Skip to main content

Silicon Mimics of Unstable Carbon

  • Chapter
  • First Online:

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 17))

Abstract

Silicon–carbon bonds are unknown in nature, yet the search for bioactive organosilanes has a rich and successful history. Substitution of silicon for a stable quaternary carbon in biologically active molecules often leads to bioactive organosilanes. An alternative approach is the substitution of silicon for an unstable carbon, such as a hydrated carbonyl. The proclivity of carbon to favor a carbonyl over a 1,1-diol is reversed for silicon. Tetrahedral, hydrated carbonyls are ubiquitous intermediates in the reactivity of carbonyl compounds including many enzymatic reactions, and hydrolase enzymes are critical mediators of a broad range of biological processes. Proteases, one group of hydrolase enzymes, can be potently inhibited by silanediol-based peptide mimics when the silanediol substitutes for the hydrated carbonyl of amide bond hydrolysis. This chapter outlines the key parameters for bioactive organosilanes, the evolution of the silanediols as protease inhibitors, the supporting chemistry, and the current status.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bauer J, Fiala J, Hrichova R (1963) Natural α-silicon carbide. Am Mineral 48:620–634

    CAS  Google Scholar 

  2. Kipping FS, Lloyd LL (1901) XLVII.-organic derivatives of silicon. Triphenylsilicol and alkyloxysilicon chlorides. J Chem Soc Trans 79:449–459

    Article  CAS  Google Scholar 

  3. Tacke R, Dörrich S (2014) Drug design based on the carbon/silicon switch strategy. Top Med Chem. doi:10.1007/7355_2014_55

    Google Scholar 

  4. Sieburth SMcN (2013) Bioactive organosilanes. Gelest Catalog 55–62

    Google Scholar 

  5. Franz AK, Wilson SO (2012) Organosilicon molecules with medicinal applications. J Med Chem 56:388–405

    Article  CAS  Google Scholar 

  6. Franz AK (2007) The synthesis of biologically active organosilicon small molecules. Curr Opin Drug Disc Dev 10:654–671

    CAS  Google Scholar 

  7. Bains W, Tacke R (2003) Silicon chemistry as a novel source of chemical diversity in drug design. Curr Opin Drug Disc Dev 6:526–543

    CAS  Google Scholar 

  8. Englebienne P, Hoonacker AV, Herst CV (2005) The place of the bioisosteric sila-substitution in drug design. Drug Des Rev Online 2:467–483

    Article  CAS  Google Scholar 

  9. Tacke R, Wagner SA (1998) Chirality in bioorganosilicon chemistry. In: Apeloig Y, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 2. Wiley, New York, pp 236–240

    Chapter  Google Scholar 

  10. Tacke R, Linoh H (1989) Bioorganosilicon chemistry. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds. Wiley, New York, pp 114–120

    Google Scholar 

  11. Fessenden RJ, Fessenden JS (1980) Trends in organosilicon biological research. Adv Organomet Chem 18:275–299

    CAS  Google Scholar 

  12. Tacke R, Wannagat U (1979) Syntheses and properties of bioactive organo-silicon compounds. Top Curr Chem 84:1–75

    Article  CAS  Google Scholar 

  13. Fessenden RJ, Fessenden JS (1967) The biological properties of silicon compounds. Adv Drug Res 4:95–132

    CAS  Google Scholar 

  14. Franz JE, Mao MK, Sikorski JA (1996) Glyphosate: a unique global herbicide, vol 189, ACS Monograph. American Chemical Society, Washington, DC

    Google Scholar 

  15. Hayden JF, Barlow SA (1972) Structure-activity relationships of organosiloxanes and the female reproductive system. Toxicol Appl Pharmacol 21:68–79

    Article  CAS  Google Scholar 

  16. Tse FLS, Jaffe JM, Dain JG (1984) Pharmacokinetics of compound 58–112, a potential skeletal muscle relaxant, in Man. J Clin Pharmacol 24:47–57

    Article  CAS  Google Scholar 

  17. Voronkov MG (1979) Biological activity of silatranes. Top Curr Chem 84:77–135

    Article  CAS  Google Scholar 

  18. Raabe G, Michl J (1989) Multiple bonds to silicon. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, 2nd edn. Wiley, New York, pp 1015–1142

