Advertisement

Protein Production in Eukaryotic Cells

  • Kripa RamEmail author
  • Diane Hatton
  • Sanjeev Ahuja
  • Jean Bender
  • Alan Hunter
  • Richard Turner
Chapter
Part of the Topics in Medicinal Chemistry book series (TMC, volume 21)

Abstract

The scientific and engineering aspects of design, development, scale-up, and manufacture of monoclonal antibodies are summarized in this chapter by outlining the key elements in the development of the expression cell line, cell culture, cell harvest, and protein purification process and exploring the effect of process technologies on production economics.

Keywords

Bioreactor Bioreactor sterility Cell culture scale up Cell harvest Cell line screening Chinese hamster ovary cell line Continuous centrifugation Cost modelling Cost of goods Depth filtration Disc stack centrifuge Economies of scale Genetic stability Host cell protein Ion exchange Medium optimization Phenotypic stability Process economics Protein expression Run rate Sigma factor chromatography Viral clearance 

References

  1. 1.
    Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14CrossRefGoogle Scholar
  2. 2.
    Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing. May 20–21, 2014 continuous manufacturing symposium. J Pharm Sci 104(3):813–820Google Scholar
  3. 3.
    Razinkov VI, Treuheit MJ, Becker GW (2015) Accelerated formulation development of monoclonal antibodies (mAbs) and mAb-based modalities: review of methods and tools. J Biomol Screen 20(4):468–483CrossRefGoogle Scholar
  4. 4.
    Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383–399CrossRefGoogle Scholar
  5. 5.
    Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252CrossRefGoogle Scholar
  6. 6.
    Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10(5):702–714CrossRefGoogle Scholar
  7. 7.
    Moustafa K, Makhzoum A, Tremouillaux-Guiller J (2015) Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 8:1–11CrossRefGoogle Scholar
  8. 8.
    Decker EL, Reski R (2012) Glycoprotein production in moss bioreactors. Plant Cell Rep 31(3):453–460CrossRefGoogle Scholar
  9. 9.
    Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30(2):398–409CrossRefGoogle Scholar
  10. 10.
    Webster DE, Thomas MC (2012) Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 30(2):410–418CrossRefGoogle Scholar
  11. 11.
    Anyaogu DC, Mortensen UH (2015) Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins. Curr Opin Biotechnol 36:122–128CrossRefGoogle Scholar
  12. 12.
    Contreras-Gomez A, Sanchez-Miron A, Garcia-Camacho F, Molina-Grima E, Chisti Y (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30(1):1–18CrossRefGoogle Scholar
  13. 13.
    Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587CrossRefGoogle Scholar
  14. 14.
    Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112CrossRefGoogle Scholar
  15. 15.
    Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28(8):863–867CrossRefGoogle Scholar
  16. 16.
    Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28(1):147–175CrossRefGoogle Scholar
  17. 17.
    Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2015) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 18:1–13Google Scholar
  18. 18.
    Swiech K, Picanco-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153CrossRefGoogle Scholar
  19. 19.
    McCue J, Kshirsagar R, Selvitelli K, Lu Q, Zhang M, Mei B, Peters R, Pierce GF, Dumont J, Raso S, Reichert H (2015) Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein. Biologicals 43(4):213–219CrossRefGoogle Scholar
  20. 20.
    Havenga MJ, Holterman L, Melis I, Smits S, Kaspers J, Heemskerk E, van der Vlugt R, Koldijk M, Schouten GJ, Hateboer G, Brouwer K, Vogels R, Goudsmit J (2008) Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: high yield and preserved bioactivity. Biotechnol Bioeng 100(2):273–283CrossRefGoogle Scholar
  21. 21.
    Schiedner G, Hertel S, Bialek C, Kewes H, Waschutza G, Volpers C (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 8:13CrossRefGoogle Scholar
  22. 22.
    Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000CrossRefGoogle Scholar
  23. 23.
    Berting A, Farcet MR, Kreil TR (2010) Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnol Bioeng 106(4):598–607CrossRefGoogle Scholar
  24. 24.
