Production of Protein Therapeutics in the Quality by Design (QbD) Paradigm

  • Anurag S. RathoreEmail author
  • Sumit K. Singh
Part of the Topics in Medicinal Chemistry book series (TMC, volume 21)


Biotech products and processes are complex. Our understanding of how the process affects product quality is incomplete and that of how the various quality attributes of the product affect the clinical safety and efficacy is even more limited. Quality by Design (QbD)-based process and product development aims at improving this understanding. In this chapter, we briefly introduce the concept of QbD in the context of biotherapeutics. Next we discuss the various unit operations that together make a typical process. Recent advancements in the manufacturing of biotech therapeutics will also be presented. The importance of identifying the underlying relationship between the quality attributes of the product and clinical safety and efficacy for ultimate realization of QbD goals is discussed in the last section of the chapter. Future perspective of the increasingly important role that QbD is likely to play for the manufacturing of drugs for an increasingly global market is presented as the concluding note of this chapter.


Biosimilars Downstream processing Process analytical technology Quality by design Safety and efficacy Upstream processing 


  1. 1.
    Weinacker D et al (2013) Applications of recombinant Pichia pastoris in the healthcare industry. Braz J Microbiol 44(4):1043–1048CrossRefGoogle Scholar
  2. 2.
    Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000CrossRefGoogle Scholar
  3. 3.
    Rathore AS (2009) Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 27(9):546–553CrossRefGoogle Scholar
  4. 4.
    Rathore AS, Winkle H (2009) Quality by design for biopharmaceuticals. Nat Biotechnol 27(1):26–34CrossRefGoogle Scholar
  5. 5.
    Tsuruta LR, Lopes dos Santos M, Moro AM (2015) Biosimilars advancements: moving on to the future. Biotechnol Prog 31(5):1139–1149CrossRefGoogle Scholar
  6. 6.
    Schellekens H (2004) How similar do ‘biosimilars’ need to be? Nat Biotechnol 22(11):1357–1359CrossRefGoogle Scholar
  7. 7.
    CHMP (2005) Guideline on similar biological medicinal products, European Medicines Agency, 437, LondonGoogle Scholar
  8. 8.
    Rathore AS (2009) Follow-on protein products: scientific issues, developments and challenges. Trends Biotechnol 27(12):698–705CrossRefGoogle Scholar
  9. 9.
    Cai X, Wake A, Gouty D (2013) Analytical and bioanalytical assay challenges to support comparability studies for biosimilar drug development. Bioanalysis 5(5):517–520CrossRefGoogle Scholar
  10. 10.
    Beck A et al (2013) Analytical characterization of biosimilar antibodies and Fc-fusion proteins. TrAC Trends Anal Chem 48:81–95CrossRefGoogle Scholar
  11. 11.
    Chelius D et al (2010) Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2(3):309–319CrossRefGoogle Scholar
  12. 12.
    Rosati S et al (2013) Tackling the increasing complexity of therapeutic monoclonal antibodies with mass spectrometry. TrAC Trends Anal Chem 48:72–80CrossRefGoogle Scholar
  13. 13.
    Singleton CA (2014) MS in the analysis of biosimilars. Bioanalysis 6(12):1627–1637CrossRefGoogle Scholar
  14. 14.
    Xie H et al (2010) Rapid comparison of a candidate biosimilar to an innovator monoclonal antibody with advanced liquid chromatography and mass spectrometry technologies. MAbs 2(4):379–394CrossRefGoogle Scholar
  15. 15.
    Rathore AS, Mhatre R (2008) In: Rathore AS, Mhatre R (eds) Quality by design for biopharmaceuticals: principles and case studies. Wiley, HobokenGoogle Scholar
  16. 16.
    Rathore AS et al (2015) Continuous processing for production of biopharmaceuticals. Prep Biochem Biotechnol 45(8):836–849CrossRefGoogle Scholar
  17. 17.
    Rathore AS et al (2015) Process analytical technologies in biopharmaceutical process development. J Chem Technol Biotechnol 90(2):213–214CrossRefGoogle Scholar
  18. 18.
    Hemmerich J et al (2014) Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase. Microb Cell Fact 13(1):36CrossRefGoogle Scholar
  19. 19.
    Kumar V, Rathore AS (2014) Two-stage chromatographic separation of aggregates for monoclonal antibody therapeutics. J Chromatogr A 1368:155–162CrossRefGoogle Scholar
  20. 20.
