Skip to main content

Microtubule-Stabilizing Agents for Alzheimer’s and Other Tauopathies

  • Chapter
  • First Online:
Book cover Alzheimer’s Disease II

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 24))

Abstract

In neurodegenerative tauopathies, of which the most prevalent example is Alzheimer’s disease (AD), the aggregation of the microtubule (MT)-stabilizing protein tau is believed to have neuropathological consequences. Multiple studies indicate that deficits in axonal MTs and axonal transport may contribute to the neurodegenerative processes of these diseases. MT-stabilizing molecules have shown promise in restoring axonal MTs and transport, as well as cognitive performance, in animal models of human tauopathies. As a result, such compounds may be considered as potential candidates for the treatment of AD and related tauopathies. Many examples of MT-stabilizing natural products and derivatives thereof have been approved for cancer treatment; however, the use of these compounds for central nervous system (CNS) diseases may be challenging due to limited brain penetration and oral bioavailability, as well as potential systemic side effects. In this chapter, we review the progress made toward the identification and development of CNS-active MT-stabilizing candidate compounds, with an emphasis on nonnaturally occurring small molecules that exhibit favorable drug-like properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee VMY, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24(1):1121–1159

    Article  CAS  Google Scholar 

  2. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705. doi:10.1038/31508

    Article  CAS  Google Scholar 

  3. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43(6):815–825. doi:10.1002/ana.410430617

    Article  CAS  Google Scholar 

  4. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95(13):7737–7741

    Article  CAS  Google Scholar 

  5. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130

    Article  CAS  Google Scholar 

  6. Amos LA (2004) Microtubule structure and its stabilisation. Org Biomol Chem 2(15):2153–2160

    Article  CAS  Google Scholar 

  7. Gong C-X, Liu F, Grundke-Iqbal I, Iqbal K (2004) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112(6):813–838. doi:10.1007/s00702-004-0221-0

    Article  CAS  Google Scholar 

  8. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3):631–639

    Article  CAS  Google Scholar 

  9. Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42(9):1681–1688

    Article  CAS  Google Scholar 

  10. Guillozet AL, Weintraub S, Mash DC, Mesulam M (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60(5):729–736. doi:10.1001/archneur.60.5.729

    Article  Google Scholar 

  11. D’Souza I, Schellenberg GD (2005) Regulation of tau isoform expression and dementia. Biochim Biophys Acta (BBA) - Mol Basis Dis 1739(2–3):104–115. doi:10.1016/j.bbadis.2004.08.009

    Article  CAS  Google Scholar 

  12. Millecamps S, Julien J-P (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176

    Article  CAS  Google Scholar 

  13. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3):201–214

    Article  CAS  Google Scholar 

  14. Gu J, Firestein BL, Zheng JQ (2008) Microtubules in dendritic spine development. J Neurosci 28(46):12120–12124. doi:10.1523/jneurosci.2509-08.2008

    Article  CAS  Google Scholar 

  15. Hoogenraad CC, Akhmanova A (2010) Dendritic spine plasticity: new regulatory roles of dynamic microtubules. Neuroscientist 16(6):650–661. doi:10.1177/1073858410386357

    Article  CAS  Google Scholar 

  16. Jaworski J, Hoogenraad CC, Akhmanova A (2008) Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 40(4):619–637. doi:10.1016/j.biocel.2007.10.015

    Article  CAS  Google Scholar 

  17. Penazzi L, Tackenberg C, Ghori A, Golovyashkina N, Niewidok B, Selle K, Ballatore C, Smith AB III, Bakota L, Brandt R (2016) Abeta-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D. Neuropharmacology 105:84–95. doi:10.1016/j.neuropharm.2016.01.002

    Article  CAS  Google Scholar 

  18. Black MM, Baas PW, Humphries S (1989) Dynamics of alpha-tubulin deacetylation in intact neurons. J Neurosci 9(1):358–368