    Fischer S, Handrick R, Otte K (2015) The art of CHO cell engineering: a comprehensive retrospect and future perspectives. Biotechnol Adv 33(8):1878–1896CrossRefGoogle Scholar
  25. 25.
    Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the omics revolution for biotechnology. Curr Opin Biotechnol 24(6):1102–1107CrossRefGoogle Scholar
  26. 26.
    Lee JS, Grav LM, Lewis NE, Faustrup Kildegaard H (2015) CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol J 10(7):979–994CrossRefGoogle Scholar
  27. 27.
    Malphettes L, Freyvert Y, Chang J, Liu PQ, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783CrossRefGoogle Scholar
  28. 28.
    Lin N, Mascarenhas J, Sealover NR, George HJ, Brooks J, Kayser KJ, Gau B, Yasa I, Azadi P, Archer-Hartmann S (2015) Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol Prog 31(2):334–346CrossRefGoogle Scholar
  29. 29.
    Yin B, Gao Y, Chung CY, Yang S, Blake E, Stuczynski MC, Tang J, Kildegaard HF, Andersen MR, Zhang H, Betenbaugh MJ (2015) Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol Bioeng 112(11):2343–2351CrossRefGoogle Scholar
  30. 30.
    Wurm FM (2013) CHO quasispecies—implications for manufacturing processes. Processes 1(3):296–311CrossRefGoogle Scholar
  31. 31.
    Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765CrossRefGoogle Scholar
  32. 32.
    Puck TT (1957) The genetics of somatic mammalian cells. Adv Biol Med Phys 5:75–101CrossRefGoogle Scholar
  33. 33.
    Hu Z, Guo D, Yip SS, Zhan D, Misaghi S, Joly JC, Snedecor BR, Shen AY (2013) Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell. Biotechnol Prog 29(4):980–985CrossRefGoogle Scholar
  34. 34.
    Davies SL, Lovelady CS, Grainger RK, Racher AJ, Young RJ, James DC (2013) Functional heterogeneity and heritability in CHO cell populations. Biotechnol Bioeng 110(1):260–274CrossRefGoogle Scholar
  35. 35.
    O’Callaghan PM, Berthelot ME, Young RJ, Graham JW, Racher AJ, Aldana D (2015) Diversity in host clone performance within a Chinese hamster ovary cell line. Biotechnol Prog 31(5):1187–1200CrossRefGoogle Scholar
  36. 36.
    Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL, Beckmann JS, Wurm FM (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340(4):1069–1077CrossRefGoogle Scholar
  37. 37.
    Jostock T, Knopf HP (2012) Mammalian stable expression of biotherapeutics. Methods Mol Biol 899:227–238CrossRefGoogle Scholar
  38. 38.
    Ho SC, Mariati, Yeo JH, Fang SG Yang YS (2015) Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol Biotechnol 57(2):138–144Google Scholar
  39. 39.
    Lai T, Yang Y Ng SK (2013) Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 6(5):579–603Google Scholar
  40. 40.
    Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC (2012) Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol Bioeng 109(4):1007–1015CrossRefGoogle Scholar
  41. 41.
    Chin CL, Chin HK, Chin CS, Lai ET, Ng SK (2015) Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. BMC Biotechnol 15:44CrossRefGoogle Scholar
  42. 42.
    Saunders F, Sweeney B, Antoniou MN, Stephens P, Cain K (2015) Chromatin function modifying elements in an industrial antibody production platform–comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 10(4), e0120096CrossRefGoogle Scholar
  43. 43.
    Matasci M, Baldi L, Hacker DL, Wurm FM (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 108(9):2141–2150CrossRefGoogle Scholar
  44. 44.
    Mayrhofer P, Kratzer B, Sommeregger W, Steinfellner W, Reinhart D, Mader A, Turan S, Qiao J, Bode J, Kunert R (2014) Accurate comparison of antibody expression levels by reproducible transgene targeting in engineered recombination-competent CHO cells. Appl Microbiol Biotechnol 98(23):9723–9733CrossRefGoogle Scholar
  45. 45.