    Legmann R et al (2009) A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnol Bioeng 104(6):1107–1120CrossRefGoogle Scholar
  21. 21.
    Persad A et al (2013) Comparative performance of decoupled input–output linearizing controller and linear interpolation PID controller: enhancing biomass and ethanol production in Saccharomyces cerevisiae. Appl Biochem Biotechnol 169(4):1219–1240CrossRefGoogle Scholar
  22. 22.
    Rathore AS et al (2009) Case study and application of process analytical technology (PAT) towards bioprocessing: use of tryptophan fluorescence as at-line tool for making pooling decisions for process chromatography. Biotechnol Prog 25(5):1433–1439CrossRefGoogle Scholar
  23. 23.
    Roychoudhury P et al (2007) Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta 590(1):110–117CrossRefGoogle Scholar
  24. 24.
    ICH Guidelines Q 11, 20AD. Pharmaceutical development Q8. ICH Harmonised Tripartite Guideline, 8(August), pp 1–28Google Scholar
  25. 25.
    Rathore AS (2014) QbD/PAT for bioprocessing: moving from theory to implementation. Curr Opin Chem Eng 6:1–8CrossRefGoogle Scholar
  26. 26.
    ICH Guideline (2012) Development and manufacture of drug substances (chemical entities and biotechnological/biological entities) Q11, European medicines agency, May 2011Google Scholar
  27. 27.
    ICH Guideline (2008) Pharmaceutical quality system Q10, current step, 4Google Scholar
  28. 28.
    Rathore AS, Bhambure R, Ghare V (2010) Process analytical technology (PAT) for biopharmaceutical products. Anal Bioanal Chem 398(1):137–154CrossRefGoogle Scholar
  29. 29.
    Read EK, Park JT et al (2010) Process analytical technology (PAT) for biopharmaceutical products: part I. Concepts and applications. Biotechnol Bioeng 105(2):276–284CrossRefGoogle Scholar
  30. 30.
    Read EK, Shah RB et al (2010) Process analytical technology (PAT) for biopharmaceutical products: part II. Concepts and applications. Biotechnol Bioeng 105(2):285–295CrossRefGoogle Scholar
  31. 31.
    Gronemeyer P, Ditz R, Strube J (2014) Trends in upstream and downstream process development for antibody manufacturing. Bioengineering 1(4):188–212CrossRefGoogle Scholar
  32. 32.
    Haigney S (2013) QbD and PAT in upstream and downstream processing. BioPharm Int 26(7):28–37Google Scholar
  33. 33.
    ICH Expert Working Group (2005) Quality risk management Q9. ICH Harmonised Tripartite Guideline (November), pp 1–23Google Scholar
  34. 34.
    Gomes J, Chopda VR, Rathore AS (2015) Integrating systems analysis and control for implementing process analytical technology in bioprocess development. J Chem Technol Biotechnol 90(4):583–589CrossRefGoogle Scholar
  35. 35.
    Raju TS (2003) Glycosylation variations with expression systems and their impact on biological activity of therapeutic immunoglobulins. Bioprocess Int 1:44–53Google Scholar
  36. 36.
    Biechele P et al (2015) Sensor systems for bioprocess monitoring. Eng Life Sci 15(5):469–488CrossRefGoogle Scholar
  37. 37.
    Jain E, Kumar A (2008) Upstream processes in antibody production: evaluation of critical parameters. Biotechnol Adv 26(1):46–72CrossRefGoogle Scholar
  38. 38.
    Rouiller Y et al (2012) Application of quality by design to the characterization of the cell culture process of an Fc-fusion protein. Eur J Pharm Biopharm 81(2):426–437CrossRefGoogle Scholar
  39. 39.
    Goldfeld M et al (2014) Advanced near-infrared monitor for stable real-time measurement and control of Pichia pastoris bioprocesses. Biotechnol Prog 30(3):749–759CrossRefGoogle Scholar
  40. 40.
    Sandor M et al (2013) NIR-spectroscopy for bioprocess monitoring & control. BMC Proc 7(Suppl 6):P29CrossRefGoogle Scholar
  41. 41.
    Roychoudhury P, Harvey LM, McNeil B (2006) The potential of mid infrared spectroscopy (MIRS) for real time bioprocess monitoring. Anal Chim Acta 571(2):159–166CrossRefGoogle Scholar
  42. 42.
    Schmidt-Hager J et al (2014) Noninvasive online biomass detector system for cultivation in shake flasks. Eng Life Sci 14(5):467–476CrossRefGoogle Scholar
  43. 43.