    CAS  Google Scholar 

  19. Laferriere NB, MacRae TH, Brown DL (1997) Tubulin synthesis and assembly in differentiating neurons. Biochem Cell Biol 75(2):103–117

    Article  CAS  Google Scholar 

  20. Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 162(5):1623–1627

    Article  CAS  Google Scholar 

  21. Hempen B, Brion J-P (1996) Reduction of acetylated α-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. J Neuropathol Exp Neurol 55(9):964–972. doi:10.1097/00005072-199609000-00003

    Article  CAS  Google Scholar 

  22. Zhang F, Su B, Wang C, Siedlak SL, Mondragon-Rodriguez S, Lee H-g, Wang X, Perry G, Zhu X (2015) Posttranslational modifications of α-tubulin in alzheimer disease. Transl Neurodegener 4(1):1–9. doi:10.1186/s40035-015-0030-4

    Article  CAS  Google Scholar 

  23. Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672

    Article  CAS  Google Scholar 

  24. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91(12):5562–5566

    Article  CAS  Google Scholar 

  25. Merrick SE, Trojanowski JQ, Lee VMY (1997) Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons. J Neurosci 17(15):5726–5737

    CAS  Google Scholar 

  26. Barten DM, Fanara P, Andorfer C, Hoque N, Wong PYA, Husted KH, Cadelina GW, DeCarr LB, Yang L, Liu L, Fessler C, Protassio J, Riff T, Turner H, Janus CG, Sankaranarayanan S, Polson C, Meredith JE, Gray G, Hanna A, Olson RE, Kim SH, Vite GD, Lee FY, Albright CF (2012) Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. J Neurosci 32(21):7137–7145

    Article  CAS  Google Scholar 

  27. Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS, Hogan AM, Xie SX, Ballatore C, Smith AB III, Lee VM, Brunden KR (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32(11):3601–3611. doi:10.1523/jneurosci.4922-11.2012

    Article  CAS  Google Scholar 

  28. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, Joyce S, Li C, Toleikis PM, Lee VMY, Trojanowski JQ (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci U S A 102(1):227–231

    Article  CAS  Google Scholar 

  29. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3(10):1141–1154

    Article  CAS  Google Scholar 

  30. Wagner U, Utton M, Gallo JM, Miller CC (1996) Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci 109(6):1537–1543

    CAS  Google Scholar 

  31. Ksiezak-Reding H, Liu W-K, Yen S-H (1992) Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res 597(2):209–219. doi:10.1016/0006-8993(92)91476-U

    Article  CAS  Google Scholar 

  32. Congdon EE, Kim S, Bonchak J, Songrug T, Matzavinos A, Kuret J (2008) Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants. J Biol Chem 283(20):13806–13816

    Article  CAS  Google Scholar 

  33. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622. doi:10.1038/45159

    Article  CAS  Google Scholar 

  34. Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319(5866):1086–1089. doi:10.1126/science.1152993

    Article  CAS  Google Scholar 

  35. Lee VMY, Daughenbaugh R, Trojanowski JQ (1994) Microtubule stabilizing drugs for the treatment of Alzheimer’s disease. Neurobiol Aging 15(Suppl 2):S87–S89

    Article  Google Scholar 

  36. Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan AM, Iba M, James MJ, Xie SX, Ballatore C, Smith AB III, Lee VM, Trojanowski JQ (2010) Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30(41):13861–13866. doi:10.1523/JNEUROSCI.3059-10.2010, 30/41/13861 [pii]

    Google Scholar 

  37. Bollag DM, McQueney PA, Zhu J, Hensens O, Koupal L, Liesch J, Goetz M, Lazarides E, Woods CM (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55(11):2325–2333

    CAS  Google Scholar 

  38. Prota AE, Bargsten K, Zurwerra D, Field JJ, Díaz JF, Altmann KH, Steinmetz MO (2013) Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339(6119):587–590. doi:10.1126/science.1230582