    Kennard ML, Goosney DL, Monteith D, Zhang L, Moffat M, Fischer D, Mott J (2009) The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Biotechnol Bioeng 104(3):540–553CrossRefGoogle Scholar
  46. 46.
    Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into Mammalian cells. Methods Enzymol 463:223–238CrossRefGoogle Scholar
  47. 47.
    Diepenbruck C, Klinger M, Urbig T, Baeuerle P, Neef R (2013) Productivity and quality of recombinant proteins produced by stable CHO cell clones can be predicted by transient expression in HEK cells. Mol Biotechnol 54(2):497–503CrossRefGoogle Scholar
  48. 48.
    Bohm E, Seyfried BK, Dockal M, Graninger M, Hasslacher M, Neurath M, Konetschny C, Matthiessen P, Mitterer A, Scheiflinger F (2015) Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells. BMC Biotechnol 15:87CrossRefGoogle Scholar
  49. 49.
    Croset A, Delafosse L, Gaudry JP, Arod C, Glez L, Losberger C, Begue D, Krstanovic A, Robert F, Vilbois F, Chevalet L, Antonsson B (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161(3):336–348CrossRefGoogle Scholar
  50. 50.
    Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A (2013) A CHO cell line engineered to express XBP1 and ERO1-Lalpha has increased levels of transient protein expression. Biotechnol Prog 29(3):697–706CrossRefGoogle Scholar
  51. 51.
    Daramola O, Stevenson J, Dean G, Hatton D, Pettman G, Holmes W, Field R (2014) A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog 30(1):132–141CrossRefGoogle Scholar
  52. 52.
    Kunaparaju R, Liao M, Sunstrom NA (2005) Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol Bioeng 91(6):670–677CrossRefGoogle Scholar
  53. 53.
    Rajendra Y, Hougland MD, Alam R, Morehead TA, Barnard GC (2015) A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Biotechnol Bioeng 112(5):977–986CrossRefGoogle Scholar
  54. 54.
    Jager V, Bussow K, Schirrmann T (2015) Transient recombinant protein expression in mammalian cells. In: Al-Rubeai M (ed) Animal cell culture. Springer, DordrechtGoogle Scholar
  55. 55.
    Steger K, Brady J, Wang W, Duskin M, Donato K, Peshwa M (2015) CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. J Biomol Screen 20(4):545–551CrossRefGoogle Scholar
  56. 56.
    Geisse S, Voedisch B (2012) Transient expression technologies: past, present, and future. Methods Mol Biol 899:203–219CrossRefGoogle Scholar
  57. 57.
    Sou SN, Polizzi KM, Kontoravdi C (2013) Evaluation of transfection methods for transient gene expression in Chinese hamster ovary cells. Adv Biosci Biotechnol 04(12):1013–1019CrossRefGoogle Scholar
  58. 58.
    Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25(9):425–432CrossRefGoogle Scholar
  59. 59.
    Coller HA, Coller BS (1986) Poisson statistical analysis of repetitive subcloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. Methods Enzymol 121:412–417CrossRefGoogle Scholar
  60. 60.
    Onadipe AO, Metcalfe HK Freeman PR, James C (2001) Capillary-aided cell cloning: a technique for one step cloning with high probability of monoclonality. In: Lindner-Olsson EC, Lüllau N (eds) Animal cell technology: from target to market. Springer, NetherlandsGoogle Scholar
  61. 61.
    Nakamura T, Omasa T (2015) Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. J Biosci Bioeng 120(3):323–329CrossRefGoogle Scholar
  62. 62.
    Evans K, Albanetti T, Venkat R, Schoner R, Savery J, Miro-Quesada G, Rajan B, Groves C (2015) Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging. Biotechnol Prog 31(5):1172–1178CrossRefGoogle Scholar
  63. 63.
    DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, Estes S, Karey KP (2007) Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog 23(2):465–472CrossRefGoogle Scholar
  64. 64.
    Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891CrossRefGoogle Scholar
  65. 65.
    Joensson HN, Zhang C, Uhlen M, Andersson-Svahn H (2012) A homogeneous assay for protein analysis in droplets by fluorescence polarization. Electrophoresis 33(3):436–439CrossRefGoogle Scholar
  66. 66.
    Silk NJ, Denby S, Lewis G, Kuiper M, Hatton D, Field R, Baganz F, Lye GJ (2010) Fed-batch operation of an industrial cell culture process in shaken microwells. Biotechnol Lett 32(1):73–78CrossRefGoogle Scholar
  67. 67.
    Rameez S, Mostafa SS, Miller C, Shukla AA (2014) High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog 30(3):718–727CrossRefGoogle Scholar
  68. 68.
    Paul AJ, Schwab K, Hesse F (2014) Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol 14:99CrossRefGoogle Scholar
  69. 69.
    Yang Y, Strahan A, Li C, Shen A, Liu H, Ouyang J, Katta V, Francissen K, Zhang B (2010) Detecting low level sequence variants in recombinant monoclonal antibodies. MAbs 2(3):285–298CrossRefGoogle Scholar
  70. 70.
    Ambrogelly A, Liu YH, Li H, Mengisen S, Yao B, Xu W, Cannon-Carlson S (2012) Characterization of antibody variants during process development: the tale of incomplete processing of N-terminal secretion peptide. MAbs 4(6):701–709CrossRefGoogle Scholar
  71. 71.
    Harris RP, Kilby PM (2014) Amino acid misincorporation in recombinant biopharmaceutical products. Curr Opin Biotechnol 30:45–50CrossRefGoogle Scholar
  72. 72.
    Khetan A, Huang YM, Dolnikova J, Pederson NE, Wen D, Yusuf-Makagiansar H, Chen P, Ryll T (2010) Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnol Bioeng 107(1):116–123CrossRefGoogle Scholar
  73. 73.
    Kim M, O'Callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 108(10):2434–2446CrossRefGoogle Scholar
  74. 74.
    Zhang S, Bartkowiak L, Nabiswa B, Mishra P, Fann J, Ouellette D, Correia I, Regier D, Liu J (2015) Identifying low-level sequence variants via next generation sequencing to aid stable CHO cell line screening. Biotechnol Prog 31(4):1077–1085CrossRefGoogle Scholar
  75. 75.
    Seth G (2012) Freezing mammalian cells for production of biopharmaceuticals. Methods 56(3):424–431CrossRefGoogle Scholar
  76. 76.
    Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, MacLeod RA, Masters JR, Nakamura Y, Reid YA, Reddel RR, Freshney RI (2010) Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 127(1):1–8CrossRefGoogle Scholar
  77. 77.
    Mclean C, Harbour C (2013) Contamination detection in animal cell culture. In: Flickinger MC (ed) Upstream industrial biotechnology. Wiley, New JerseyGoogle Scholar
  78. 78.
    Moody M, Alves W, Varghese J, Khan F (2011) Mouse Minute Virus (MMV) contamination–a case study: detection, root cause determination, and corrective actions. PDA J Pharm Sci Technol 65(6):580–588CrossRefGoogle Scholar
  79. 79.
    Cabannes E, Hebert C, Eloit M (2014) Whole genome: next-generation sequencing as a virus safety test for biotechnological products. PDA J Pharm Sci Technol 68(6):631–638CrossRefGoogle Scholar
  80. 80.
    Shepherd AJ, Wilson NJ, Smith KT (2003) Characterisation of endogenous retrovirus in rodent cell lines used for production of biologicals. Biologicals 31(4):251–260CrossRefGoogle Scholar
  81. 81.
    Dinowitz M, Lie YS, Low MA, Lazar R, Fautz C, Potts B, Sernatinger J, Anderson K (1992) Recent studies on retrovirus-like particles in Chinese hamster ovary cells. Dev Biol Stand 76:201–207Google Scholar
  82. 82.
    Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 9(4):366–373CrossRefGoogle Scholar
  83. 83.
    Ozturk SS (2014) Equipment for large-scale mammalian cell culture. Adv Biochem Eng Biotechnol 139:69–92Google Scholar
  84. 84.
    Arnaud CH (2015) Disposable plastic bioreactors lead to savings—and challenges—for biopharma firms. Chem Eng News 93(46):10–13CrossRefGoogle Scholar
  85. 85.
    Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398CrossRefGoogle Scholar
  86. 86.
    Milian E, Kamen AA (2015) Current and emerging cell culture manufacturing technologies for influenza vaccines. Biomed Res Int 2015:504831CrossRefGoogle Scholar
  87. 87.
    Woodside SM, Bowen BD, Piret JM (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28(1–3):163–175CrossRefGoogle Scholar
  88. 88.
    Robin J (2013) Case study: challenges and learning in implementing ATF perfusion process. Integrated continuous biomanufacturing ECI conference, Castelldefels, 20–24 October 2013. http://www.engconf.org/staging/wp-content/uploads/2013/12/jarno_ICB-13AQ-Monday.pdf
  89. 89.
    Wu J (1995) Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. J Biotechnol 43(2):81–94CrossRefGoogle Scholar
  90. 90.
    Hsu WT, Aulakh RP, Traul DL, Yuk IH (2012) Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 64(6):667–678CrossRefGoogle Scholar
  91. 91.
    Ahuja S, Bui T, Chen J, Chen J, Dorotheo R, Jain S, Lee A, Russell B, Singh S, Qu L (2011) Development and scale-up of a high titer cell culture process. Abstracts of papers of the American Chemical Society, American Chemical Society, Washington, DCGoogle Scholar
  92. 92.
    Datta P, Linhardt RJ, Sharfstein ST (2013) An omics approach towards CHO cell engineering. Biotechnol Bioeng 110(5):1255–1271CrossRefGoogle Scholar
  93. 93.
    Gupta P, Lee KH (2007) Genomics and proteomics in process development: opportunities and challenges. Trends Biotechnol 25(7):324–330CrossRefGoogle Scholar
  94. 94.
    Antoniewicz MR (2015) Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biotechnol 42(3):317–325CrossRefGoogle Scholar
  95. 95.
    Hines M, Holmes C, Schad R (2010) Simple strategies to improve bioprocess pure culture processing. Pharm Eng 30(3):1–11Google Scholar
  96. 96.
    Tsui V, Wiederhold W (2007) A practical approach to steam autoclave cycle development. J Validation Technol 13(2):124Google Scholar
  97. 97.
    Schleh M, Lawrence B, Park T, Rosenthal S, Hart R, Dehghani H (2010) Effectiveness of upstream barrier technologies for inactivation of adventitious contaminants of cell culture. Am Pharm Rev 13(7):72Google Scholar
  98. 98.
    Goetschalckx S, Fabre V, Wynants M, Bertaux L, Plavsic M, Boussif O, Laenen L (2014) A holistic biosafety risk mitigation approach. Am Pharm Rev 17(4):48–56Google Scholar
  99. 99.
    Yen S, Sokolenko S, Manocha B, Blondeel EJ, Aucoin MG, Patras A, Daynouri-Pancino F, Sasges M (2014) Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance. Biotechnol Prog 30(5):1190–1195CrossRefGoogle Scholar
  100. 100.
    Weber A, Husemann U, Chaussin S, Adams T, De Wilde D, Gerighausen S, Greller G, Fenge C (2014) Development and qualification of a scalable, disposable bioreactor for GMP-compliant cell culture. Bioprocess Int 12(S5):47Google Scholar
  101. 101.
    Keijzer T, Kakes E, Van Halsema E (2011) Advances in the design of bioreactor systems. Innov Pharm Technol 60–64. http://www.iptonline.com/articles/public/advancesinthedesignofbioreactorsystems.pdf
  102. 102.