    Chapter  Google Scholar 

  19. Ottosson H, Steel PG (2006) Silylenes, silenes, and disilenes: novel silicon-based reagents for organic synthesis? Chemistry 12:1576–1585

    Article  CAS  Google Scholar 

  20. Fleming I (1979) Organic silicon chemistry. In: Ollis WD, Barton D (eds) Comprehensive organic chemistry, 3rd edn. Pergamon, New York, pp 541–686

    Google Scholar 

  21. Fessenden RJ, Hartman RA (1970) Metabolic fate of phenyltrimethylsilane and phenyldimethylsilane. J Med Chem 13:52–54

    Article  CAS  Google Scholar 

  22. Staudinger H, Ruzicka L (1924) Insektentötende Stoffe I. Über Isolierung und Konstitution des wirksamen Teiles des dalmatinischen Insektenpulvers. Helv Chim Acta 7:177–201

    Article  CAS  Google Scholar 

  23. Elliott M, Farnham AW, Janes NF, Needham PH, Pulman DA (1975) Insecticidal activity of the pyrethrins and related compounds. VII. Insecticidal dihalovinyl analogues of cis and trans chrysanthemates. Pestic Sci 6:537–542

    Article  CAS  Google Scholar 

  24. Seyferth D, Annarelli DC (1975) Hexamethylsilirane. Simple, isolable silacyclopropane. J Am Chem Soc 97:2273–2275

    Article  CAS  Google Scholar 

  25. Franz AK, Woerpel KA (2000) Development of reactions of silacyclopropanes as new methods for stereoselective organic synthesis. Acc Chem Res 33:813–820

    Article  CAS  Google Scholar 

  26. Larson GL (1996) The chemistry of α-silyl carbonyl compounds. Adv Silicon Chem 3:105–271

    CAS  Google Scholar 

  27. Miura T, Takahashi RM (1976) Effects of a synthetic pyrethroid, SD43775, on nontarget organisms when utilized as a mosquito larvicide. Mosq News 36:322–326

    CAS  Google Scholar 

  28. Svendsen A, Pedersen L-EK, Klemmensen PD (1986) Synthesis and insecticidal activities of unsymmetrical bis-arylalkyl ketones. A new structural concept in pyrethroids. Pestic Sci 17:93–102

    Article  CAS  Google Scholar 

  29. Sieburth SMcN, Manly CJ, Gammon DW (1990) Organosilane insecticides. Part I: biological and physical effects of isosteric replacement of silicon for carbon in Etofenprox and MTI-800. Pestic Sci 28:289–307

    Article  CAS  Google Scholar 

  30. Katsuda Y (2012) Progress and future of pyrethroids, vol 314, Topics in current chemistry. Springer-Verlag, Berlin

    Google Scholar 

  31. Moberg WK, Basarab GS, Cuomo J, Liang PH, Greenhalgh R, Roberts TR (1986) Biologically active organosilicon compounds: silicon-containing triazole fungicides, Pesticide science and biotechnology. Blackwell Scientific, Boston, pp 57–60

    Google Scholar 

  32. Wuts PGM (2014) Greene’s protective groups in organic synthesis, 5th edn. Wiley, Hoboken, NJ

    Google Scholar 

  33. Cunningham JG, Ford RB, Gifford JA, Hulce VD, Chandler ML, LeVier RR (1981) Clinical evaluation of the new compound diphenylsilanediol for anti-epileptic efficacy and toxicity. Am J Vet Res 42:2178–2181

    CAS  Google Scholar 

  34. Tacke R, Popp F, Müller B, Theis B, Burschka C, Hamacher A, Kassack MU, Schepmann D, Wünsch B, Jurva U, Wellner E (2008) Sila-haloperidol, a silicon analogue of the dopamine (D2) receptor antagonist haloperidol: synthesis, pharmacological properties, and metabolic fate. ChemMedChem 3:152–164

    Article  CAS  Google Scholar 

  35. Johansson T, Weidolf L, Popp F, Tacke R, Jurva U (2010) In vitro metabolism of haloperidol and sila-haloperidol: new metabolic pathways resulting from carbon/silicon exchange. Drug Metab Disp 38:73–83

    Article  CAS  Google Scholar 

  36. Brown SS, Kendrick TC, McVie J, Thomas DR (1995) Silicones. In: Abel EW, Stone FGA, Wilkinson G (eds) Comprehensive organometallic chemistry II, vol 2. Pergamon, New York, pp 111–135