    Zhao L et al (2015) Advances in process monitoring tools for cell culture bioprocesses. Eng Life Sci 15(5):459–468CrossRefGoogle Scholar
  44. 44.
    Craven S, Whelan J (2015) Process analytical technology and quality-by-design for animal cell culture. In: Al-Rubeai M (ed) Animal cell culture, Cell engineering. Springer, Switzerland, pp 647–688Google Scholar
  45. 45.
    Schwamb S, Puskeiler R, Wiedemann P (2015) Monitoring of cell culture. In: Al-Rubeai M (ed) Animal cell culture, Cell engineering. Springer, Switzerland, pp 185–221Google Scholar
  46. 46.
    Kuystermans D, Mohd A, Al-Rubeai M (2012) Automated flow cytometry for monitoring CHO cell cultures. Methods 56(3):358–365CrossRefGoogle Scholar
  47. 47.
    Bradley SA et al (2010) Fermentanomics: monitoring mammalian cell cultures with NMR spectroscopy. J Am Chem Soc 132(28):9531–9533CrossRefGoogle Scholar
  48. 48.
    Read EK et al (2013) Fermentanomics informed amino acid supplementation of an antibody producing mammalian cell culture. Biotechnol Prog 29(3):745–753CrossRefGoogle Scholar
  49. 49.
    Clavaud M et al (2013) Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables. Talanta 111:28–38CrossRefGoogle Scholar
  50. 50.
    Lourenço ND et al (2012) Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem 404(4):1211–1237CrossRefGoogle Scholar
  51. 51.
    Bhushan N, Hadpe S, Rathore AS (2012) Chemometrics applications in biotech processes: assessing process comparability. Biotechnol Prog 28(1):121–128CrossRefGoogle Scholar
  52. 52.
    Mercier SM et al (2014) Multivariate PAT solutions for biopharmaceutical cultivation: current progress and limitations. Trends Biotechnol 32(6):329–336CrossRefGoogle Scholar
  53. 53.
    Rathore AS et al (2014) Chemometrics application in biotech processes: assessing comparability across processes and scales. J Chem Technol Biotechnol 89(9):1311–1316CrossRefGoogle Scholar
  54. 54.
    Rathore AS, Mittal S, Pathak M, Arora A (2014) Guidance for performing multivariate data analysis of bioprocessing data: pitfalls and recommendations. Biotechnol Prog 30(4):967–973CrossRefGoogle Scholar
  55. 55.
    Rathore AS, Kumar V et al (2014) Mechanistic modeling of viral filtration. J Membr Sci 458:96–103CrossRefGoogle Scholar
  56. 56.
    Rathore AS, Bhushan N, Hadpe S (2011) Chemometrics applications in biotech processes: a review. Biotechnol Prog 27(2):307–315CrossRefGoogle Scholar
  57. 57.
    Vaidyanathan S et al (2001) Assessment of near-infrared spectral information for rapid monitoring of bioprocess quality. Biotechnol Bioeng 74(5):376–388CrossRefGoogle Scholar
  58. 58.
    Kirdar AO, Green KD, Rathore AS (2008) Application of multivariate data analysis for identification and successful resolution of a root cause for a bioprocessing application. Biotechnol Prog 24(3):720–726CrossRefGoogle Scholar
  59. 59.
    Kirdar AO et al (2010) Application of near-infrared (NIR) spectroscopy for screening of raw materials used in the cell culture medium for the production of a recombinant therapeutic protein. Biotechnol Prog 26(2):527–531Google Scholar
  60. 60.
    Rathore AS et al (2012) Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin. Biotechnol Prog 28(5):1308–1314CrossRefGoogle Scholar
  61. 61.
    Pearson S (2015) Smart process development strategies. Genet Eng Biotechnol News, pp 1–2Google Scholar
  62. 62.
    Bhambure R, Kumar K, Rathore AS (2011) High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol 29(3):127–135Google Scholar
  63. 63.
    Lattermann C, Büchs J (2014) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35C:1–6Google Scholar
  64. 64.
    Pollard D (2014) Are automated disposable small-scale reactors set to dominate the future of pharmaceutical bioprocess development? Pharm Bioprocess 2(1):9–12CrossRefGoogle Scholar
  65. 65.
    Rameez S et al (2014) High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog 30(3):718–727CrossRefGoogle Scholar
  66. 66.