    Article  CAS  Google Scholar 

  39. Canales A, Nieto L, Rodriguez-Salarichs J, Sanchez-Murcia PA, Coderch C, Cortes-Cabrera A, Paterson I, Carlomagno T, Gago F, Andreu JM, Altmann KH, Jimenez-Barbero J, Diaz JF (2014) Molecular recognition of epothilones by microtubules and tubulin dimers revealed by biochemical and NMR approaches. ACS Chem Biol 9(4):1033–1043. doi:10.1021/cb400673h

    Article  CAS  Google Scholar 

  40. Ranade AR, Higgins L, Markowski TW, Glaser N, Kashin D, Bai R, Hong KH, Hamel E, Höfle G, Georg GI (2016) Characterizing the epothilone binding site on β-tubulin by photoaffinity labeling: identification of β-tubulin peptides TARGSQQY and TSRGSQQY as targets of an epothilone photoprobe for polymerized tubulin. J Med Chem 59(7):3499–3514. doi:10.1021/acs.jmedchem.6b00188

    Article  CAS  Google Scholar 

  41. Andreu JM, Diaz JF, Gil R, de Pereda JM, Garcia de Lacoba M, Peyrot V, Briand C, Towns-Andrews E, Bordas J (1994) Solution structure of Taxotere-induced microtubules to 3-nm resolution. The change in protofilament number is linked to the binding of the taxol side chain. J Biol Chem 269(50):31785–31792

    CAS  Google Scholar 

  42. Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, Bernhardt G, Graeff C, Farber L, Gschaidmeier H, Buschauer A, Fricker G (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 110(9):1309–1318

    Article  CAS  Google Scholar 

  43. Brunden KR, Yao Y, Potuzak JS, Ferrer NI, Ballatore C, James MJ, Hogan AM, Trojanowski JQ, Smith AB III, Lee VM (2011) The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacol Res 63(4):341–351. doi:10.1016/j.phrs.2010.12.002, S1043-6618(10)00227-6 [pii]

    Article  CAS  Google Scholar 

  44. Lee JJ, Swain SM (2006) Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 24(10):1633–1642. doi:10.1200/jco.2005.04.0543

    Article  CAS  Google Scholar 

  45. Glaeser H (2011) Importance of P-glycoprotein for drug–drug interactions. In: Fromm FM, Kim BR (eds) Drug transporters. Springer, Berlin, Heidelberg, pp 285–297. doi:10.1007/978-3-642-14541-4_7

    Chapter  Google Scholar 

  46. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-{beta} deposition in an Alzheimer disease mouse model. J Clin Invest 115(11):3285–3290. doi:10.1172/jci25247

    Article  CAS  Google Scholar 

  47. Ballatore C, Brunden KR, Huryn DM, Trojanowski JQ, Lee VMY, Smith AB III (2012) Microtubule stabilizing agents as potential treatment for Alzheimer’s disease and related neurodegenerative tauopathies. J Med Chem 55(21):8979–8996. doi:10.1021/jm301079z

    Article  CAS  Google Scholar 

  48. Rohena CC, Mooberry SL (2014) Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities. Nat Prod Rep 31(3):335–355. doi:10.1039/C3NP70092E

    Article  CAS  Google Scholar 

  49. Conlin A, Fornier M, Hudis C, Kar S, Kirkpatrick P (2007) Ixabepilone. Nat Rev Drug Discov 6(12):953–954

    Article  CAS  Google Scholar 

  50. Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A, Hofmann B, Klar U (2009) Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol 11(2):158–166. doi:10.1215/15228517-2008-072, 15228517-2008-072 [pii]

    Article  CAS  Google Scholar 

  51. O'Reilly T, Wartmann M, Brueggen J, Allegrini PR, Floersheimer A, Maira M, McSheehy PM (2008) Pharmacokinetic profile of the microtubule stabilizer patupilone in tumor-bearing rodents and comparison of anti-cancer activity with other MTS in vitro and in vivo. Cancer Chemother Pharmacol 62(6):1045–1054. doi:10.1007/s00280-008-0695-9