    Chapter  Google Scholar 

  37. Takiguchi T (1959) Preparation of some organosilanediols and phenylsilanetriol by direct hydrolysis using aniline as hydrogen chloride acceptor 1. J Am Chem Soc 81:2359–2361

    Article  CAS  Google Scholar 

  38. Dejak B, Lasocki Z, Mogilnicki W (1969) Rates of condensation of some diorganosilanediols in methanol with potassium hydroxide as catalyst. B Acad Pol Sci-Chim 17:7–12

    CAS  Google Scholar 

  39. Dejak B, Lasocki Z, Mogilnicki W (1969) Rates of condensation of some diorganosilanediols in methanol with HCl as catalyst. B Acad Pol Sci-Chim 17:571–574

    CAS  Google Scholar 

  40. Eaborn C, Hartshorne NH (1955) The mesomorphism of diisobutylsilanediol. J Chem Soc 549–555

    Google Scholar 

  41. Bunning JC, Lydon JE, Eaborn C, Jackson PM, Goodby JW, Gray GW (1982) Classification of the mesophase of di-isobutylsilanediol. J Chem Soc Faraday Trans 1(78):713–724

    Article  Google Scholar 

  42. Tacke R, Schmid T, Merget M (2005) The SiOH-containing a-amino acid HOMe2SiCH2CH(NH2)CO2H and its immobilization on silica via an Si-O-Si linkage. Organometallics 24:1780–1783

    Article  CAS  Google Scholar 

  43. Kim JK, Sieburth SMcN (2012) Synthesis and properties of a sterically unencumbered delta-silanediol amino acid. J Org Chem 77:2901–2906

    Article  CAS  Google Scholar 

  44. Lickiss PD (1995) The synthesis and structure of organosilanols. Adv Inorg Chem 42:147–262

    Article  CAS  Google Scholar 

  45. Lickiss PD, Rappoport Z, Apeloig Y (2001) Polysilanols, vol 3, The chemistry of organic silicon compounds. Wiley, New York, pp 695–744

    Google Scholar 

  46. Kipping FS (1912) CCXXIII.-organic derivatives of silicon. Part XVI. The preparation and properties of diphenylsilicanediol. J Chem Soc Trans 101:2108–2125

    Article  CAS  Google Scholar 

  47. Mader MM, Bartlett PA (1997) Binding energy and catalysis: the implications for transition-state analogs and catalytic antibodies. Chem Rev 97:1281–1301

    Article  CAS  Google Scholar 

  48. Babine RE, Bender SL (1997) Molecular recognition of protein-ligand complexes: applications to drug design. Chem Rev 97:1359–1472

    Article  CAS  Google Scholar 

  49. Leung D, Abbenante G, Fairlie DP (2000) Protease inhibitors: current status and future prospects. J Med Chem 43:305–341

    Article  CAS  Google Scholar 

  50. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  Google Scholar 

  51. Ondetti MA, Rubin B, Cushman DW (1977) Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196:441–444

    Article  CAS  Google Scholar 

  52. Murdoch D, McTavish D (1992) Fosinopril. Drugs 43:123–140

    Article  CAS  Google Scholar 

  53. Sica DA, Gehr TWB, Kelleher N, Blumenthal M (1998) Fosinopril: emerging considerations and implications for angiotensin-converting enzyme inhibitor therapy. Cardiovasc Drug Rev 16:319–345

    Article  CAS  Google Scholar 

  54. Matchar DB, McCrory DC, Orlando LA, Patel MR, Patel UD, Patwardhan MB, Powers B, Samsa GP, Gray RN (2008) Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers for treating essential hypertension. Ann Intern Med 148:16–29

    Article  Google Scholar 

  55. Bold G, Faessler A, Capraro H, Cozens R, Klimkait T, Lazdins J, Mestan J, Poncioni B, Roesel J, Stover D, Tintelnot-Blomley M, Acemoglu F, Beck W, Boss E, Eschbach M, Huerlimann T, Masso E, Roussel S, Ucci-Stoll K, Wyss D, Lang M (1998) New Aza-dipeptide analogs as potent and orally absorbed HIV-1 protease inhibitors: candidates for clinical development. J Med Chem 41:3387–3401