    Razinkov V et al (2015) Automation and high-throughput technologies in biopharmaceutical drug product development with QbD approaches. In: Jameel F et al (eds) Quality by design for biopharmaceutical drug product development SE - 20, AAPS advances in the pharmaceutical sciences series. Springer, New York, pp 475–510Google Scholar
  67. 67.
    Simon LL et al (2015) Assessment of recent process analytical technology (PAT) trends: a multiauthor review. Org Process Res Dev 19(1):3–62CrossRefGoogle Scholar
  68. 68.
    Clark EDB (2001) Protein refolding for industrial processes. Curr Opin Biotechnol 12(2):202–207CrossRefGoogle Scholar
  69. 69.
    Bade PD, Kotu SP, Rathore AS (2012) Optimization of a refolding step for a therapeutic fusion protein in the quality by design (QbD) paradigm. J Sep Sci 35(22):3160–3169CrossRefGoogle Scholar
  70. 70.
    Rathore AS et al (2013) Refolding of biotech therapeutic proteins expressed in bacteria: review. J Chem Technol Biotechnol 88(10):1794–1806CrossRefGoogle Scholar
  71. 71.
    Calvo B, Zuñiga L (2012) The US approach to biosimilars. BioDrugs 26(6):357–361CrossRefGoogle Scholar
  72. 72.
    O’Connor A, Rogge M (2013) Nonclinical development of a biosimilar: the current landscape. Bioanalysis 5(5):537–544CrossRefGoogle Scholar
  73. 73.
    Tsiftsoglou A et al (2014) Demonstration of biosimilarity, extrapolation of indications and other challenges related to biosimilars in Europe. BioDrugs 28(6):479–486CrossRefGoogle Scholar
  74. 74.
    Rathore AS, Singh SK (2014) Clinical and non-clinical aspects of biosimilar development. BioQuality 9:1–6Google Scholar
  75. 75.
    Kumar V, Bhalla A, Rathore AS (2014) Design of experiments applications in bioprocessing: concepts and approach. Biotechnol Prog 30(1):86–99CrossRefGoogle Scholar
  76. 76.
    Saremirad P et al (2014) Multi-variable operational characteristic studies of on-column oxidative protein refolding at high loading concentrations. J Chromatogr A 1359:70–75CrossRefGoogle Scholar
  77. 77.
    Przybycien TM, Pujar NS, Steele LM (2004) Alternative bioseparation operations: life beyond packed-bed chromatography. Curr Opin Biotechnol 15(5):469–478CrossRefGoogle Scholar
  78. 78.
    Williams A, Frasca V (2001) Ion-exchange chromatography. In: Current protocols in protein science, vol 15(8.2), pp 8.2.1–8.2.30Google Scholar
  79. 79.
    Barth HG, Jackson C, Boyes BE (1994) Size exclusion chromatography. Anal Chem 66(12):595R–620RCrossRefGoogle Scholar
  80. 80.
    Roque ACA, Silva CSO, Taipa MA (2007) Affinity-based methodologies and ligands for antibody purification: advances and perspectives. J Chromatogr A 1160(1–2):44–55CrossRefGoogle Scholar
  81. 81.
    Ochoa J-L (1978) Hydrophobic (interaction) chromatography. Biochimie 60(1):1–15CrossRefGoogle Scholar
  82. 82.
    Bhambure R, Rathore AS (2013) Chromatography process development in the quality by design paradigm I: establishing a high-throughput process development platform as a tool for estimating ‘characterization space’ for an ion exchange chromatography step. Biotechnol Prog 29(2):403–414CrossRefGoogle Scholar
  83. 83.
    Rathore AS, Kapoor G (2015) Application of process analytical technology for downstream purification of biotherapeutics. J Chem Technol Biotechnol 90(2):228–236CrossRefGoogle Scholar
  84. 84.
    Chhatre S et al (2009) Use of PAT principles for the open-loop control of laboratory and pilot-scale chromatography columns. J Chem Technol Biotechnol 84(9):1314–1322CrossRefGoogle Scholar
  85. 85.
    Kamga M-H et al (2013) Quantification of protein mixture in chromatographic separation using multi-wavelength UV spectra. Biotechnol Prog 29(3):664–671CrossRefGoogle Scholar
  86. 86.
    Vyas V, Nellis D, Burnette A (2009) BIOT-396. In: Abstracts of papers, 238th ACS national meeting, Washington DCGoogle Scholar
  87. 87.
    Mendhe R et al (2015) Comparison of PAT based approaches for making real-time pooling decisions for process chromatography – use of feed forward control. J Chem Technol Biotechnol 90(2):341–348CrossRefGoogle Scholar
  88. 88.