    Article  CAS  Google Scholar 

  52. Cartelli D, Casagrande F, Busceti CL, Bucci D, Molinaro G, Traficante A, Passarella D, Giavini E, Pezzoli G, Battaglia G, Cappelletti G (2013) Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Sci Rep 3:1837. doi:10.1038/srep01837

    Article  CAS  Google Scholar 

  53. Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, Bates M, Sliwinski C, Brook G, Dobrindt K, Peitz M, Brüstle O, Norenberg MD, Blesch A, Weidner N, Bunge MB, Bixby JL, Bradke F (2015) Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348(6232):347–352. doi:10.1126/science.aaa2958

    Article  CAS  Google Scholar 

  54. Distefano M, Scambia G, Ferlini C, Gaggini C, De Vincenzo R, Riva A, Bombardelli E, Ojima I, Fattorossi A, Panici PB, Mancuso S (1997) Anti-proliferative activity of a new class of taxanes (14beta-hydroxy-10-deacetylbaccatin III derivatives) on multidrug-resistance-positive human cancer cells. Int J Cancer 72(5):844–850

    Article  CAS  Google Scholar 

  55. Metzger-Filho O, Moulin C, de Azambuja E, Ahmad A (2009) Larotaxel: broadening the road with new taxanes. Expert Opin Investig Drugs 18(8):1183–1189

    Article  CAS  Google Scholar 

  56. Ojima I, Chen J, Sun L, Borella CP, Wang T, Miller ML, Lin S, Geng X, Kuznetsova L, Qu C, Gallager D, Zhao X, Zanardi I, Xia S, Horwitz SB, Mallen-St Clair J, Guerriero JL, Bar-Sagi D, Veith JM, Pera P, Bernacki RJ (2008) Design, synthesis, and biological evaluation of new-generation taxoids. J Med Chem 51(11):3203–3221

    Article  CAS  Google Scholar 

  57. Mastalerz H, Cook D, Fairchild CR, Hansel S, Johnson W, Kadow JF, Long BH, Rose WC, Tarrant J, Wu MJ, Xue MQ, Zhang G, Zoeckler M, Vyas DM (2003) The discovery of BMS-275183: an orally efficacious novel taxane. Bioorg Med Chem 11(20):4315–4323, S0968089603004954 [pii]

    Article  CAS  Google Scholar 

  58. Rose WC, Long BH, Fairchild CR, Lee FY, Kadow JF (2001) Preclinical pharmacology of BMS-275183, an orally active taxane. Clin Cancer Res 7(7):2016–2021

    CAS  Google Scholar 

  59. Sampath D, Discafani CM, Loganzo F, Beyer C, Liu H, Tan X, Musto S, Annable T, Gallagher P, Rios C, Greenberger LM (2003) MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol Cancer Ther 2(9):873–884

    CAS  Google Scholar 

  60. Bouchet BP, Galmarini CM (2010) Cabazitaxel, a new taxane with favorable properties. Drugs Today (Barc) 46(10):735–742. doi:10.1358/dot.2010.46.10.1519019, 1519019 [pii]

    Article  CAS  Google Scholar 

  61. Galsky MD, Dritselis A, Kirkpatrick P, Oh WK (2010) Cabazitaxel. Nat Rev Drug Discov 9(9):677–678. doi:10.1038/nrd3254, nrd3254 [pii]

    Article  CAS  Google Scholar 

  62. Cisternino S, Bourasset F, Archimbaud Y, Semiond D, Sanderink G, Scherrmann JM (2003) Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood-brain barrier in mice and rats. Br J Pharmacol 138(7):1367–1375. doi:10.1038/sj.bjp.0705150