    Benz GT (2011) Bioreactor design for chemical engineers. Chem Eng Prog 107:21–26Google Scholar
  103. 103.
    Mirro R, Voll K (2009) Which impeller is right for your cell line. BioProcess Int 7(1):52–58Google Scholar
  104. 104.
    Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50(1-3):9–33CrossRefGoogle Scholar
  105. 105.
    Nienow AW (1996) Gas-liquid mixing studies: a comparison of Rushton turbines with some modern impellers. Chem Eng Res Design 74(A4):417–423Google Scholar
  106. 106.
    Langheinrich C, Nienow AW (1999) Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions. Biotechnol Bioeng 66(3):171–179CrossRefGoogle Scholar
  107. 107.
    Hu W, Berdugo C, Chalmers JJ (2011) The potential of hydrodynamic damage to animal cells of industrial relevance: current understanding. Cytotechnology 63(5):445–460CrossRefGoogle Scholar
  108. 108.
    Hu W, Wiltberger K (2014) Industrial cell culture process scale-up strategies and considerations. In: Hauser H, Wagner R (eds) Animal cell biotechnology: in biologics production. Walter de Gruyter GmbH & Co. KG, Berlin, pp 455–488Google Scholar
  109. 109.
    Perez JAS, Porcel EMR, Lopez JLC, Sevilla JMF, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124(1–3):1–5CrossRefGoogle Scholar
  110. 110.
    Villiger TK (2015) Bioprocess engineering framework to control protein N-linked glycosylation, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 22727Google Scholar
  111. 111.
    Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers JJ (2004) Bioprocess equipment: characterization of energy dissipation rate and its potential to damage cells. Biotechnol Prog 20(5):1437–1448CrossRefGoogle Scholar
  112. 112.
    Meghrous J, Khramtsov N, Buckland BC, Cox MM, Palomares LA, Srivastava IK (2015) Dissolved carbon dioxide determines the productivity of a recombinant hemagglutinin component of an influenza vaccine produced by insect cells. Biotechnol Bioeng 112(11):2267–2275CrossRefGoogle Scholar
  113. 113.
    Sieblist C, Hageholz O, Aehle M, Jenzsch M, Pohlscheidt M, Lubbert A (2011) Insights into large-scale cell-culture reactors: II. Gas-phase mixing and CO2 stripping. Biotechnol J 6(12):1547–1556CrossRefGoogle Scholar
  114. 114.
    Voisard D, Meuwly F, Ruffieux PA, Baer G, Kadouri A (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765CrossRefGoogle Scholar
  115. 115.
    Ambler CM (1959) The theory of scaling up laboratory data for the sedimentation type centrifuge. J Biochem Microbiol Technol Eng 1(2):185–205CrossRefGoogle Scholar
  116. 116.
    Boychyn M, Yim SSS, Shamlou PA, Bulmer M, More J, Hoare A (2001) Characterization of flow intensity in continuous centrifuges for the development of laboratory mimics. Chem Eng Sci 56(16):4759–4770CrossRefGoogle Scholar
  117. 117.
    Hutchinson N, Bingham N, Murrell N, Farid S, Hoare M (2006) Shear stress analysis of mammalian cell suspensions for prediction of industrial centrifugation and its verification. Biotechnol Bioeng 95(3):483–491CrossRefGoogle Scholar
  118. 118.
    Tait AS, Aucamp JP, Bugeon A, Hoare M (2009) Ultra scale-down prediction using microwell technology of the industrial scale clarification characteristics by centrifugation of mammalian cell broths. Biotechnol Bioeng 104(2):321–331CrossRefGoogle Scholar
  119. 119.
    Carman P (1937) Cyclic permeability of granular material. Transl Inst Chem Eng 15:150–167Google Scholar
  120. 120.
    Badmington F, Wilkins R, Payne M, Honig ES (1995) Vmax testing for practical microfiltration train scale-up in biopharmaceutical processing. Pharm Technol 19(9):64–76Google Scholar
  121. 121.
    Lutz H (2009) Rationally defined safety factors for filter sizing. J Membr Sci 341(1–2):268–278CrossRefGoogle Scholar
  122. 122.
    de Zafra CLZ, Quarmby V, Francissen K, Vanderlaan M, Zhu-Shimoni J (2015) Host cell proteins in biotechnology-derived products: a risk assessment framework. Biotechnol Bioeng 112(11):2284–2291CrossRefGoogle Scholar
  123. 123.
    CMC-Biotech-Working-Group (2009) A-Mab: a case study in bioprocess development. CASSS, EmeryvilleGoogle Scholar
  124. 124.
    Yang H (2013) Establishing acceptable limits of residual DNA. PDA J Pharm Sci Technol 67(2):155–163CrossRefGoogle Scholar
  125. 125.
    Gottschalk U (2008) Bioseparation in antibody manufacturing: the good, the bad and the ugly. Biotechnol Prog 24(3):496–503CrossRefGoogle Scholar
  126. 126.
    Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1(5):443–452CrossRefGoogle Scholar
  127. 127.
    Liu HF, Ma J, Winter C, Bayer R (2010) Recovery and purification process development for monoclonal antibody production. MAbs 2(5):480–499CrossRefGoogle Scholar
  128. 128.
    Kelley B (2007) Very large scale monoclonal antibody purification: the case for conventional unit operations. Biotechnol Prog 23(5):995–1008Google Scholar
  129. 129.
    Trexler-Schmidt M, Sze-Khoo S, Cothran AR, Thai BQ, Sargis S, Lebreton B, Kelley B, Blank GS (2009) Purification strategies to process 5 g/L titers of monoclonal antibodies. Biopharm Int 22:8–15Google Scholar
  130. 130.
    Gouda H, Shiraishi M, Takahashi H, Kato K, Torigoe H, Arata Y, Shimada I (1998) NMR study of the interaction between the B domain of staphylococcal protein A and the Fc portion of immunoglobulin G. Biochemistry 37(1):129–136CrossRefGoogle Scholar
  131. 131.
    Kim HK, Thammavongsa V, Schneewind O, Missiakas D (2012) Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 15(1):92–99CrossRefGoogle Scholar
  132. 132.
    Silverman GJ (1998) B cell superantigens: possible roles in immunodeficiency and autoimmunity. Semin Immunol 10(1):43–55CrossRefGoogle Scholar
  133. 133.
    Surolia A, Pain D, Khan MI (1982) Protein A: nature’s universal anti-antibody. Trends Biochem Sci 7(2):74–76CrossRefGoogle Scholar
  134. 134.
    Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, Silverman GJ (2000) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97(10):5399–5404CrossRefGoogle Scholar
  135. 135.
    Hober S, Nord K, Linhult M (2007) Protein A chromatography for antibody purification. J Chromatogr B Anal Technol Biomed Life Sci 848(1):40–47CrossRefGoogle Scholar
  136. 136.
    Starovasnik MA, O'Connell MP, Fairbrother WJ, Kelley RF (1999) Antibody variable region binding by Staphylococcal protein A: thermodynamic analysis and location of the Fv binding site on E-domain. Protein Sci 8(7):1423–1431CrossRefGoogle Scholar
  137. 137.
    Nilsson B, Moks T, Jansson B, Abrahmsen L, Elmblad A, Holmgren E, Henrichson C, Jones TA, Uhlen M (1987) A synthetic Igg-binding domain based on staphylococcal protein-A. Protein Eng 1(2):107–113CrossRefGoogle Scholar
  138. 138.
    Tashiro M, Tejero R, Zimmerman DE, Celda B, Nilsson B, Montelione GT (1997) High-resolution solution NMR structure of the Z domain of staphylococcal protein A. J Mol Biol 272(4):573–590CrossRefGoogle Scholar
  139. 139.
    Boedeker B (2001) Production processes of licensed recombinant factor VIII preparations. Semin Thromb Hemost 27(4):385–394CrossRefGoogle Scholar
  140. 140.
    Zydney AL, Harinarayan C, van Reis R (2009) Modeling electrostatic exclusion effects during ion exchange chromatography of monoclonal antibodies. Biotechnol Bioeng 102(4):1131–1140CrossRefGoogle Scholar
  141. 141.
    Carta G, Ubiera AR, Pabst TM (2005) Protein mass transfer kinetics in ion exchange media: measurements and interpretations. Chem Eng Technol 28(11):1252–1264CrossRefGoogle Scholar
  142. 142.
    Hagel L, Jagschies G, Sofer GK (2007) Handbook of process chromatography: development, manufacturing, validation and economics, 2nd edn. Academic/Elsevier, AmsterdamGoogle Scholar
  143. 143.
    Stickel JJ, Fotopoulos A (2001) Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale. Biotechnol Prog 17(4):744–751CrossRefGoogle Scholar
  144. 144.
    Rathore AS, Kennedy RM, O’Donnell JK, Bemberis I, Kaltenbrunner O (2003) Qualification of a chromatographic column – why and how to do it. Biopharm Int Appl Technol Biopharm Dev 16(3):30Google Scholar
  145. 145.
    Suda EJ, Thomas KE, Pabst TM, Mensah P, Ramasubramanyan N, Gustafson ME, Hunter AK (2009) Comparison of agarose and dextran-grafted agarose strong ion exchangers for the separation of protein aggregates. J Chromatogr A 1216(27):5256–5264CrossRefGoogle Scholar
  146. 146.
    Ishihara T, Yamamoto S (2005) Optimization of monoclonal antibody purification by ion-exchange chromatography – application of simple methods with linear gradient elution experimental data. J Chromatogr A 1069(1):99–106CrossRefGoogle Scholar
  147. 147.
    Remington KM (2015) Fundamental strategies for viral clearance part 2: technical approaches. Bioprocess Int 13(5)Google Scholar
  148. 148.
    Connell-Crowley L, Nguyen T, Bach J, Chinniah S, Bashiri H, Gillespie R, Moscariello J, Hinckley P, Dehghani H, Vunnum S, Vedantham G (2012) Cation exchange chromatography provides effective retrovirus clearance for antibody purification processes. Biotechnol Bioeng 109(1):157–165CrossRefGoogle Scholar
  149. 149.
    Shao J, Zydney AL (2004) Optimization of ultrafiltration/diafiltration processes for partially bound impurities. Biotechnol Bioeng 87(3):286–292CrossRefGoogle Scholar
  150. 150.
    Shire SJ, Shahrokh Z, Liu J (2004) Challenges in the development of high protein concentration formulations. J Pharm Sci 93(6):1390–1402CrossRefGoogle Scholar
  151. 151.
    Werner RG (2004) Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol 113(1-3):171–182CrossRefGoogle Scholar
  152. 152.
    Sinclair A, Monge M (2002) Quantitative economic evaluation of single use disposables in bioprocessing. Pharm Eng 22(3):20–34Google Scholar
  153. 153.
    Sinclair A, Monge M (2005) Concept facility based on single-use systems, part 2. BioProcess Int 3(9)Google Scholar
  154. 154.
    Hill C, Sinclair A (2007) Maximizing the use of process data from development to manufacturing. Biopharm Int 20(7):38–42Google Scholar
  155. 155.
    Farid SS, Novais JL, Karri S, Washbrook J, Titchener-Hooker NJ (2000) A tool for modeling strategic decisions in cell culture manufacturing. Biotechnol Prog 16(5):829–836CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kripa Ram
    • 1
    Email author
  • Diane Hatton
    • 2
  • Sanjeev Ahuja
    • 1
  • Jean Bender
    • 1
  • Alan Hunter
    • 1
  • Richard Turner
    • 2
  1. 1.MedImmuneGaithersburgUSA
  2. 2.MedImmuneCambridgeUK

Personalised recommendations