    Article  CAS  Google Scholar 

  56. Havlir DV, O’Marro SD (2004) Atazanavir: new option for treatment of HIV infection. Clin Infect Dis 38:1599–1604

    Article  CAS  Google Scholar 

  57. Groll M, Berkers CR, Ploegh HL, Ovaa H (2006) Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14:451–456

    Article  CAS  Google Scholar 

  58. Miller SA, Onge ELS (2006) Sitagliptin: a dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Ann Pharmacother 40:1336–1343

    Article  CAS  Google Scholar 

  59. Sieburth SMcN, Chen C-A (2006) Silanediol protease inhibitors: from conception to validation. Eur J Org Chem 2:311–322

    Article  CAS  Google Scholar 

  60. Galardy RE, Kortylewicz ZP (1985) Inhibitors of angiotensin-converting enzyme containing a tetrahedral arsenic atom. Biochem J 226:447–454

    Article  CAS  Google Scholar 

  61. Curley K, Pratt RF (1997) Effectiveness of tetrahedral adducts as transition-state analogs and inhibitors of the class C b-lactamase of enterobacter cloacae P99. J Am Chem Soc 119:1529–1538

    Article  CAS  Google Scholar 

  62. Almquist RG, Chao W-R, Ellis ME, Johnson HL (1980) Synthesis and biological activity of a ketomethylene analog of a tripeptide inhibitor of angiotensin converting enzyme. J Med Chem 23:1392–1398

    Article  CAS  Google Scholar 

  63. Imperiali B, Abeles RH (1986) Inhibition of serine proteases by peptidyl fluoromethyl ketones. Biochemistry 25:3760–3767

    Article  CAS  Google Scholar 

  64. Trost BM, Caldwell CG (1981) The di-t-butylsilylene protecting group for diols. Tetrahedron Lett 22:4999–5002

    Article  CAS  Google Scholar 

  65. Fleming I, Henning R, Plaut H (1984) The phenyldimethylsilyl group as a masked form of the hydroxy group. Chem Commun 29–31

    Google Scholar 

  66. Deans FB, Eaborn C (1959) Aromatic reactivity. Part III. Cleavage of substituted phenyltrimethylsilanes by sulphuric acid in acetic acid-water. J Chem Soc 445:2299–2303

    Article  Google Scholar 

  67. Kim J, Hewitt G, Carroll P, Sieburth SMcN (2005) Silanediol inhibitors of angiotensin-converting enzyme. Synthesis and evaluation of four diastereomers of Phe[Si]Ala dipeptide analogues. J Org Chem 70:5781–5789

    Article  CAS  Google Scholar 

  68. Kim J (2004) Research notes, Temple University

    Google Scholar 

  69. Uhlig W (1996) Silyl triflates – valuable synthetic materials in organosilicon chemistry. Chem Ber 129:733–739

    Article  CAS  Google Scholar 

  70. Corriu RJP, Guerin C, Guiraud G (1979) Analogies between nucleophilic substitutions at silicon and phosphorus: kinetic and stereochemical studies of five- and six-membered ring oxasilacycloalkanes. Chem Commun 8–9

    Google Scholar 

  71. Chen C-A (1997) Research notes, SUNY Stony Brook

    Google Scholar 

  72. Nielsen L, Lindsay KB, Faber J, Nielsen NC, Skrydstrup T (2007) Stereocontrolled synthesis of methyl silanediol peptide mimics. J Org Chem 72:10035–10044

    Article  CAS  Google Scholar 

  73. Hernández D, Mose R, Skrydstrup T (2011) Reductive lithiation of methyl substituted diarylmethylsilanes: application to silanediol peptide precursors. Org Lett 13:732–735

    Article  CAS  Google Scholar 

  74. Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1977) Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16:5484–5491

    Article  CAS  Google Scholar 

  75. Grobelny D, Goli UB, Galardy RE (1989) Binding energetics of phosphorus-containing inhibitors of thermolysin. Biochemistry 28:4948–4951

    Article  CAS  Google Scholar 

  76. Morgan BP, Bartlett PA, Rivier JE, Marshall GR (1990) Phosphinates as transition-state analog inhibitors of thermolysin: the importance of hydrophobic and hydrogen bonding effects. Peptides: Chemistry, Structure and Biology, [ESCOM] Leiden, pp 371–372

