Skip to main content

Rational Design of Multifunctional Nanoscale Self-Assembled Soft Materials for Biomedical Delivery Application

  • Chapter
  • First Online:
Personalized Medicine with a Nanochemistry Twist

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 20))

Abstract

Soft matter-based self-assembled nanostructures are promising for therapeutic delivery. Recent advances in synthetic polymerisation chemistries and reactive orthogonal functionalisation strategies have enabled straightforward access to well-defined nanostructures with precise control over numerous physico-chemical properties. Ability to integrate multiple components such as imaging/contrast agent, targeting ligand and smart components on to a nanocarrier has opened up innumerable possibilities in biomedical delivery application. In this chapter, key principles in the design of multifunctional nanocarriers and the challenges with clinical translation will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADME:

Adsorption, distribution, metabolism and excretion

API:

Active pharmaceutical ingredient

ATRP:

Atom transfer radical polymerisation

CAC:

Critical aggregation concentration

CMC:

Critical micellisation concentration

CRP:

Controlled radical polymerisation

DLS:

Dynamic light scattering

DNA:

Deoxyribonucleic acid

EPR:

Enhanced permeation and retention

FDA:

Food and Drug Administration

LCST:

Lower critical solution temperature

mPEG:

Poly(ethylene glycol) methyl ether

NME:

New molecular entity

NMR:

Nuclear magnetic resonance

NMRP:

Nitroxide-mediated radical polymerisation

OC:

Organo-catalytic

PD:

Pharmacodynamics

PDI:

Polydispersity index

PEG:

Poly(ethylene glycol)

PK:

Pharmacokinetics

Ppm:

Parts per million

R&D:

Research and development

RAFT:

Reversible addition-fragmentation chain transfer

RES:

Reticuloendothelial system

RNA:

Ribonucleic acid

ROP:

Ring-opening polymerisation

ROS:

Reactive oxygen species

SANS:

Small-angle neutron scattering

SAXS:

Small-angle X-ray scattering

SCFT:

Self-consistent field theory

SEC:

Size-exclusion chromatography

siRNA:

Small interfering ribonucleic acid

TEM:

Transmission electron microscopy

References

  1. Elebring T, Gill A, Plowright AT (2012) What is the most important approach in current drug discovery: doing the right things or doing things right? Drug Discov Today 17(21–22):1166–1169

    Article  Google Scholar 

  2. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    CAS  Google Scholar 

  3. Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120(1–2):1–3

    Article  CAS  Google Scholar 

  4. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230

    Article  CAS  Google Scholar 

  5. Whitesides GM, Boncheva M (2002) Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99:4769–4974

    Article  CAS  Google Scholar 

  6. Deshayes S, Kasko AM (2013) Polymeric biomaterials with engineered degradation. J Polym Sci A Polym Chem 51(17):3531–3566

    Article  CAS  Google Scholar 

  7. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–114

    Article  Google Scholar 

  8. Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30(4–5):267–277

    Article  CAS  Google Scholar 

  9. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  CAS  Google Scholar 

  10. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or pandora’s box? Science 336(6080):434–440

    Article  CAS  Google Scholar 

  11. Halperin A (2006) Polymeric vs. monomeric amphiphiles: design parameters. Polym Rev 46:173–214

    CAS  Google Scholar 

  12. Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Delivery Rev 64(Suppl):302–315

    Google Scholar 

  13. Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ (2009) Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev 109:5620–5686

    Article  CAS  Google Scholar 

  14. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146

    Article  CAS  Google Scholar 

  15. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  16. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  CAS  Google Scholar 

  17. Moad G, Rizzardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41:1133–1142

    Article  CAS  Google Scholar 

  18. Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition–fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci A Polym Chem 43(22):5347–5393

    Article  CAS  Google Scholar 

  19. Agarwal S (2010) Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym Chem 1(7):953–964

    Article  CAS  Google Scholar 

  20. Nuyken O, Pask SD (2013) Ring-opening polymerization – an introductory review. Polymers 5:361–403

    Article  Google Scholar 

  21. Pratt R, Nederberg F, Waymouth RM, Hedrick JL (2008) Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth)acrylate for ring-opening polymerization. Chem Commun 114–116

    Google Scholar 

  22. Sanders DP, Fukushima K, Coady DJ, Nelson A, Fujiwara M, Yasumoto M, Hedrick JL (2010) A simple and efficient synthesis of functionalized cyclic carbonate monomers using a versatile pentafluorophenyl ester intermediate. J Am Chem Soc 132:14724–14726

    Article  CAS  Google Scholar 

  23. Kiesewetter MK, Shin EJ, Hedrick JL, Waymouth RM (2010) Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43:2093–2107

    Article  CAS  Google Scholar 

  24. Bernaerts KV, Du Prez FE (2006) Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Prog Polym Sci 31(8):671–722

    Article  CAS  Google Scholar 

  25. Nasongkla N, Chen B, Macaraeg N, Fox ME, Fréchet JMJ, Szoka FC (2009) Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers. J Am Chem Soc 131(11):3842–3843

    Article  CAS  Google Scholar 

  26. Hoskins JN, Grayson SM (2009) Synthesis and degradation behavior of cyclic poly(ε-caprolactone). Macromolecules 42(17):6406–6413

    Article  CAS  Google Scholar 

  27. Fox ME, Szoka FC, Fréchet JMJ (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42:1141–1151

    Article  CAS  Google Scholar 

  28. Barz M, Luxenhofer R, Zentel R, Vicent MJ (2011) Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym Chem 2(9):1900–1918

    Article  CAS  Google Scholar 

  29. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49(36):6288–6308

    Article  CAS  Google Scholar 

  30. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932

    Article  CAS  Google Scholar 

  31. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9(5):1357–1361

    Article  CAS  Google Scholar 

  32. O’Reilly RK, Hawker CJ, Wooley KL (2006) Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev 35:1068–1083

    Article  Google Scholar 

  33. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  CAS  Google Scholar 

  34. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    Article  CAS  Google Scholar 

  35. Wang Y-C, Yuan Y-Y, Du J-Z, Yang X-Z, Wang J (2009) Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications. Macromol Biosci 9(12):1154–1164

    Article  CAS  Google Scholar 

  36. