlik J, Kiec-Kononowicz K (2016) Novel piperazine arylideneimidazolones inhibit the AcrAB-TolC pump in Escherichia coli and simultaneously act as fluorescent membrane probes in a combined real-time influx and efflux assay. Antimicrob Agents Chemother 60:1974–1983. doi:10.1128/Aac.01995-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lawler AJ, Ricci V, Busby SJW, Piddock LJV (2013) Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 68:1551–1557. doi:10.1093/jac/dkt069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bailey AM, Paulsen IT, Piddock LJV (2008) RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 52:3604–3611. doi:10.1128/AAC.00661-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kinana AD, Vargiu AV, May T, Nikaido H (2016) Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump. Proc Natl Acad Sci U S A 113:1405–1410. doi:10.1073/pnas.1525143113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Saw HT, Webber MA, Mushtaq S, Woodford N, Piddock LJV (2016) Inactivation or inhibition of AcrAB-TolC increases resistance of carbapenemase-producing Enterobacteriaceae to carbapenems. J Antimicrob Chemother 71:1510–1519. doi:10.1093/jac/dkw028

    Article  PubMed  CAS  Google Scholar 

  72. Piddock LJV, Garvey MI, Rahman MM, Gibbons S (2010) Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J Antimicrob Chemother 65:1215–1223. doi:10.1093/jac/dkq079

    Article  PubMed  CAS  Google Scholar 

  73. Handzlik J, Szymanska E, Chevalier J, Otrgbska E, Kiec-Kononowicz K, Pages JM, Alibert S (2011) Amine-alkyl derivatives of hydantoin: new tool to combat resistant bacteria. Eur J Med Chem 46:5807–5816. doi:10.1016/j.ejmech.2011.09.032

    Article  PubMed  CAS  Google Scholar 

  74. Otrebska-Machaj E, Chevalier J, Handzlik J, Szymanska E, Schabikowski J, Boyer G, Bolla JM, Kiec-Kononowicz K, Pages JM, Alibert S (2016) Efflux pump blockers in Gram-negative bacteria: the new generation of hydantoin based-modulators to improve antibiotic activity. Front Microbiol 7:622. doi:10.3389/fmicb.2016.00622

    Article  Google Scholar 

  75. Cox G, Koteva K, Wright GD (2014) An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria. J Antimicrob Chemother 69:1844–1855. doi:10.1093/jac/dku057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Taylor PL, Rossi L, De Pascale G, Wright GD (2012) A forward chemical screen identifies antibiotic adjuvants in Escherichia coli. ACS Chem Biol 7:1547–1555. doi:10.1021/cb300269g

    Article  PubMed  CAS  Google Scholar 

  77. Mollmann U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22:615–624. doi:10.1007/s10534-009-9219-2

    Article  PubMed  CAS  Google Scholar 

  78. Livermore DM (1990) Antibiotic uptake and transport by bacteria. Scand J Infect Dis Suppl 74:15–22. doi:10.3109/inf.1990.22.suppl-74.01

    Article  PubMed  CAS  Google Scholar 

  79. Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92(Suppl):46S–54S. doi:10.1046/j.1365-2672.92.5s1.7.x

    Article  PubMed  Google Scholar 

  80. Zabawa TP, Pucci MJ, Parr Jr TR, Lister T (2016) Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol 33:7–12. doi:10.1016/j.mib.2016.05.005

    Article  PubMed  CAS  Google Scholar 

  81. Viljanen P, Vaara M (1984) Susceptibility of Gram-negative bacteria to polymyxin-B nonapeptide. Antimicrob Agents Chemother 25:701–705. doi:10.1128/AAC.25.6.701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ofek I, Cohen S, Rahmani R, Kabha K, Tamarkin D, Herzig Y, Rubinstein E (1994) Antibacterial synergism of polymyxin-B nonapeptide and hydrophobic antibiotics in experimental Gram-negative infections in mice. Antimicrob Agents Chemother 38:374–377. doi:10.1128/AAC.38.2.374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pages JM, Peslier S, Keating TA, Lavigne JP, Nichols WW (2016) Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother 60:1349–1359. doi:10.1128/Aac.01585-15

    Article  PubMed Central  CAS  Google Scholar 

  84. Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350. doi:10.1038/nchembio.559

    Article  PubMed  CAS  Google Scholar 

  85. Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine β-naphthylamide (PAβN) permeabilizes the outer membrane of Gram-negative bacteria. PLoS One 8:e60666. doi:10.1371/journal.pone.0060666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657. doi:10.1039/b906679a

    Article  PubMed  CAS  Google Scholar 

  87. Boudreau MA, Fishovitz J, Llarrull LI, Xiao QB, Mobashery S (2015) Phosphorylation of BlaR1 in manifestation of antibiotic resistance in methicillin-resistant Staphylococcus aureus and its abrogation by small molecules. ACS Infect Dis 1(10):454–459. doi:10.1021/acsinfecdis.5b00086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13:232–239. doi:10.1016/J.Mib.2010.01.008

    Article  PubMed  CAS  Google Scholar 

  89. Mejean V (2016) Two-component regulatory systems: the moment of truth. Res Microbiol 167(1):1–3. doi:10.1016/j.resmic.2015.09.004

    Article  PubMed  Google Scholar 

  90. Gardete S, Wu SW, Gill S, Tomasz A (2006) Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50:3424–3434. doi:10.1128/Aac.00356-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Worthington RJ, Blackledge MS, Melander C (2013) Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 5:1265–1284. doi:10.4155/fmc.13.58

    Article  PubMed  CAS  Google Scholar 

  92. Boyle-Vavra S, Yin SH, Jo DS, Montgomery CP, Daum RS (2013) VraT/YvqF is required for methicillin resistance and activation of the VraSR regulon in Staphylococcus aureus. Antimicrob Agents Chemother 57:83–95. doi:10.1128/Aac.01651-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Belcheva A, Golemi-Kotra D (2008) A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage. J Biol Chem 283:12354–12364. doi:10.1074/jbc.M710010200

    Article  PubMed  CAS  Google Scholar 

  94. Jo DS, Montgomery CP, Yin S, Boyle-Vavra S, Daum RS (2011) Improved oxacillin treatment outcomes in experimental skin and lung infection by a methicillin-resistant Staphylococcus aureus isolate with a vraSR operon deletion. Antimicrob Agents Chemother 55:2818–2823. doi:10.1128/AAC.01704-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Matsuo M, Kato F, Oogai Y, Kawai T, Sugai M, Komatsuzawa H (2010) Distinct two-component systems in methicillin-resistant Staphylococcus aureus can change the susceptibility to antimicrobial agents. J Antimicrob Chemother 65:1536–1537. doi:10.1093/jac/dkq141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rogers SA, Huigens RW, Cavanagh J, Melander C (2010) Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 54:2112–2118. doi:10.1128/AAC.01418-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Su Z, Peng L, Worthington RJ, Melander C Evaluation of 4,5-disubstituted-2-aminoimidazole-triazole conjugates for antibiofilm/antibiotic resensitization activity against MRSA and Acinetobacter baumannii. ChemMedChem 6:2243–2251. doi:10.1002/cmdc.201100316

    Article  PubMed  CAS  Google Scholar 

  98. Su ZM, Peng LL, Melander C (2012) A modular approach to the synthesis of 1,4,5-substituted-2-aminoimidazoles. Tetrahedron Lett 53:1204–1206. doi:10.1016/J.Tetlet.2011.12.090

    Article  CAS  Google Scholar 

  99. Yeagley AA, Su Z, McCullough KD, Worthington RJ, Melander C (2013) N-substituted 2-aminoimidazole inhibitors of MRSA biofilm formation accessed through direct 1,3-bis(tert-butoxycarbonyl)guanidine cyclization. Org Biomol Chem 11:130–137. doi:10.1039/c2ob26469b

    Article  PubMed  CAS  Google Scholar 

  100. Harris TL, Worthington RJ, Melander C (2012) Potent small-molecule suppression of oxacillin resistance in methicillin-resistant Staphylococcus aureus. Angew Chem Int Ed 51:11254–11257. doi:10.1002/anie.201206911

    Article  CAS  Google Scholar 

  101. Klitgaard JK, Skov MN, Kallipolitis BH, Kolmos HJ (2008) Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother 62:1215–1221. doi:10.1093/jac/dkn417

    Article  PubMed  CAS  Google Scholar 

  102. Bonde M, Hojland DH, Kolmos HJ, Kallipolitis BH, Klitgaard JK (2011) Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 318:168–176. doi:10.1111/j.1574-6968.2011.02255.x

    Article  PubMed  CAS  Google Scholar 

  103. Poulsen MO, Jacobsen K, Thorsing M, Kristensen NR, Clasen J, Lillebaek EM, Skov MN, Kallipolitis BH, Kolmos HJ, Klitgaard JK (2013) Thioridazine potentiates the effect of a β-lactam antibiotic against Staphylococcus aureus independently of mecA expression. Res Microbiol 164:181–188. doi:10.1016/j.resmic.2012.10.007

    Article  PubMed  CAS  Google Scholar 

  104. Harris TL, Worthington RJ, Hittle LE, Zurawski DV, Ernst RK, Melander C (2014) Small molecule downregulation of PmrAB reverses Lipid A modification and breaks colistin resistance. ACS Chem Biol 9:122–127. doi:10.1021/cb400490k

    Article  PubMed  CAS  Google Scholar 

  105. Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, Dhanji H, Chart H, Bou G, Livermore DM, Woodford N (2011) Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55:3370–3379. doi:10.1128/AAC.00079-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE (2011) The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother 55:3743–3751. doi:10.1128/AAC.00256-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Brackett CM, Furlani RE, Anderson RG, Krishnamurthy A, Melander RJ, Moskowitz SM, Ernst RK, Melander C (2016) Second generation modifiers of colistin resistance show enhanced activity and lower inherent toxicity. Tetrahedron 72:3549–3553. doi:10.1016/j.tet.2015.09.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wilke KE, Francis S, Carlson EE (2015) Inactivation of multiple bacterial histidine kinases by targeting the ATP-binding domain. ACS Chem Biol 10:328–335. doi:10.1021/cb5008019

    Article  PubMed  CAS  Google Scholar 

  109. Boibessot T, Zschiedrich CP, Lebeau A, Benimelis D, Dunyach-Remy C, Lavigne JP, Szurmant H, Benfodda Z, Meffre P (2016) The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases. J Med Chem 59:8830–8847. doi:10.1021/acs.jmedchem.6b00580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Alam MK, Alhhazmi A, DeCoteau JF, Luo Y, Geyer CR (2016) RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem Biol 23:381–391. doi:10.1016/j.chembiol.2016.02.010

    Article  PubMed  Google Scholar 

  111. Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, Pereira PM, Roemer T, Filipe SR, Pereira-Leal JB, Ligoxygakis P, Pinho MG (2015) Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. PLoS Pathog 11:e1004891. doi:10.1371/journal.ppat.1004891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Campbell J, Singh AK, Santa Maria Jr JP, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106–116. doi:10.1021/cb100269f

    Article  PubMed  CAS  Google Scholar 

  113. Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, McGuinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T (2013) Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol 20:272–284. doi:10.1016/j.chembiol.2012.11.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Farha MA, Leung A, Sewell EW, D'Elia MA, Allison SE, Ejim L, Pereira PM, Pinho MG, Wright GD, Brown ED (2013) Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem Biol 8(1):226–233. doi:10.1021/cb300413m

    Article  PubMed  CAS  Google Scholar 

  115. Labroli MA, Caldwell JP, Yang C, Lee SH, Wang H, Koseoglu S, Mann P, Yang SW, Xiao J, Garlisi CG, Tan C, Roemer T, Su J (2016) Discovery of potent wall teichoic acid early stage inhibitors. Bioorg Med Chem Lett 26:3999–4002. doi:10.1016/j.bmcl.2016.06.090

    Article  PubMed  CAS  Google Scholar 

  116. Mann PA, Muller A, Xiao L, Pereira PM, Yang C, Ho Lee S, Wang H, Trzeciak J, Schneeweis J, Dos Santos MM, Murgolo N, She X, Gill C, Balibar CJ, Labroli M, Su J, Flattery A, Sherborne B, Maier R, Tan CM, Black T, Onder K, Kargman S, Monsma Jr FJ, Pinho MG, Schneider T, Roemer T (2013) Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 8:2442–2451. doi:10.1021/cb400487f

    Article  PubMed  CAS  Google Scholar 

  117. Hurley KA, Santos TM, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB (2016) Targeting the bacterial division protein FtsZ. J Med Chem 59(15):6975–6998. doi:10.1021/acs.jmedchem.5b01098

    Article  PubMed  CAS  Google Scholar 

  118. Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillancourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Ramtohul Y, Langlois E, Landry F, Reid JC, Parthasarathy G, Sharma S, Baryshnikova A, Lumb KJ, Pinho MG, Soisson SM, Roemer T (2012) Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med 4:126ra135. doi:10.1126/scitranslmed.3003592

    Article  Google Scholar 

  119. Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, Baker PJ, Barynin VV, Rice DW, Sedelnikova SE, Heal JR, Sheridan JM, Aiwale ST, Chauhan PK, Srivastava A, Taneja A, Collins I, Errington J, Czaplewski LG (2008) An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321:1673–1675. doi:10.1126/science.1159961

    Article  PubMed  CAS  Google Scholar 

  120. Chan FY, Sun N, Leung YC, Wong KY (2015) Antimicrobial activity of a quinuclidine-based FtsZ inhibitor and its synergistic potential with β-lactam antibiotics. J Antibiot (Tokyo) 68:253–258. doi:10.1038/ja.2014.140

    Article  CAS  Google Scholar 

  121. Nair DR, Monteiro JM, Memmi G, Thanassi J, Pucci M, Schwartzman J, Pinho MG, Cheung AL (2015) Characterization of a novel small molecule that potentiates β-lactam activity against Gram-positive and Gram-negative pathogens. Antimicrob Agents Chemother 59:1876–1885. doi:10.1128/AAC.04164-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lee SH, Jarantow LW, Wang H, Sillaots S, Cheng H, Meredith TC, Thompson J, Roemer T (2011) Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem Biol 18:1379–1389. doi:10.1016/j.chembiol.2011.08.015

    Article  PubMed  CAS  Google Scholar 

  123. Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW (2004) Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 23:462–467. doi:10.1016/j.ijantimicag.2003.09.027

    Article  PubMed  CAS  Google Scholar 

  124. Bernal P, Lemaire S, Pinho MG, Mobashery S, Hinds J, Taylor PW (2010) Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated β-lactam resistance by delocalizing PBP2. J Biol Chem 285:24055–24065. doi:10.1074/jbc.M110.114793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Rosado H, Turner RD, Foster SJ, Taylor PW (2015) Impact of the β-lactam resistance modifier (–)-epicatechin gallate on the non-random distribution of phospholipids across the cytoplasmic membrane of Staphylococcus aureus. Int J Mol Sci 16:16710–16727. doi:10.3390/ijms160816710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Palacios L, Rosado H, Micol V, Rosato AE, Bernal P, Arroyo R, Grounds H, Anderson JC, Stabler RA, Taylor PW (2014) Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers. PLoS One 9:e93830. doi:10.1371/journal.pone.0093830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Melander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Melander, R.J., Melander, C. (2017). Antibiotic Adjuvants. In: Fisher, J.F., Mobashery, S., Miller, M.J. (eds) Antibacterials. Topics in Medicinal Chemistry, vol 25. Springer, Cham. https://doi.org/10.1007/7355_2017_10

Download citation

Publish with us

Policies and ethics