    Article  CAS  Google Scholar 

  63. Tang SC, Kort A, Cheung KL, Rosing H, Fukami T, Durmus S, Wagenaar E, Hendrikx JJMA, Nakajima M, van Vlijmen BJM, Beijnen JH, Schinkel AH (2015) P-glycoprotein, CYP3A, and plasma carboxylesterase determine brain disposition and oral availability of the novel taxane cabazitaxel (jevtana) in mice. Mol Pharm 12(10):3714–3723. doi:10.1021/acs.molpharmaceut.5b00470

    Article  CAS  Google Scholar 

  64. McChesney JD (2012) Design and development of a next generation taxane. Planta Med 78(11):CL18. doi:10.1055/s-0032-1320253

    Article  Google Scholar 

  65. Baloglu E, Kingston DG (1999) The taxane diterpenoids. J Nat Prod 62(10):1448–1472

    Article  CAS  Google Scholar 

  66. Shigemori H, Kobayashi J (2004) Biological activity and chemistry of taxoids from the Japanese yew, Taxus cuspidata. J Nat Prod 67(2):245–256. doi:10.1021/np030346y

    Article  CAS  Google Scholar 

  67. Fitzgerald DP, Emerson DL, Qian YZ, Anwar T, Liewehr DJ, Steinberg SM, Silberman S, Palmieri D, Steeg PS (2012) TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol Cancer Ther 11(9):1959–1967. doi:10.1158/1535-7163.mct-12-0061

    Article  CAS  Google Scholar 

  68. Jones ME, Barrett BS, Bell C, Brown E, Feng L, Emerson DL (2007) TPI 287, a third-generation taxane derivative, functionally modulates the MDR1 P-glycoprotein drug transport pump and is active in resistant tumor cells. Mol Cancer Ther 6(12):3399S

    Google Scholar 

  69. Jones ME, Bell CB, Schiemann BJ, McChesney JD, Emerson DL (2005) Biological characterization of TPI 287 – a novel third generation taxane analog. Clin Cancer Res 11(24):9089S

    Google Scholar 

  70. Defensor EB, Farmer G, Gan L, Boxer A, Shamloo M (2014) (792.14/G4 2014) Effects of TPI 287, a novel taxoid, on a transgenic mouse model of Alzheimer’s disease. In: Paper presented at the Neuroscience Meeting Planner, Washington, DC: Society for Neuroscience, Online

    Google Scholar 

  71. Pettit GR, Cichacz ZA, Gao F, Boyd MR, Schmidt JM (1994) Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J Chem Soc, Chem Commun 1111–1112

    Google Scholar 

  72. Madiraju C, Edler MC, Hamel E, Raccor BS, Balachandran R, Zhu G, Giuliano KA, Vogt A, Shin Y, Fournier JH, Fukui Y, Bruckner AM, Curran DP, Day BW (2005) Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 44(45):15053–15063

    Article  CAS  Google Scholar 

  73. Brunden KR, Gardner NM, James MJ, Yao Y, Trojanowski JQ, Lee VMY, Paterson I, Ballatore C, Smith AB III (2013) MT-stabilizer, dictyostatin, exhibits prolonged brain retention and activity: potential therapeutic implications. ACS Med Chem Lett 4(9):886–889. doi:10.1021/ml400233e

    Article  CAS  Google Scholar 

  74. Makani V, Zhang B, Han H, Yao Y, Lassalas P, Lou K, Paterson I, Lee VM-Y, Trojanowski JQ, Ballatore C, Smith AB III, Brunden KR (2016) Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Acta Neuropathol Commun 4:106

    Article  CAS  Google Scholar 

  75. West LM, Northcote PT, Battershill CN (2000) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 65(2):445–449

    Article  CAS  Google Scholar 

  76. Das V, Miller JH (2012) Microtubule stabilization by peloruside A and paclitaxel rescues degenerating neurons from okadaic acid-induced tau phosphorylation. Eur J Neurosci 35(11):1705–1717. doi:10.1111/j.1460-9568.2012.08084.x

    Article  Google Scholar 

  77. Gaitanos TN, Buey RM, Diaz JF, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH (2004) Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 64(15):5063–5067

    Article  CAS  Google Scholar 

  78. Huzil JT, Chik JK, Slysz GW, Freedman H, Tuszynski J, Taylor RE, Sackett DL, Schriemer DC (2008) A unique mode of microtubule stabilization induced by Peloruside A. J Mol Biol 378(5):1016–1030

    Article  CAS  Google Scholar 

  79. Haggarty SJ, Mayer TU, Miyamoto DT, Fathi R, King RW, Mitchison TJ, Schreiber SL (2000) Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem Biol 7(4):275–286

    Article  CAS  Google Scholar 

  80. Ayral-Kaloustian S, Zhang N, Beyer C (2009) Cevipabulin (TTI-237): preclinical and clinical results for a novel antimicrotubule agent. Methods Find Exp Clin Pharmacol 31(7):443–447. doi:10.1358/mf.2009.31.7.1410793, 1410793 [pii]

    Article  CAS  Google Scholar 

  81. Beyer CF, Zhang N, Hernandez R, Vitale D, Lucas J, Nguyen T, Discafani C, Ayral-Kaloustian S, Gibbons JJ (2008) TTI-237: a novel microtubule-active compound with in vivo antitumor activity. Cancer Res 68(7):2292–2300. doi:10.1158/0008-5472.CAN-07-1420, 68/7/2292 [pii]

    Google Scholar 

  82. Beyer CF, Zhang N, Hernandez R, Vitale D, Nguyen T, Ayral-Kaloustian S, Gibbons JJ (2009) The microtubule-active antitumor compound TTI-237 has both paclitaxel-like and vincristine-like properties. Cancer Chemother Pharmacol 64(4):681–689. doi:10.1007/s00280-008-0916-2

    Article  CAS  Google Scholar 

  83. Zhang N, Ayral-Kaloustian S, Nguyen T, Afragola J, Hernandez R, Lucas J, Gibbons J, Beyer C (2007) Synthesis and SAR of [1,2,4]triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J Med Chem 50(2):319–327. doi:10.1021/jm060717i

    Article  CAS  Google Scholar 

  84. Kovalevich J, Cornec AS, Yao Y, James M, Crowe A, Lee VM, Trojanowski JQ, Smith AB III, Ballatore C, Brunden KR (2016) Characterization of brain-penetrant pyrimidine-containing molecules with differential microtubule-stabilizing activities developed as potential therapeutic agents for Alzheimer’s disease and related tauopathies. J Pharmacol Exp Ther 357(2):432–450. doi:10.1124/jpet.115.231175

    Article  CAS  Google Scholar 

  85. Lou K, Yao Y, Hoye AT, James MJ, Cornec AS, Hyde E, Gay B, Lee VM, Trojanowski JQ, Smith AB III, Brunden KR, Ballatore C (2014) Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J Med Chem 57(14):6116–6127. doi:10.1021/jm5005623

    Article  CAS  Google Scholar 

  86. Cornec AS, James MJ, Kovalevich J, Trojanowski JQ, Lee VM, Smith AB III, Ballatore C, Brunden KR (2015) Pharmacokinetic, pharmacodynamic and metabolic characterization of a brain retentive microtubule (MT)-stabilizing triazolopyrimidine. Bioorg Med Chem Lett 25(21):4980–4982. doi:10.1016/j.bmcl.2015.03.002

    Article  CAS  Google Scholar 

  87. Zhang N, Ayral-Kaloustian S, Nguyen T, Hernandez R, Beyer C (2007) 2-cyanoaminopyrimidines as a class of antitumor agents that promote tubulin polymerization. Bioorg Med Chem Lett 17(11):3003–3005. doi:10.1016/j.bmcl.2007.03.070, S0960-894X(07)00373-3 [pii]