    Kaltenbrunner O et al (2012) Risk-benefit evaluation of on-line high-performance liquid chromatography analysis for pooling decisions in large-scale chromatography. J Chromatogr A 1241:37–45CrossRefGoogle Scholar
  89. 89.
    Rathore AS et al (2008) Case study and application of process analytical technology (PAT) towards bioprocessing: II. Use of ultra-performance liquid chromatography (UPLC) for making real-time pooling decisions for process chromatography. Biotechnol Bioeng 101(6):1366–1374CrossRefGoogle Scholar
  90. 90.
    Rathore AS, Shirke A (2011) Recent developments in membrane-based separations in biotechnology processes: review. Prep Biochem Biotechnol 41(4):398–421CrossRefGoogle Scholar
  91. 91.
    Rathore AS, Sharma A, Chilin D (2006) Applying process analytical technology to biotech unit operations. BioPharm Int 19(8):48–57Google Scholar
  92. 92.
    Shukla AA, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28(5):253–261CrossRefGoogle Scholar
  93. 93.
    Croughan MS, Konstantinov KB, Cooney C (2015) The future of industrial bioprocessing: batch or continuous? Biotechnol Bioeng 112(4):648–651CrossRefGoogle Scholar
  94. 94.
    Warikoo V et al (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109(12):3018–3029CrossRefGoogle Scholar
  95. 95.
    Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211CrossRefGoogle Scholar
  96. 96.
    Łącki KM (2014) High throughput process development in biomanufacturing. Curr Opin Chem Eng 6:25–32CrossRefGoogle Scholar
  97. 97.
    Muthukumar S, Rathore AS (2013) High throughput process development (HTPD) platform for membrane chromatography. J Membr Sci 442:245–253CrossRefGoogle Scholar
  98. 98.
    Orr V et al (2013) Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 31(4):450–465CrossRefGoogle Scholar
  99. 99.
    Fröhlich H et al (2012) Membrane technology in bioprocess science. Chem Ing Tech 84(6):905–917Google Scholar
  100. 100.
    Fraud N, Kuczewski M, Hirai M (2009) Hydrophobic membrane adsorbers for large-scale downstream processing. BioPharm Int 2009(suppl 22):24–27Google Scholar
  101. 101.
    Limonta M et al (2010) The purification of plasmid DNA for clinical trials using membrane chromatography. BioPharm Int 23(2):46–54Google Scholar
  102. 102.
    Riordan W et al (2009) Design of salt‐tolerant membrane adsorbers for viral clearance. Biotechnol Bioeng 103(5):920–929CrossRefGoogle Scholar
  103. 103.
    Yu D, Ghosh R (2010) Purification of PEGylated protein using membrane chromatography. J Pharm Sci 99(8):3326–3333CrossRefGoogle Scholar
  104. 104.
    Anuraj N et al (2012) An all-aqueous route to polymer brush-modified membranes with remarkable permeabilites and protein capture rates. J Membr Sci 389:117–125CrossRefGoogle Scholar
  105. 105.
    Kuczewski M et al (2010) Development of a polishing step using a hydrophobic interaction membrane adsorber with a PER. C6®‐derived recombinant antibody. Biotechnol Bioeng 105(2):296–305CrossRefGoogle Scholar
  106. 106.
    Bensch M, Schulze Wierling P, von Lieres E, Hubbuch J (2005) High throughput screening of chromatographic phases for rapid process development. Chem Eng Technol 28(11):1274–1284CrossRefGoogle Scholar
  107. 107.
    Coffman JL, Kramarczyk JF, Kelley BD (2008) High-throughput screening of chromatographic separations: I. Method development and column modeling. Biotechnol Bioeng 100(4):605–618CrossRefGoogle Scholar
  108. 108.
    Kelley BD, Switzer M, Bastek P, Kramarczyk JF, Molnar K, Yu T, Coffman J (2008) High-throughput screening of chromatographic separations: IV. Ion‐exchange. Biotechnol Bioeng 100(5):950–963CrossRefGoogle Scholar
  109. 109.
    Kramarczyk JF, Kelley BD, Coffman JL (2008) High-throughput screening of chromatographic separations: II. Hydrophobic interaction. Biotechnol Bioeng 100(4):707–720CrossRefGoogle Scholar
  110. 110.
    Strauss DM et al (2010) Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody production. Biotechnol Prog 26(3):750–755CrossRefGoogle Scholar
  111. 111.
    Wiendahl M et al (2009) A novel method to evaluate protein solubility using a high throughput screening approach. Chem Eng Sci 64(17):3778–3788CrossRefGoogle Scholar
  112. 112.
    Kong S, Aucamp J, Titchener-Hooker NJ (2010) Studies on membrane sterile filtration of plasmid DNA using an automated multiwell technique. J Membr Sci 353(1):144–150CrossRefGoogle Scholar
  113. 113.
    Ahmad SS, Dalby PA (2011) Thermodynamic parameters for salt‐induced reversible protein precipitation from automated microscale experiments. Biotechnol Bioeng 108(2):322–332CrossRefGoogle Scholar
  114. 114.
    Grant Y, Matejtschuk P, Dalby PA (2009) Rapid optimization of protein freeze‐drying formulations using ultra scale‐down and factorial design of experiment in microplates. Biotechnol Bioeng 104(5):957–964CrossRefGoogle Scholar
  115. 115.
    Cramer SM, Holstein MA (2011) Downstream bioprocessing: recent advances and future promise. Curr Opin Chem Eng 1(1):27–37CrossRefGoogle Scholar
  116. 116.
    Voitl A, Müller-Späth T, Morbidelli M (2010) Application of mixed mode resins for the purification of antibodies. J Chromatogr A 1217(37):5753–5760CrossRefGoogle Scholar
  117. 117.
    Naik AD et al (2011) Performance of hexamer peptide ligands for affinity purification of immunoglobulin G from commercial cell culture media. J Chromatogr A 1218(13):1691–1700CrossRefGoogle Scholar
  118. 118.
    Rao G, Moreira A, Brorson K (2009) Disposable bioprocessing: the future has arrived. Biotechnol Bioeng 102(2):348–356CrossRefGoogle Scholar
  119. 119.
    Chennamsetty N et al (2010) Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B 114(19):6614–6624CrossRefGoogle Scholar
  120. 120.
    Jordan JL et al (2009) Structural understanding of stabilization patterns in engineered bispecific Ig‐like antibody molecules. Proteins 77(4):832–841CrossRefGoogle Scholar
  121. 121.
    Perchiacca JM, Bhattacharya M, Tessier PM (2011) Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions. Proteins 79(9):2637–2647CrossRefGoogle Scholar
  122. 122.
    Berkowitz SA et al (2012) Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 11(7):527–540CrossRefGoogle Scholar
  123. 123.
    Eon-Duval A, Broly H, Gleixner R (2012) Quality attributes of recombinant therapeutic proteins: an assessment of impact on safety and efficacy as part of a quality by design development approach. Biotechnol Prog 28(3):608–622CrossRefGoogle Scholar
  124. 124.
    Joubert MK et al (2012) Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem 287(30):25266–25279CrossRefGoogle Scholar
  125. 125.
    Hou Y et al (2011) Improved process analytical technology for protein a chromatography using predictive principal component analysis tools. Biotechnol Bioeng 108(1):59–68CrossRefGoogle Scholar
  126. 126.
    Tescione L et al (2015) Application of bioreactor design principles and multivariate analysis for development of cell culture scale down models. Biotechnol Bioeng 112(1):84–97CrossRefGoogle Scholar
  127. 127.
    Kirdar AO et al (2007) Application of multivariate analysis toward biotech processes: case study of a cell‐culture unit operation. Biotechnol Prog 23(1):61–67CrossRefGoogle Scholar
  128. 128.
    Barbosa MDFS et al (2012) Biosimilars and biobetters as tools for understanding and mitigating the immunogenicity of biotherapeutics. Drug Discov Today 17(23):1282–1288CrossRefGoogle Scholar
  129. 129.
    Kenett RS, Kenett DA (2008) Quality by design applications in biosimilar pharmaceutical products. Accred Qual Assur 13(12):681–690CrossRefGoogle Scholar
  130. 130.
    Sampath K (2013) Drug product development of biosimilars: QbD based approach and strategies. In: Abstracts of papers of the American Chemical Society. American Chemical Society, Washington, DCGoogle Scholar
  131. 131.
    Zalai D, Dietzsch C, Herwig C (2013) Risk-based process development of biosimilars as part of the quality by design paradigm. PDA J Pharm Sci Technol 67:569–580CrossRefGoogle Scholar
  132. 132.
    Velayudhan A (2014) Overview of integrated models for bioprocess engineering. Curr Opin Chem Eng 6:83–89CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations