Characterization of Therapeutic Proteins

  • E. B. StrubleEmail author
  • N. Kirschbaum
  • J. Liu
  • E. Marszal
  • M. Shapiro
Part of the Topics in Medicinal Chemistry book series (TMC, volume 21)


Therapeutic proteins are large biological molecules with complex structures and functions produced through complex manufacturing processes, which include multiple unit operations with finely tuned control parameters. The characterization of therapeutic protein products during development, manufacturing and at product release requires the development and qualification of appropriate analytical methods that measure physicochemical properties and biological activities. Analytical testing during product development forms the basis for identifying the critical quality attributes for the protein therapeutic product, establishing release and stability specifications, and developing an analytical comparability program that ensures safety and efficacy throughout the product life cycle. In this chapter we discuss analytical characterization in the context of the regulation of therapeutic proteins. We focus on polyclonal immune globulins, proteins for hemostasis, monoclonal antibodies, and other therapeutic proteins and emphasize the commonalities and also highlight differences in the application of laws, regulations, and guidance.


Analytical characterization Biologics Therapeutic proteins 


  1. 1.
  2. 2.
    FDA (2009) Guidance for industry: Q8(R2) pharmaceutical development.
  3. 3.
    FDA (2009) Guidance for industry: Q10 pharmaceutical quality system.
  4. 4.
    FDA (2012) Guidance for industry: Q11 development and manufacture of drug substances.
  5. 5.
    FDA (1999) Guidance for industry Q6B specifications: test procedures and acceptance criteria for biotechnological/biological products.
  6. 6.
    FDA (2005) Guidance for industry: Q5E comparability of biotechnological/biological products subject to changes in their manufacturing process.
  7. 7.
    FDA (1996) Guidance for industry: Q1B photostability testing of new drug substances and products.
  8. 8.
    FDA (1997) Guidance for industry: Q1C stability testing for new dosage forms.
  9. 9.
    FDA (2003) Guidance for industry: Q1A(R2) stability testing of new drug substances and products.
  10. 10.
    FDA (2003) Guidance for industry: Q1D bracketing and matrixing designs for stability testing of new drug substances and products.
  11. 11.
    FDA (2004) Guidance for industry: Q1E evaluation of stability data.
  12. 12.
    FDA (1996) Guidance for industry: Q5C quality of biotechnological products: stability testing of biotechnological/biological products.
  13. 13.
    FDA (2005) Guidance for industry: Q2(R1) validation of analytical procedures: text and methodology.
  14. 14.
    FDA (2014) Guidance for industry: immunogenicity assessment for therapeutic protein products.
  15. 15.
    FDA (2002) Guidance for industry: revised preventive measures to reduce the possible risk of transmission of Creutzfeldt-Jakob disease (CJD) and variant Creutzfeldt-Jakob disease (vCJD) by blood and blood products.
  16. 16.
    Farshid M et al (2005) The clearance of viruses and transmissible spongiform encephalopathy agents from biologicals. Curr Opin Biotechnol 16(5):561–567CrossRefGoogle Scholar
  17. 17.
    Sathish JG et al (2013) Challenges and approaches for the development of safer immunomodulatory biologics. Nat Rev Drug Discov 12(4):306–324CrossRefGoogle Scholar
  18. 18.
    FDA (2009) Guidance for industry: assay development for immunogenicity testing of therapeutic proteins. Draft guidance.
  19. 19.
    FDA (2002) Science and the regulation of biological products: from a rich history to a challenging future.
  20. 20.
  21. 21.
    FDA (2010) Guidance for industry: recommendations for blood establishments: training of back-up personnel, assessment of blood donor suitability and reporting certain changes to an approved application.
  22. 22.
    WHO (2011) WHO Expert Committee on specifications for pharmaceutical preparations. World Health Organ Tech Rep Ser 961:148–214Google Scholar
  23. 23.
    FDA (2006) Guidance for industry: implementation of an acceptable full-length and abbreviated donor history questionnaires and accompanying materials for use in screening donors of source plasma.
  24. 24.
    Orange JS et al (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol 117(4 Suppl):S525–S553CrossRefGoogle Scholar
  25. 25.
    Lynch TJ et al (1996) Considerations of pool size in the manufacture of plasma derivatives. Transfusion 36(9):770–775CrossRefGoogle Scholar
  26. 26.
    Zoon KC (1997) Safety implications of fractionated blood products, testimony before the subcommittee on human resources and intergovernmental affairs house committee on government reform and oversightGoogle Scholar
  27. 27.