    Google Scholar 

  77. Liu M, Tran NT, Franz AK, Lee JK (2011) Gas-phase acidity studies of dual hydrogen-bonding organic silanols and organocatalysts. J Org Chem 76:7186–7194

    Article  CAS  Google Scholar 

  78. Chen C-A, Sieburth SMcN, Glekas A, Hewitt GW, Trainor GL, Erickson-Viitanen S, Garber SS, Cordova B, Jeffry S, Klabe RM (2001) Drug design with a new transition state analog of the hydrated carbonyl: silicon-based inhibitors of the HIV protease. Chem Biol 8:1161–1166

    Article  CAS  Google Scholar 

  79. Plosker GL, Noble S (1999) Indinavir - a review of its use in the management of HIV infection. Drugs 58:1165–1203

    Article  CAS  Google Scholar 

  80. Juers DH, Kim J, Matthews BW, Sieburth SMcN (2005) Structural analysis of silanediols as transition-state-analogue inhibitors of the benchmark metalloprotease thermolysin. Biochemistry 44:16524–16528

    Article  CAS  Google Scholar 

  81. Bartlett PA, Marlowe CK (1983) Phosphonamidates as transition-state analogue inhibitors of thermolysin. Biochemistry 22:4618–4624

    Article  CAS  Google Scholar 

  82. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    Article  CAS  Google Scholar 

  83. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  Google Scholar 

  84. Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–1000

    Article  CAS  Google Scholar 

  85. Singh S, Sieburth SMcN (2012) Serine protease inhibition by a silanediol peptidomimetic. Org Lett 14:4422–4425

    Article  CAS  Google Scholar 

  86. Schumacher WA, Luettgen JM, Quan ML, Seiffert DA (2010) Inhibition of factor XIa as a new approach to anticoagulation. Arterioscler Thromb Vasc Biol 30:388–392

    Article  CAS  Google Scholar 

  87. Navaneetham D, Sinha D, Walsh PN (2010) Mechanisms and specificity of factor XIa and trypsin inhibition by protease nexin 2 and basic pancreatic trypsin inhibitor. J Biochem 148:467–479

    CAS  Google Scholar 

  88. Tacke R, Linoh H, Ernst L, Moser U, Mutschler E, Sarge S, Cammenga HK, Lambrecht G (1987) Sila-pharmaca. 37. Preparation and properties of the enantiomers of the antimuscarinic agents sila-procyclidine and sila-tricyclamol iodide: optically active silanols with silicon as the centre of chirality. Chem Ber 120:1229–1237

    Article  CAS  Google Scholar 

  89. Singh S (2012) Research notes, Temple University

    Google Scholar 

  90. Duong HQ (2013) Research notes, Temple University

    Google Scholar 

  91. Mignani S, Damour D, Bastart J, Manuel G (1995) A convenient large scale synthesis of 1,1-diphenyl-1-silacyclopent-3-ene. Synth Commun 25:3855–3861

    Article  CAS  Google Scholar 

  92. Sen S, Purushotham M, Qi Y, Sieburth SMcN (2007) Efficient asymmetric synthesis of silanediol precursors from 1,5-dihydrosiloles. Org Lett 9:4963–4965

    Article  CAS  Google Scholar 

  93. Eaborn C (1952) Organosilicon compounds. III. Some sterically hindered compounds. J Chem Soc 2840–2846

    Google Scholar 

  94. Corey EJ, Helal CJ (1998) Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: a new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew Chem Int Ed Engl 37:1986–2012

    Article  CAS  Google Scholar 

  95. Zhou P, Chen B, Davis FA (2004) Recent advances in asymmetric reactions using sulfinimines (N-sulfinyl imines). Tetrahedron 60:8003–8030

    Article  CAS  Google Scholar 

  96. Sen S, Singh S, Sieburth SMcN (2009) A practical, two-step synthesis of 2-substituted 1,3-butadienes. J Org Chem 74:2884–2886

    Article  CAS  Google Scholar 

  97. Marciniec B (2009) Hydrosilylation, Advances in silicon chemistry. Springer, Heidelberg

    Book  Google Scholar 

  98. Pagliaro M, Ciriminna R, Pandarus V, Béland F (2013) Platinum-based heterogeneously catalyzed hydrosilylation. Eur J Org Chem 2013:6227–6235

    Article  CAS  Google Scholar 

  99. Troegel D, Stohrer J (2011) Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 255:1440–1459

    Article  CAS  Google Scholar 

  100. Ojima I, Li Z, Zhu J (1998) Recent advances in the hydrosilylation and related reactions. In: Apeloig Y, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 2. Wiley, New York, pp 1687–1792

    Chapter  Google Scholar 

  101. Bergens SH, Noheda P, Whelan J, Bosnich B (1992) Asymmetric catalysis. Production of chiral diols by enantioselective catalytic intramolecular hydrosilation of olefins. J Am Chem Soc 114:2121–2128

    Article  CAS  Google Scholar 

  102. Bergens SH, Noheda P, Whelan J, Bosnich B (1992) Asymmetric catalysis. Mechanism of asymmetric catalytic intramolecular hydrosilation. J Am Chem Soc 114:2128–2135

    Article  CAS  Google Scholar 

  103. Bo Y, Singh S, Duong HQ, Cao C, Sieburth SMcN (2011) Efficient, enantioselective assembly of silanediol protease inhibitors. Org Lett 13:1787–1789

    Article  CAS  Google Scholar 

  104. Eder J, Hommel U, Cumin F, Martoglio B, Gerhartz B (2007) Aspartic proteases in drug discovery. Curr Pharm Des 13:271–285

    Article  CAS  Google Scholar 

  105. Tran NT, Wilson SO, Franz AK (2014) Supramolecular hydrogen-bonding assembly of silanediols with bifunctional heterocycles. Chem Commun 50:3738–3740

    Article  CAS  Google Scholar 

  106. Kondo S-I, Bie Y, Yamamura M (2013) Ratiometric fluorescence detection of anions by silanediol-based receptors bearing anthryl and pyrenyl groups. Org Lett 15:520–523

    Article  CAS  Google Scholar 

  107. Su K, Tilley TD, Sailor MJ (1996) Molecular and polymer precursor routes to manganese-doped zinc orthosilicate phosphors. J Am Chem Soc 118:3459–3468

    Article  CAS  Google Scholar 

  108. Basset J-M, Lefebvre F, Santini C (1998) Surface organometallic chemistry: some fundamental features including the coordination effects of the support. Coord Chem Rev 178–180:1703–1723

    Article  Google Scholar 

  109. Ignatyev IS, Montejo M, Rodriguez OPG, Gonzalez JJL (2013) Quantum chemical study of silanediols as metal binding groups for metalloprotease inhibitors. J Mol Model 19:1819–1834

    Article  CAS  Google Scholar 

  110. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431

    Article  CAS  Google Scholar 

  111. Walsh R (1989) Thermochemistry. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, vol 1. Wiley, New York, pp 371–391

    Chapter  Google Scholar 

  112. Edwards MP, Price DA (2010) Role of physicochemical properties and ligand lipophilicity efficiency in addressing drug safety risks. In: Macor JE (ed) Annu Rep Med Chem, vol 45. Academic, New York, NY, pp 380–391

    Google Scholar 

  113. Anderson TF, Statham MAJ, Carroll MA (2006) Bis(2-thienyl)silanes: new, versatile precursors to arylsilanediols. Tetrahedron Lett 47:3353–3355

    Article  CAS  Google Scholar 

  114. Fleming I, Henning R, Parker DC, Plaut HE, Sanderson PEJ (1995) The phenydimethylsilyl group as a masked hydroxy group. J Chem Soc Perkin Trans 1:317–337

    Article  Google Scholar 

  115. Fischer M, Burschka C, Tacke R (2014) Synthesis of 4-silacyclohexan-1-ones and (4-silacyclohexan-1-yl)amines containing the silicon protecting groups MOP (4-methoxyphenyl), DMOP (2,4-dimethoxyphenyl), or TMOP (2,4,6-trimethoxyphenyl): versatile Si- and C-functional building blocks for synthesis. Organometallics 33:1020–1029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott McN. Sieburth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sieburth, S.M. (2014). Silicon Mimics of Unstable Carbon. In: Schwarz, J. (eds) Atypical Elements in Drug Design. EGC 2015. Topics in Medicinal Chemistry, vol 17. Springer, Cham. https://doi.org/10.1007/7355_2014_80

Download citation

Publish with us

Policies and ethics