    Article  CAS  Google Scholar 

  88. Zhang N, Ayral-Kaloustian S, Nguyen T, Hernandez R, Lucas J, Discafani C, Beyer C (2009) Synthesis and SAR of 6-chloro-4-fluoroalkylamino-2-heteroaryl-5-(substituted)phenylpyrimidines as anti-cancer agents. Bioorg Med Chem 17(1):111–118. doi:10.1016/j.bmc.2008.11.016, S0968-0896(08)01081-X [pii]

    Article  CAS  Google Scholar 

  89. Lamberth C, Trah S, Wendeborn S, Dumeunier R, Courbot M, Godwin J, Schneiter P (2012) Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 2: Pyridazines. Bioorg Med Chem 20(9):2803–2810. doi:10.1016/j.bmc.2012.03.035, S0968-0896(12)00225-8 [pii]

    Article  CAS  Google Scholar 

  90. Crowley PJ, Lamberth C, Müller U, Wendeborn S, Nebel K, Williams J, Sageot O-A, Carter N, Mathie T, Kempf H-J, Godwin J, Schneiter P, Dobler MR (2010) Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 1: Pyrido[2,3-b]pyrazines. Pest Manag Sci 66:178–185

    CAS  Google Scholar 

  91. Lamberth C, Dumeunier R, Trah S, Wendeborn S, Godwin J, Schneiter P, Corran A (2013) Synthesis and fungicidal activity of tubulin polymerisation promoters. Part 3: Imidazoles. Bioorg Med Chem 21(1):127–134. doi:10.1016/j.bmc.2012.10.052

    Article  CAS  Google Scholar 

  92. Dumeunier R, Lamberth C, Trah S (2013) Synthesis of tetrasubstituted pyrazoles through different cyclization strategies; isosteres of imidazole fungicides. Synlett 24(9):1150–1154. doi:10.1055/s-0033-1338433

    Article  CAS  Google Scholar 

  93. Taggi AE, Stevenson TM, Bereznak JF, Sharpe PL, Gutteridge S, Forman R, Bisaha JJ, Cordova D, Crompton M, Geist L, Kovacs P, Marshall E, Sheth R, Stavis C, Tseng C-P (2016) Tubulin modulating antifungal and antiproliferative pyrazinone derivatives. Bioorg Med Chem 24(3):435–443. doi:10.1016/j.bmc.2015.08.038

    Article  CAS  Google Scholar 

  94. Klar U, Graf H, Schenk O, Röhr B, Schulz H (1998) New synthetic inhibitors of microtubule depolymerization. Bioorg Med Chem Lett 8(11):1397–1402. doi:10.1016/S0960-894X(98)00226-1

    Article  CAS  Google Scholar 

  95. Shintani Y, Tanaka T, Nozaki Y (1997) GS-164, a small synthetic compound, stimulates tubulin polymerization by a similar mechanism to that of Taxol. Cancer Chemother Pharmacol 40(6):513–520

    Article  CAS  Google Scholar 

  96. Pandit B, Hu Z, Chettiar SN, Zink J, Xiao Z, Etter JP, Bhasin D, Li P-K (2013) Structure–activity relationship studies of thalidomide analogs with a taxol-like mode of action. Bioorg Med Chem Lett 23(24):6902–6904. doi:10.1016/j.bmcl.2013.09.084

    Article  CAS  Google Scholar 

  97. Li PK, Pandit B, Sackett DL, Hu Z, Zink J, Zhi J, Freeman D, Robey RW, Werbovetz K, Lewis A, Li C (2006) A thalidomide analogue with in vitro antiproliferative, antimitotic, and microtubule-stabilizing activities. Mol Cancer Ther 5(2):450–456. doi:10.1158/1535-7163.MCT-05-0254, 5/2/450 [pii]

    Google Scholar 

  98. Marks MG, Shi J, Fry MO, Xiao Z, Trzyna M, Pokala V, Ihnat MA, Li P-K (2002) Effects of putative hydroxylated thalidomide metabolites on blood vessel density in the chorioallantoic membrane (CAM) assay and on tumor and endothelial cell proliferation. Biol Pharm Bull 25(5):597–604. doi:10.1248/bpb.25.597