    Burnouf T (2007) Modern plasma fractionation. Transfus Med Rev 21(2):101–117CrossRefGoogle Scholar
  28. 28.
    Farrugia A, Quinti I (2014) Manufacture of immunoglobulin products for patients with primary antibody deficiencies – the effect of processing conditions on product safety and efficacy. Front Immunol 5:665CrossRefGoogle Scholar
  29. 29.
    Hooper JA (2008) Intravenous immunoglobulins: evolution of commercial IVIG preparations. Immunol Allergy Clin North Am 28(4):765–778, viiiCrossRefGoogle Scholar
  30. 30.
    Radosevich M, Burnouf T (2010) Intravenous immunoglobulin G: trends in production methods, quality control and quality assurance. Vox Sang 98(1):12–28CrossRefGoogle Scholar
  31. 31.
    Cohn EJ, Strong LE (1946) Preparation and properties of serum and plasma proteins; a system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J Am Chem Soc 68:459–475CrossRefGoogle Scholar
  32. 32.
    Kistler P, Nitschmann H (1962) Large scale production of human plasma fractions. Eight years experience with the alcohol fractionation procedure of Nitschmann, Kistler and Lergier. Vox Sang 7:414–424CrossRefGoogle Scholar
  33. 33.
    Oncley JL et al (1949) The separation of the antibodies, isoagglutinins, prothrombin, plasminogen and beta1-lipoprotein into subfractions of human plasma. J Am Chem Soc 71(2):541–550CrossRefGoogle Scholar
  34. 34.
    Etscheid M et al (2011) Identification of kallikrein and FXIa as impurities in therapeutic immunoglobulins: implications for the safety and control of intravenous blood products. Vox Sang 102:40–46CrossRefGoogle Scholar
  35. 35.
    (2010) Octagam withdrawal, l, URGENT: voluntary market withdrawal, September 23, 2010 Octagam [immune globulin intravenous (Human)] 5% liquid preparationGoogle Scholar
  36. 36.
    Spath PJ et al (2015) On the dark side of therapies with immunoglobulin concentrates: the adverse events. Front Immunol 6:11CrossRefGoogle Scholar
  37. 37.
    Mast EE et al (2006) A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) part II: immunization of adults. MMWR Recomm Rep 55((RR-16)):1–33Google Scholar
  38. 38.
    Finlayson JS et al (1980) Immunoglobulins: characteristics and uses of intravenous preparations. DHHS publication; no (FDA) 80–9005 [Bethesda, MD]: U.S. Department of Health and Human Services, Public Health Service, Food and Drug Administration; For sale by the Supt. of Docs., US GPO x, 245.Google Scholar
  39. 39.
    Bellac CL et al (2015) The role of isoagglutinins in intravenous immunoglobulin-related hemolysis. Transfusion 55(Suppl 2):S13–S22CrossRefGoogle Scholar
  40. 40.
    Menis M et al (2013) Hyperimmune globulins and same-day thrombotic adverse events as recorded in a large healthcare database during 2008–2011. Am J Hematol 88(12):1035–1040CrossRefGoogle Scholar
  41. 41.
    Hartung HP (2008) Advances in the understanding of the mechanism of action of IVIg. J Neurol 255(Suppl 3):3–6CrossRefGoogle Scholar
  42. 42.
    Schwab I, Nimmerjahn F (2013) Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 13(3):176–189CrossRefGoogle Scholar
  43. 43.
    Marder VJ et al. (eds) (2013) Hemostasis and thrombosis: basic principles and clinical practice, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  44. 44.
    Rosner F (1994) Hemophilia in classic rabbinic texts. J Hist Med Allied Sci 49(2):240–250CrossRefGoogle Scholar
  45. 45.
    Lannoy N, Hermans C (2010) The ‘royal disease’ – haemophilia A or B? A haematological mystery is finally solved. Haemophilia 16(6):843–847CrossRefGoogle Scholar
  46. 46.
    Chtourou S (2013) Production and clinical profile of human plasma coagulation factor VIII. In: Bertoni J, Goss N, Curling J (eds) Production of plasma proteins for therapeutic use. Wiley, HobokenGoogle Scholar
  47. 47.
    Sandberg H et al (2001) Structural and functional characterization of B-domain deleted recombinant factor VIII. Semin Hematol 38(2 Suppl 4):4–12CrossRefGoogle Scholar
  48. 48.
    Grancha S et al (2013) Factor IX. In Bertoni J, Goss N, Curling J (eds) Production of plasma proteins for therapeutic use. Wiley, HobokenGoogle Scholar
  49. 49.
    Kumar SR (2015) Industrial production of clotting factors: challenges of expression, and choice of host cells. Biotechnol J 10(7):995–1004CrossRefGoogle Scholar
  50. 50.
    Gray E et al (1995) Measurement of activated factor IX in factor IX concentrates: correlation with in vivo thrombogenicity. Thromb Haemost 73(4):675–679Google Scholar
  51. 51.
    Aronson DL, Finlayson JS (1980) Historical and future therapeutic plasma derivatives (epilogue). Semin Thromb Hemost 6(2):18CrossRefGoogle Scholar
  52. 52.
    Raut S, Hubbard AR (2010) International reference standards in coagulation. Biologicals 38(4):423–429CrossRefGoogle Scholar
  53. 53.
    Hubbard AR (2015) Potency labeling of novel factor VIII and factor IX concentrates: past experience and current strategy. Semin Thromb Hemost 41(8):849–854CrossRefGoogle Scholar
  54. 54.
    Hubbard AR et al (2013) Recommendations on the potency labelling of factor VIII and factor IX concentrates. J Thromb Haemost 11(5):988–989CrossRefGoogle Scholar
  55. 55.
    Wilmot HV, Hogwood J, Gray E (2014) Recombinant factor IX: discrepancies between one-stage clotting and chromogenic assays. Haemophilia 20(6):891–897CrossRefGoogle Scholar
  56. 56.
    Panteleev MA et al (2004) Kinetics of factor X activation by the membrane-bound complex of factor IXa and factor VIIIa. Biochem J 381(Pt 3):779–794CrossRefGoogle Scholar
  57. 57.
    Kaufman RJ (1992) Expression and structure-function properties of recombinant factor VIII. Transfus Med Rev 6(4):235–246CrossRefGoogle Scholar
  58. 58.
    Brummel-Ziedins KE, Wolberg AS (2014) Global assays of hemostasis. Curr Opin Hematol 21(5):395–403CrossRefGoogle Scholar
  59. 59.
    Osooli M, Berntorp E (2015) Inhibitors in haemophilia: what have we learned from registries? A systematic review. J Intern Med 277(1):1–15CrossRefGoogle Scholar
  60. 60.
    Rosendaal FR et al (1993) A sudden increase in factor VIII inhibitor development in multitransfused hemophilia a patients in The Netherlands. Dutch hemophilia study group. Blood 81(8):2180–2186Google Scholar
  61. 61.
    Mannucci PM (2015) Half-life extension technologies for haemostatic agents. Thromb Haemost 113(1):165–176CrossRefGoogle Scholar
  62. 62.
    Jaffers GJ et al (1986) Monoclonal antibody therapy. Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation 41(5):572–578CrossRefGoogle Scholar
  63. 63.
    Glennie MJ, Johnson PW (2000) Clinical trials of antibody therapy. Immunol Today 21(8):403–410CrossRefGoogle Scholar
  64. 64.
    Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4(4):419–425CrossRefGoogle Scholar
  65. 65.
    Chu SY et al (2008) Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcgammaRIIb with Fc-engineered antibodies. Mol Immunol 45(15):3926–3933CrossRefGoogle Scholar
  66. 66.
    Desjarlais JR, Lazar GA (2011) Modulation of antibody effector function. Exp Cell Res 317(9):1278–1285CrossRefGoogle Scholar
  67. 67.
    Lazar GA et al (2007) A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol 44(8):1986–1998CrossRefGoogle Scholar
  68. 68.
    Richards JO et al (2008) Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 7(8):2517–2527CrossRefGoogle Scholar
  69. 69.
    Dall'Acqua WF et al (2006) Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J Immunol 177(2):1129–1138CrossRefGoogle Scholar
  70. 70.
    Mimoto F et al (2013) Novel asymmetrically engineered antibody Fc variant with superior FcgammaR binding affinity and specificity compared with afucosylated Fc variant. MAbs 5(2):229–236CrossRefGoogle Scholar
  71. 71.
    Kubota T et al (2009) Engineered therapeutic antibodies with improved effector functions. Cancer Sci 100(9):1566–1572CrossRefGoogle Scholar
  72. 72.
    Vafa O et al (2014) An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods 65(1):114–126CrossRefGoogle Scholar
  73. 73.
    Igawa T et al (2010) Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 28(11):1203–1207CrossRefGoogle Scholar
  74. 74.
    Li B et al (2014) Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge. MAbs 6(5):1255–1264CrossRefGoogle Scholar
  75. 75.
    Monnet C et al (2015) Selection of IgG variants with increased FcRn binding using random and directed mutagenesis: impact on effector functions. Front Immunol 6:39CrossRefGoogle Scholar
  76. 76.
    Yeung YA et al (2009) Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 182(12):7663–7671CrossRefGoogle Scholar
  77. 77.
    Natsume A et al (2008) Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res 68(10):3863–3872CrossRefGoogle Scholar
  78. 78.
    Liu H et al (2014) In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs 6(5):1145–1154CrossRefGoogle Scholar
  79. 79.
    Khawli LA et al (2010) Charge variants in IgG1: isolation, characterization, in vitro binding properties and pharmacokinetics in rats. MAbs 2(6):613–624CrossRefGoogle Scholar
  80. 80.
    Vlasak J, Ionescu R (2008) Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol 9(6):468–481CrossRefGoogle Scholar
  81. 81.
    Dick LW Jr et al (2007) Determination of the origin of the N-terminal pyro-glutamate variation in monoclonal antibodies using model peptides. Biotechnol Bioeng 97(3):544–553CrossRefGoogle Scholar
  82. 82.
    Yin S et al (2013) Characterization of therapeutic monoclonal antibodies reveals differences between in vitro and in vivo time-course studies. Pharm Res 30(1):167–178CrossRefGoogle Scholar
  83. 83.
    Liu YD et al (2011) N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. J Biol Chem 286(13):11211–11217CrossRefGoogle Scholar
  84. 84.
    Harris RJ (2005) Heterogeneity of recombinant antibodies: linking structure to function. Dev Biol (Basel) 122:117–127Google Scholar
  85. 85.
    Cai B, Pan H, Flynn GC (2011) C-terminal lysine processing of human immunoglobulin G2 heavy chain in vivo. Biotechnol Bioeng 108(2):404–412CrossRefGoogle Scholar
  86. 86.
    Johnson KA et al (2007) Cation exchange-HPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain. Anal Biochem 360(1):75–83CrossRefGoogle Scholar
  87. 87.
    Tsubaki M et al (2013) C-terminal modification of monoclonal antibody drugs: amidated species as a general product-related substance. Int J Biol Macromol 52:139–147CrossRefGoogle Scholar
  88. 88.
    Kaschak T et al (2011) Characterization of the basic charge variants of a human IgG1: effect of copper concentration in cell culture media. MAbs 3(6):577–583CrossRefGoogle Scholar
  89. 89.
    Harris RJ et al (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 752(2):233–245CrossRefGoogle Scholar
  90. 90.
    Liu YD, van Enk JZ, Flynn GC (2009) Human antibody Fc deamidation in vivo. Biologicals 37(5):313–322CrossRefGoogle Scholar
  91. 91.
    Kroon DJ, Baldwin-Ferro A, Lalan P (1992) Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm Res 9(11):1386–1393CrossRefGoogle Scholar
  92. 92.
    Wakankar AA, Borchardt RT (2006) Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci 95(11):2321–2336CrossRefGoogle Scholar
  93. 93.
    Huang L et al (2005) In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77(5):1432–1439CrossRefGoogle Scholar
  94. 94.
    Vlasak J et al (2009) Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem 392(2):145–154CrossRefGoogle Scholar
  95. 95.
    Haberger M et al (2014) Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: susceptibility vs. functionality of critical quality attributes. MAbs 6(2):327–339CrossRefGoogle Scholar
  96. 96.
    Gaza-Bulseco G et al (2008) Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J Chromatogr B Analyt Technol Biomed Life Sci 870(1):55–62CrossRefGoogle Scholar
  97. 97.
    Bertolotti-Ciarlet A et al (2009) Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors. Mol Immunol 46(8–9):1878–1882CrossRefGoogle Scholar
  98. 98.
    Wang W et al (2011) Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol Immunol 48(6–7):860–866CrossRefGoogle Scholar
  99. 99.
    Stracke J et al (2014) A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. MAbs 6(5):1229–1242CrossRefGoogle Scholar
  100. 100.
    Wei Z et al (2007) Identification of a single tryptophan residue as critical for binding activity in a humanized monoclonal antibody against respiratory syncytial virus. Anal Chem 79(7):2797–2805CrossRefGoogle Scholar
  101. 101.
    Goetze AM et al (2012) Rates and impact of human antibody glycation in vivo. Glycobiology 22(2):221–234CrossRefGoogle Scholar
  102. 102.
    Quan C et al (2008) A study in glycation of a therapeutic recombinant humanized monoclonal antibody: where it is, how it got there, and how it affects charge-based behavior. Anal Biochem 373(2):179–191CrossRefGoogle Scholar
  103. 103.
    Miller AK et al (2011) Characterization of site-specific glycation during process development of a human therapeutic monoclonal antibody. J Pharm Sci 100(7):2543–2550CrossRefGoogle Scholar
  104. 104.
    Raju TS et al (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10(5):477–486CrossRefGoogle Scholar
  105. 105.
    Gomord V et al (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587CrossRefGoogle Scholar
  106. 106.
    Jefferis R (2012) Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys 526(2):159–166CrossRefGoogle Scholar
  107. 107.
    Boyd PN, Lines AC, Patel AK (1995) The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32(17–18):1311–1318CrossRefGoogle Scholar
  108. 108.
    Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21(6):1644–1652CrossRefGoogle Scholar
  109. 109.
    Shields RL et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740CrossRefGoogle Scholar
  110. 110.
    Shinkawa T et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473CrossRefGoogle Scholar
  111. 111.
    Ferrara C et al (2011) Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 108(31):12669–12674CrossRefGoogle Scholar
  112. 112.
    Shibata-Koyama M et al (2009) Nonfucosylated rituximab potentiates human neutrophil phagocytosis through its high binding for FcgammaRIIIb and MHC class II expression on the phagocytotic neutrophils. Exp Hematol 37(3):309–321CrossRefGoogle Scholar
  113. 113.
    Shatz W et al (2013) Knobs-into-holes antibody production in mammalian cell lines reveals that asymmetric afucosylation is sufficient for full antibody-dependent cellular cytotoxicity. MAbs 5(6):872–881CrossRefGoogle Scholar
  114. 114.
    Mori K et al (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88(7):901–908CrossRefGoogle Scholar
  115. 115.
    Yamane-Ohnuki N et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622CrossRefGoogle Scholar
  116. 116.
    Malphettes L et al (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783CrossRefGoogle Scholar
  117. 117.
    Ferrara C et al (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861CrossRefGoogle Scholar
  118. 118.
    Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15(1):26–32CrossRefGoogle Scholar
  119. 119.
    Gala FA, Morrison SL (2004) V region carbohydrate and antibody expression. J Immunol 172(9):5489–5494CrossRefGoogle Scholar
  120. 120.
    Dunn-Walters D, Boursier L, Spencer J (2000) Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol Immunol 37(3–4):107–113CrossRefGoogle Scholar
  121. 121.
    Zhu D et al (2002) Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99(7):2562–2568CrossRefGoogle Scholar
  122. 122.
    Xu PC et al (2012) Influence of variable domain glycosylation on anti-neutrophil cytoplasmic autoantibodies and anti-glomerular basement membrane autoantibodies. BMC Immunol 13:10CrossRefGoogle Scholar
  123. 123.
    Chung CH et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117CrossRefGoogle Scholar
  124. 124.
    Brezski RJ, Jordan RE (2010) Cleavage of IgGs by proteases associated with invasive diseases: an evasion tactic against host immunity? MAbs 2(3):212–220CrossRefGoogle Scholar
  125. 125.
    Gao SX et al (2011) Fragmentation of a highly purified monoclonal antibody attributed to residual CHO cell protease activity. Biotechnol Bioeng 108(4):977–982CrossRefGoogle Scholar
  126. 126.
    Cordoba AJ et al (2005) Non-enzymatic hinge region fragmentation of antibodies in solution. J Chromatogr B Analyt Technol Biomed Life Sci 818(2):115–121CrossRefGoogle Scholar
  127. 127.
    Vlasak J, Ionescu R (2011) Fragmentation of monoclonal antibodies. MAbs 3(3):253–263CrossRefGoogle Scholar
  128. 128.
    Gaza-Bulseco G, Liu H (2008) Fragmentation of a recombinant monoclonal antibody at various pH. Pharm Res 25(8):1881–1890CrossRefGoogle Scholar
  129. 129.
    Kamerzell TJ et al (2011) The relative rate of immunoglobulin gamma 1 fragmentation. J Pharm Sci 100(4):1341–1349CrossRefGoogle Scholar
  130. 130.
    Smith MA et al (1996) Specific cleavage of immunoglobulin G by copper ions. Int J Pept Protein Res 48(1):48–55CrossRefGoogle Scholar
  131. 131.
    Ouellette D et al (2009) Elevated cleavage of human immunoglobulin gamma molecules containing a lambda light chain mediated by iron and histidine. Anal Biochem 389(2):107–117CrossRefGoogle Scholar
  132. 132.
    Vazquez-Rey M, Lang DA (2011) Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng 108(7):1494–1508CrossRefGoogle Scholar
  133. 133.
    Arvinte T et al (2013) Aggregation of biopharmaceuticals in human plasma and human serum: implications for drug research and development. MAbs 5(3):491–500CrossRefGoogle Scholar
  134. 134.
    Chennamsetty N et al (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106(29):11937–11942CrossRefGoogle Scholar
  135. 135.
    Clark RH et al (2014) Remediating agitation-induced antibody aggregation by eradicating exposed hydrophobic motifs. MAbs 6(6):1540–1550CrossRefGoogle Scholar
  136. 136.
    Joubert MK et al (2011) Classification and characterization of therapeutic antibody aggregates. J Biol Chem 286(28):25118–25133CrossRefGoogle Scholar
  137. 137.
    Vermeer AW, Norde W (2000) The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 78(1):394–404CrossRefGoogle Scholar
  138. 138.
    Nicoud L et al (2014) Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies. J Phys Chem B 118(36):10595–10606CrossRefGoogle Scholar
  139. 139.
    Remmele RL Jr et al (2006) Active dimer of epratuzumab provides insight into the complex nature of an antibody aggregate. J Pharm Sci 95(1):126–145CrossRefGoogle Scholar
  140. 140.
    Paul R et al (2012) Structure and function of purified monoclonal antibody dimers induced by different stress conditions. Pharm Res 29(8):2047–2059CrossRefGoogle Scholar
  141. 141.
    Luo Y et al (2009) Dimers and multimers of monoclonal IgG1 exhibit higher in vitro binding affinities to Fcgamma receptors. MAbs 1(5):491–504CrossRefGoogle Scholar
  142. 142.
    da Silva AJ et al (2002) Alefacept, an immunomodulatory recombinant LFA-3/IgG1 fusion protein, induces CD16 signaling and CD2/CD16-dependent apoptosis of CD2(+) cells. J Immunol 168(9):4462–4471CrossRefGoogle Scholar
  143. 143.
    Bielekova B (2013) Daclizumab therapy for multiple sclerosis. Neurotherapeutics 10(1):55–67CrossRefGoogle Scholar
  144. 144.
    Tracey D et al (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117(2):244–279CrossRefGoogle Scholar
  145. 145.
    Jiang XR et al (2011) Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discov 10(2):101–111CrossRefGoogle Scholar
  146. 146.
    Weiskopf K, Weissman IL (2015) Macrophages are critical effectors of antibody therapies for cancer. MAbs 7(2):303–310CrossRefGoogle Scholar
  147. 147.
    Braster R, O'Toole T, van Egmond M (2014) Myeloid cells as effector cells for monoclonal antibody therapy of cancer. Methods 65(1):28–37CrossRefGoogle Scholar
  148. 148.
    Overdijk MB et al (2015) Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7(2):311–321CrossRefGoogle Scholar
  149. 149.
    Schnueriger A et al (2011) Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies. Mol Immunol 48(12–13):1512–1517CrossRefGoogle Scholar
  150. 150.
    Parekh BS et al (2012) Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay. MAbs 4(3):310–318CrossRefGoogle Scholar
  151. 151.
    Chung S et al (2014) Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies – impact of effector cells. J Immunol Methods 407:63–75CrossRefGoogle Scholar
  152. 152.
    Lim SH et al (2011) Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 118(9):2530–2540CrossRefGoogle Scholar
  153. 153.
    Beers SA et al (2008) Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 112(10):4170–4177CrossRefGoogle Scholar
  154. 154.
    Beers SA et al (2010) Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 115(25):5191–5201CrossRefGoogle Scholar
  155. 155.
    Griggs J, Zinkewich-Peotti K (2009) The state of the art: immune-mediated mechanisms of monoclonal antibodies in cancer therapy. Br J Cancer 101(11):1807–1812CrossRefGoogle Scholar
  156. 156.
    Smith KG, Clatworthy MR (2010) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10(5):328–343CrossRefGoogle Scholar
  157. 157.
    Derer S et al (2012) Impact of epidermal growth factor receptor (EGFR) cell surface expression levels on effector mechanisms of EGFR antibodies. J Immunol 189(11):5230–5239CrossRefGoogle Scholar
  158. 158.
    Taylor RJ et al (2009) FcgammaRIIIa polymorphisms and cetuximab induced cytotoxicity in squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 58(7):997–1006CrossRefGoogle Scholar
  159. 159.
    Taylor RJ et al (2015) Ex vivo antibody-dependent cellular cytotoxicity inducibility predicts efficacy of cetuximab. Cancer Immunol Res 3(5):567–574CrossRefGoogle Scholar
  160. 160.
    Tiroch K et al (2002) Intracellular domains of target antigens influence their capacity to trigger antibody-dependent cell-mediated cytotoxicity. J Immunol 168(7):3275–3282CrossRefGoogle Scholar
  161. 161.
    Wypych J et al (2008) Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 283(23):16194–16205CrossRefGoogle Scholar
  162. 162.
    Martinez T et al (2008) Disulfide connectivity of human immunoglobulin G2 structural isoforms. Biochemistry 47(28):7496–7508CrossRefGoogle Scholar
  163. 163.
    Dillon TM et al (2008) Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem 283(23):16206–16215CrossRefGoogle Scholar
  164. 164.
    Allen MJ et al (2009) Interchain disulfide bonding in human IgG2 antibodies probed by site-directed mutagenesis. Biochemistry 48(17):3755–3766CrossRefGoogle Scholar
  165. 165.
    White AL et al (2015) Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell 27(1):138–148CrossRefGoogle Scholar
  166. 166.
    Yoo EM et al (2003) Human IgG2 can form covalent dimers. J Immunol 170(6):3134–3138CrossRefGoogle Scholar
  167. 167.
    Lacher NA et al (2010) Development of a capillary gel electrophoresis method for monitoring disulfide isomer heterogeneity in IgG2 antibodies. Electrophoresis 31(3):448–458CrossRefGoogle Scholar
  168. 168.
    He Y et al (2010) Analysis of identity, charge variants, and disulfide isomers of monoclonal antibodies with capillary zone electrophoresis in an uncoated capillary column. Anal Chem 82(8):3222–3230CrossRefGoogle Scholar
  169. 169.
    Correia IR (2010) Stability of IgG isotypes in serum. MAbs 2(3):221–232CrossRefGoogle Scholar
  170. 170.
    van der Neut Kolfschoten M et al (2007) Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317(5844):1554–1557CrossRefGoogle Scholar
  171. 171.
    Davies AM et al (2013) Crystal structure of the human IgG4 C(H)3 dimer reveals the role of Arg409 in the mechanism of Fab-arm exchange. Mol Immunol 54(1):1–7CrossRefGoogle Scholar
  172. 172.
    Lewis KB et al (2009) Comparison of the ability of wild type and stabilized human IgG(4) to undergo Fab arm exchange with endogenous IgG(4)in vitro and in vivo. Mol Immunol 46(16):3488–3494CrossRefGoogle Scholar
  173. 173.
    Stubenrauch K et al (2010) Impact of molecular processing in the hinge region of therapeutic IgG4 antibodies on disposition profiles in cynomolgus monkeys. Drug Metab Dispos 38(1):84–91CrossRefGoogle Scholar
  174. 174.
    Wilkinson IC et al (2013) Monovalent IgG4 molecules: immunoglobulin Fc mutations that result in a monomeric structure. MAbs 5(3):406–417CrossRefGoogle Scholar
  175. 175.
    Deng L et al (2004) Detection and quantification of the human IgG4 half-molecule, HL, from unpurified cell-culture supernatants. Biotechnol Appl Biochem 40(Pt 3):261–269Google Scholar
  176. 176.
    Forrer K, Hammer S, Helk B (2004) Chip-based gel electrophoresis method for the quantification of half-antibody species in IgG4 and their by- and degradation products. Anal Biochem 334(1):81–88CrossRefGoogle Scholar
  177. 177.
    Zhu ZC et al (2013) Investigation of monoclonal antibody fragmentation artifacts in non-reducing SDS-PAGE. J Pharm Biomed Anal 83:89–95CrossRefGoogle Scholar
  178. 178.
    Kuenzel EA, Krebs EG (1985) A synthetic peptide substrate specific for casein kinase II. Proc Natl Acad Sci U S A 82(3):737–741CrossRefGoogle Scholar
  179. 179.
    Friedhoff P et al (1996) Kinetic analysis of the cleavage of natural and synthetic substrates by the Serratia nuclease. Eur J Biochem 241(2):572–580CrossRefGoogle Scholar
  180. 180.
    Takeuchi M et al (1989) Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc Natl Acad Sci U S A 86(20):7819–7822CrossRefGoogle Scholar
  181. 181.
    Egrie JC et al (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31(4):290–299CrossRefGoogle Scholar
  182. 182.
    Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407(14):3883–3897CrossRefGoogle Scholar
  183. 183.
    Olaru A et al (2015) Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 45(2):97–105CrossRefGoogle Scholar
  184. 184.
    Bork K, Horstkorte R, Weidemann W (2009) Increasing the sialylation of therapeutic glycoproteins: the potential of the sialic acid biosynthetic pathway. J Pharm Sci 98(10):3499–3508CrossRefGoogle Scholar
  185. 185.
    Elliott S et al (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32(12):1146–1155CrossRefGoogle Scholar
  186. 186.
    Jongen SP et al (2007) N-glycans of recombinant human acid alpha-glucosidase expressed in the milk of transgenic rabbits. Glycobiology 17(6):600–619CrossRefGoogle Scholar
  187. 187.
    Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949CrossRefGoogle Scholar
  188. 188.
    Fishburn CS (2008) The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci 97(10):4167–4183CrossRefGoogle Scholar
  189. 189.
    Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22(5):315–329CrossRefGoogle Scholar
  190. 190.
    Fares F et al (2010) Designing a long-acting human growth hormone (hGH) by fusing the carboxyl-terminal peptide of human chorionic gonadotropin beta-subunit to the coding sequence of hGH. Endocrinology 151(9):4410–4417CrossRefGoogle Scholar
  191. 191.
    Kenanova VE et al (2010) Tuning the serum persistence of human serum albumin domain III:diabody fusion proteins. Protein Eng Des Sel 23(10):789–798CrossRefGoogle Scholar
  192. 192.
    Doknic M, Stojanovic M, Popovic V (2014) Novel long-acting GH preparations. Pediatr Endocrinol Rev 12(2):206–212Google Scholar
  193. 193.
    Venetz D et al (2015) Glycosylation profiles determine extravasation and disease-targeting properties of armed antibodies. Proc Natl Acad Sci U S A 112(7):2000–2005CrossRefGoogle Scholar
  194. 194.
    West MB et al (2010) Analysis of site-specific glycosylation of renal and hepatic gamma-glutamyl transpeptidase from normal human tissue. J Biol Chem 285(38):29511–29524CrossRefGoogle Scholar
  195. 195.
    Xu Y, Bailey UM, Schulz BL (2015) Automated measurement of site-specific N-glycosylation occupancy with SWATH-MS. Proteomics 15(13):2177–2186CrossRefGoogle Scholar
  196. 196.
    Brady RO (2006) Enzyme replacement for lysosomal diseases. Annu Rev Med 57:283–296CrossRefGoogle Scholar
  197. 197.
    Bones J et al (2011) Identification of N-glycans displaying mannose-6-phosphate and their site of attachment on therapeutic enzymes for lysosomal storage disorder treatment. Anal Chem 83(13):5344–5352CrossRefGoogle Scholar
  198. 198.
    Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4(3):202–212CrossRefGoogle Scholar
  199. 199.
    Parenti G (2009) Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 1(5):268–279CrossRefGoogle Scholar
  200. 200.
    Zhu Y et al (2009) Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther 17(6):954–963CrossRefGoogle Scholar
  201. 201.
    Winzor DJ (2004) Determination of the net charge (valence) of a protein: a fundamental but elusive parameter. Anal Biochem 325(1):1–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • E. B. Struble
    • 1
    Email author
  • N. Kirschbaum
    • 1
  • J. Liu
    • 2
  • E. Marszal
    • 1
  • M. Shapiro
    • 3
  1. 1.Division of Hematology Research and Review, Office of Blood Research and Review, Center for Biologics Evaluation and ResearchFood and Drug AdministrationSilver SpringUSA
  2. 2.Division of Biotechnology Review and Research II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and ResearchFood and Drug AdministrationSilver SpringUSA
  3. 3.Division of Biotechnology Review and Research I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and ResearchFood and Drug AdministrationSilver SpringUSA

Personalised recommendations