Skip to main content

The Art of Gene Redesign and Recombinant Protein Production: Approaches and Perspectives

  • Chapter
  • First Online:
Book cover Protein Therapeutics

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 21))

Abstract

In recent years, the demand for recombinant proteins for use in research laboratories or in medical settings has increased dramatically. Although a wide variety of recombinant protein expression systems and gene redesign approaches are available, obtaining active, correctly folded recombinant proteins in sufficient amounts remains a challenge in many cases. One of the main approaches to gene redesign with the potential to increase protein production involves introduction of synonymous codon substitutions in mRNAs aimed at increasing the rate/efficiency of translation. However, a number of recent studies have shown that synonymous codon substitutions can also negatively impact mRNA biogenesis, mRNA decoding, as well as protein folding and function. Maximizing the speed and output of translation may put conflicting demands on the protein synthesis machinery resulting in reduced accuracy of the decoding process and/or improper protein folding. An improved understanding of the impact of synonymous codon substitutions on mRNA/protein biogenesis and function is critically important for the development of safer and more effective recombinant protein therapeutics. This review discusses the most common approaches to gene redesign that involve synonymous codon substitutions and provides recommendations for their optimal use in light of recent developments in the field regarding the impact of synonymous codon usage on various aspects of protein production and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372

    Article  CAS  Google Scholar 

  2. Berlec A, Strukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274

    Article  CAS  Google Scholar 

  3. Khan KH (2013) Gene expression in Mammalian cells and its applications. Adv Pharm Bull 3:257–263

    Google Scholar 

  4. Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402

    Article  CAS  Google Scholar 

  5. Young CL, Robinson AS (2014) Protein folding and secretion: mechanistic insights advancing recombinant protein production in S. cerevisiae. Curr Opin Biotechnol 30:168–177

    Article  CAS  Google Scholar 

  6. Sugiki T, Fujiwara T, Kojima C (2014) Latest approaches for efficient protein production in drug discovery. Expert Opin Drug Discov 9:1189–1204

    Article  CAS  Google Scholar 

  7. van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23

    Article  Google Scholar 

  8. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194

    Article  CAS  Google Scholar 

  9. Whittaker JW (2013) Cell-free protein synthesis: the state of the art. Biotechnol Lett 35:143–152

    Article  CAS  Google Scholar 

  10. Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7:313–321

    Article  CAS  Google Scholar 

  11. Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZY, Atabaki N, Talei D (2015) A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 18:21–42

    Google Scholar 

  12. Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–320

    Article  CAS  Google Scholar 

  13. Bösze Z, Baranyi M, Whitelaw CB (2008) Producing recombinant human milk proteins in the milk of livestock species. Adv Exp Med Biol 606:357–393

    Article  Google Scholar 

  14. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  Google Scholar 

  15. Klammt C, Schwarz D, Löhr F, Schneider B, Dötsch V, Bernhard F (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J 273:4141–4153

    Article  CAS  Google Scholar 

  16. Saïda F (2007) Overview on the expression of toxic gene products in Escherichia coli. Curr Protoc Protein Sci 50:1–5

    Google Scholar 

  17. Ryabova LA, Morozov IY, Spirin AS (1998) Continuous-flow cell-free translation, transcription-translation, and replication-translation systems. Methods Mol Biol 77:179–193

    CAS  Google Scholar 

  18. Murray CJ, Baliga R (2013) Cell-free translation of peptides and proteins: from high throughput screening to clinical production. Curr Opin Chem Biol 17:420–426

    Article  CAS  Google Scholar 

  19. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  CAS  Google Scholar 

  20. Elena C, Ravasi P, Castelli ME, Peirú S, Menzella HG (2014) Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol 5:21

    Article  Google Scholar 

  21. Quax TE, Claassens NJ, Söll D, van der Oost J (2015) Codon bias as a means to fine-tune gene expression. Mol Cell 59:149–161

    Article  CAS  Google Scholar 

  22. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1998) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–18211

    Article  Google Scholar 

  23. Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299

    Article  CAS  Google Scholar 

  24. Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B Biol Sci 365:1203–1212

    Article  CAS  Google Scholar 

  25. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  Google Scholar 

  26. Buchan JR, Stansfield I (2007) Halting a cellular production line: responses to ribosomal pausing during translation. Biol Cell 99:475–487

    Article  CAS  Google Scholar 

  27. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  CAS  Google Scholar 

  28. Komar AA (2009) A pause for thought along the co-translational folding pathway. Trends Biochem Sci 34:16–24

    Article  CAS  Google Scholar 

  29. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213

    Article  CAS  Google Scholar 

  30. Dana A, Tuller T (2014) The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res 42:9171–9181

    Article  CAS  Google Scholar 

  31. Gardin J, Yeasmin R, Yurovsky A, Cai Y, Skiena S, Futcher B (2014) Measurement of average decoding rates of the 61 sense codons in vivo. Elife 3, eLife.03735

    Google Scholar 

  32. Hatfield GW, Roth DA (2007) Optimizing scaleup yield for protein production: computationally optimized DNA assembly (CODA) and translation engineering. Biotechnol Annu Rev 13:27–42

    Article  CAS  Google Scholar 

  33. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258

    Article  CAS  Google Scholar 

  34. Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A 107:3645–3650

    Article  CAS  Google Scholar 

  35. Kim HJ, Lee SJ, Kim HJ (2010) Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae. J Biotechnol 150:31–36

    Article  CAS  Google Scholar 

  36. Castillo-Méndez MA, Jacinto-Loeza E, Olivares-Trejo JJ, Guarneros-Pena G, Hernandez-Sanchez J (2012) Adenine-containing codons enhance protein synthesis by promoting mRNA binding to ribosomal 30S subunits provided that specific tRNAs are not exhausted. Biochimie 94:662–672

    Article  Google Scholar 

  37. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479

    Article  CAS  Google Scholar 

  38. Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N (2013) Efficient translation initiation dictates codon usage at gene start. Mol Syst Biol 9:675

    Article  Google Scholar 

  39. Li GW (2015) How do bacteria tune translation efficiency? Curr Opin Microbiol 24:66–71

    Article  Google Scholar 

  40. Wu G, Zheng Y, Qureshi I, Zin HT, Beck T, Bulka B, Freeland SJ (2007) SGDB: a database of synthetic genes re-designed for optimizing protein over-expression. Nucleic Acids Res 35:D76–D79

    Article  CAS  Google Scholar 

  41. de Marco A, Vigh L, Diamant S, Goloubinoff P (2005) Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 10:329–339

    Article  Google Scholar 

  42. Komar AA, Lesnik T, Reiss C (1999) Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett 462:387–391

    Article  CAS  Google Scholar 

  43. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  Google Scholar 

  44. Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, Liu Y (2015) Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell 59:744–754

    Article  CAS  Google Scholar 

  45. Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, Sachs MS, Liu Y (2013) Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495:111–115

    Article  CAS  Google Scholar 

  46. Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16:274–280

    Article  CAS  Google Scholar 

  47. Sander IM, Chaney JL, Clark PL (2014) Expanding Anfinsen’s principle: contributions of synonymous codon selection to rational protein design. J Am Chem 136:858–861

    Article  CAS  Google Scholar 

  48. Hu S, Wang M, Cai G, He M (2013) Genetic code-guided protein synthesis and folding in Escherichia coli. J Biol Chem 288:30855–30861

    Article  CAS  Google Scholar 

  49. Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA, Barral JM, Skach WR (2015) Protein folding. Translational tuning optimizes nascent protein folding in cells. Science 348:444–448

    Article  CAS  Google Scholar 

  50. Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA (2016) Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell 61:341–351. http://www.sciencedirect.com/science/article/pii/S1097276516000095

    Google Scholar 

  51. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691

    Article  CAS  Google Scholar 

  52. Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C (2014) Exposing synonymous mutations. Trends Genet 30:308–321

    Article  CAS  Google Scholar 

  53. Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, Olson S, Weinberg D, Baker KE, Graveley BR, Coller J (2015) Codon optimality is a major determinant of mRNA stability. Cell 160:1111–1124

    Article  CAS  Google Scholar 

  54. Boël G, Letso R, Neely H, Price WN, Wong KH, Su M, Luff JD, Valecha M, Everett JK, Acton TB, Xiao R, Montelione GT, Aalberts DP, Hunt JF (2016) Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529:358–363

    Article  Google Scholar 

  55. Pechmann S, Chartron JW, Frydman J (2014) Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat Struct Mol Biol 21:1100–1105

    Article  CAS  Google Scholar 

  56. Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352

    Article  CAS  Google Scholar 

  57. Chin JX, Chung BK-S, Lee D-Y (2014) Codon optimization on-line (COOL): a web-based multi-objective optimization platform for synthetic gene design. Bioinformatics 30:2210–2212

    Article  CAS  Google Scholar 

  58. Hoover DM, Lubkowski J (2002) DNA Works: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30, e43

    Article  Google Scholar 

  59. Guimaraes JC, Rocha M, Arkin AP, Cambray G (2014) D-Tailor: automated analysis and design of DNA sequences. Bioinformatics 30:1087–1094

    Article  CAS  Google Scholar 

  60. Gaspar P, Oliveira JL, Frommlet J, Santos MAS, Moura G (2012) EuGene: maximizing synthetic gene design for heterologous expression. Bioinformatics 28:2683–2684

    Article  CAS  Google Scholar 

  61. Richardson SM, Wheelan SJ, Yarrington RM, Boeke JD (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res 16:550–556

    Article  CAS  Google Scholar 

  62. Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformat 7:285

    Article  Google Scholar 

  63. Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531

    Article  CAS  Google Scholar 

  64. Gaspar P, Moura G, Santos MAS, Oliveira JL (2013) mRNA secondary structure optimization using a correlated stem-loop prediction. Nucleic Acids Res 41, e73

    Article  CAS  Google Scholar 

  65. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) Optimizer: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131

    Article  Google Scholar 

  66. Wu G, Bashir-Bello N, Freeland S (2005) The synthetic gene designer: a flexible web platform to explore sequence space of synthetic genes for heterolo-gous expression. In: 2005 I.E. computational systems bioinformatics conference, workshops and poster abstracts, 2005 Aug 8–11. Stanford University, California, pp 258–259

    Google Scholar 

  67. Li MH, Bode M, Huang MC, Cheong WC, Lim LS (2012) De novo gene synthesis design using TmPrime software. Methods Mol Biol 852:225–234

    Article  CAS  Google Scholar 

  68. Jung S-K, McDonald K (2011) Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformat 12:340

    Article  CAS  Google Scholar 

  69. Gould N, Hendy O, Papamichail D (2014) Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol 2:41

    Article  Google Scholar 

  70. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from the international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292

    Article  CAS  Google Scholar 

  71. Sharp PM, Li WH (1987) The codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  CAS  Google Scholar 

  72. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42

    Article  CAS  Google Scholar 

  73. Pechmann S, Frydman J (2011) Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat Struct Mol Biol 20:237–243

    Article  Google Scholar 

  74. Chaney JL, Clark PL (2015) Roles for synonymous codon usage in protein biogenesis. Annu Rev Biophys 44:143–166

    Article  CAS  Google Scholar 

  75. Clarke TF 4th, Clark PL (2008) Rare codons cluster. PLoS One 3, e3412

    Article  Google Scholar 

  76. Clarke TF 4th, Clark PL (2010) Increased incidence of rare codon clusters at 5′ and 3′ gene termini: implications for function. BMC Genomics 11:118

    Article  Google Scholar 

  77. Allert M, Cox JC, Hellinga HW (2010) Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol 402:905–918

    Article  CAS  Google Scholar 

  78. Gu W, Zhou T, Wilke CO (2010) A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol 6, e1000664

    Article  Google Scholar 

  79. Zalucki YM, Beacham IR, Jennings MP (2009) Biased codon usage in signal peptides: a role in protein export. Trends Microbiol 17:146–150

    Article  CAS  Google Scholar 

  80. Fluman N, Navon S, Bibi E, Pilpel Y (2014) mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. Elife 3:eLife.03440

    Google Scholar 

  81. Chartier M, Gaudreault F, Najmanovich R (2012) Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. Bioinformatics 28:1438–1445

    Article  CAS  Google Scholar 

  82. McKown RL, Raab RW, Kachelries P, Caldwell S, Laurie GW (2013) Conserved regional 3′ grouping of rare codons in the coding sequence of ocular prosecretory mitogen lacritin. Invest Ophthalmol Vis Sci 54:1979–1987

    Article  Google Scholar 

  83. Widmann M, Clairo M, Dippon J, Pleiss J (2008) Analysis of the distribution of functionally relevant rare codons. BMC Genomics 9:207

    Article  Google Scholar 

  84. Purvis IJ, Bettany AJ, Santiago TC, Coggins JR, Duncan K, Eason R, Brown AJ (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol 193:413–417

    Article  CAS  Google Scholar 

  85. Krasheninnikov IA, Komar AA, Adzhubeĭ IA (1988) Role of the rare codon clusters in defining the boundaries of polypeptide chain regions with identical secondary structures in the process of co-translational folding of proteins. Dokl Akad Nauk SSSR 303:995–999

    CAS  Google Scholar 

  86. Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol 383:281–291

    Article  CAS  Google Scholar 

  87. Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597

    Article  CAS  Google Scholar 

  88. Zhang G, Ignatova Z (2011) Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol 21:25–31

    Article  Google Scholar 

  89. Waudby CA, Launay H, Cabrita LD, Christodoulou J (2013) Protein folding on the ribosome studied using NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 74:57–75

    Article  CAS  Google Scholar 

  90. O'Brien EP, Ciryam P, Vendruscolo M, Dobson CM (2014) Understanding the influence of codon translation rates on cotranslational protein folding. Acc Chem Res 47:1536–1544

    Article  Google Scholar 

  91. Gloge F, Becker AH, Kramer G, Bukau B (2014) Co-translational mechanisms of protein maturation. Curr Opin Struct Biol 24:24–33

    Article  CAS  Google Scholar 

  92. Hoekema A, Kastelein RA, Vasser M, de Boer HA (1987) Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 7:2914–2924

    Article  CAS  Google Scholar 

  93. Caponigro G, Muhlrad D, Parker R (1993) A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol Cell Biol 13:5141–5148

    Article  CAS  Google Scholar 

  94. Deana A, Ehrlich R, Reiss C (1996) Synonymous codon selection controls in vivo turnover and amount of mRNA in Escherichia coli bla and ompA genes. J Bacteriol 178:2718–2720

    Article  CAS  Google Scholar 

  95. Kramer EB, Farabaugh PJ (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:87–96

    Article  CAS  Google Scholar 

  96. Zaher HS, Green R (2009) Fidelity at the molecular level: lessons from protein synthesis. Cell 136:746–762

    Article  CAS  Google Scholar 

  97. Kramer EB, Vallabhaneni H, Mayer LM, Farabaugh PJ (2010) A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA 16:1797–1808

    Article  CAS  Google Scholar 

  98. Ribas de Pouplana L, Santos MA, Zhu JH, Farabaugh PJ, Javid B (2014) Protein mistranslation: friend or foe? Trends Biochem Sci 39:355–362

    Article  CAS  Google Scholar 

  99. Dinman JD (2012) Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip Rev RNA 3:661–673

    Article  CAS  Google Scholar 

  100. Caliskan N, Peske F, Rodnina MV (2015) Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting. Trends Biochem Sci 40:265–274

    Google Scholar 

  101. Huang Y, Koonin EV, Lipman DJ, Przytycka TM (2009) Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage. Nucleic Acids Res 37:6799–6810

    Article  CAS  Google Scholar 

  102. Hamasaki-Katagiri N, Salari R, Simhadri VL, Tseng SC, Needlman E, Edwards NC, Sauna ZE, Grigoryan V, Komar AA, Przytycka TM, Kimchi-Sarfaty C (2012) Analysis of F9 point mutations and their correlation to severity of haemophilia B disease. Haemophilia 18:933–940

    Article  CAS  Google Scholar 

  103. Edwards NC, Hing ZA, Perry A, Blaisdell A, Kopelman DB, Fathke R, Plum W, Newell J, Allen CE, Shapiro SGA, Okunji C, Kosti I, Shomron N, Grigoryan V, Przytycka TM, Sauna ZE, Salari R, Mandel-Gutfreund Y, Komar AA, Kimchi-Sarfaty C (2012) Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches. PLoS One 7:e38864

    Google Scholar 

  104. Salari R, Kimchi-Sarfaty C, Gottesman MM, Przytycka TM (2013) Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies. Nucleic Acids Res 41:44–53

    Article  CAS  Google Scholar 

  105. Hamasaki-Katagiri N, Salari R, Wu A, Qi Y, Schiller T, Filiberto AC, Schisterman EF, Komar AA, Przytycka TM, Kimchi-Sarfaty C (2013) A gene-specific method for predicting hemophilia-causing point mutations. J Mol Biol 425:4023–4033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I apologize to those whose work or original publications could not be cited in this article because of space limitations. I thank Patricia Stanhope Baker for help with manuscript preparation. This work was supported in part by grants to A.A.K. from the Human Frontier Science Program (grant # RGP0024/2010), AHA (grant # 13GRNT17070025), and NIH (grant # 1R15HL121779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Komar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Komar, A.A. (2016). The Art of Gene Redesign and Recombinant Protein Production: Approaches and Perspectives. In: Sauna, Z., Kimchi-Sarfaty, C. (eds) Protein Therapeutics. Topics in Medicinal Chemistry, vol 21. Springer, Cham. https://doi.org/10.1007/7355_2016_2

Download citation

Publish with us

Policies and ethics