    Article  CAS  Google Scholar 

  99. Inatsuki S, Noguchi T, Miyachi H, Oda S, Iguchi T, Kizaki M, Hashimoto Y, Kobayashi H (2005) Tubulin-polymerization inhibitors derived from thalidomide. Bioorg Med Chem Lett 15(2):321–325. doi:10.1016/j.bmcl.2004.10.072

    Article  CAS  Google Scholar 

  100. Rashid A, Kuppa A, Kunwar A, Panda D (2015) Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Biochemistry 54(12):2149–2159. doi:10.1021/bi501429j

    Article  CAS  Google Scholar 

  101. Wang Z, Yang D, Mohanakrishnan AK, Fanwick PE, Nampoothiri P, Hamel E, Cushman M (2000) Synthesis of B-ring homologated estradiol analogues that modulate tubulin polymerization and microtubule stability. J Med Chem 43(12):2419–2429. doi:10.1021/jm0001119

    Article  CAS  Google Scholar 

  102. D'Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E (1994) 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci U S A 91(9):3964–3968

    Article  Google Scholar 

  103. Verdier-Pinard P, Wang Z, Mohanakrishnan AK, Cushman M, Hamel E (2000) A steroid derivative with paclitaxel-like effects on tubulin polymerization. Mol Pharmacol 57(3):568–575. doi:10.1124/mol.57.3.568

    CAS  Google Scholar 

  104. Reddy MV, Akula B, Cosenza SC, Lee CM, Mallireddigari MR, Pallela VR, Subbaiah DR, Udofa A, Reddy EP (2012) (Z)-1-aryl-3-arylamino-2-propen-1-ones, highly active stimulators of tubulin polymerization: synthesis, structure-activity relationship (SAR), tubulin polymerization, and cell growth inhibition studies. J Med Chem 55(11):5174–5187. doi:10.1021/jm300176j

    Article  CAS  Google Scholar 

  105. Kamal A, Reddy VS, Shaik AB, Kumar GB, Vishnuvardhan MVPS, Polepalli S, Jain N (2015) Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers. Org Biomol Chem 13(11):3416–3431. doi:10.1039/C4OB02449D

    Article  CAS  Google Scholar 

  106. Yang WS, Shimada K, Delva D, Patel M, Ode E, Skouta R, Stockwell BR (2012) Identification of simple compounds with microtubule-binding activity that inhibit cancer cell growth with high potency. ACS Med Chem Lett 3(1):35–38. doi:10.1021/ml200195s

    Article  CAS  Google Scholar 

  107. Pees K-J, Albert G (1993) Triazolopyrimidine derivatives with fungicidal activity. European Patent 550113

    Google Scholar 

  108. Brunden KR, Trojanowski JQ, Smith AB III, Lee VM, Ballatore C (2013) Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem 22(18):5040–5049. doi:10.1016/j.bmc.2013.12.046

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by NIH grants AG17586, AG029213, and AG044332. We would also like to acknowledge the generous donations made by the Karen Cohen Segal and Christopher S. Segal Alzheimer Drug Discovery Initiative Fund, the Paula C. Schmerler Fund for Alzheimer’s Research, the Barrist Neurodegenerative Disease Research Fund, the Eleanor Margaret Kurtz Endowed Fund, the Mary Rasmus Endowed Fund for Alzheimer’s Research, and Mrs. Gloria J. Miller and Arthur Peck, M.D., the Wood Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Ballatore or Kurt R. Brunden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ballatore, C., Smith, A.B., Lee, V.MY., Trojanowski, J.Q., Brunden, K.R. (2016). Microtubule-Stabilizing Agents for Alzheimer’s and Other Tauopathies. In: Wolfe, M. (eds) Alzheimer’s Disease II. Topics in Medicinal Chemistry, vol 24. Springer, Cham. https://doi.org/10.1007/7355_2016_15

Download citation

Publish with us

Policies and ethics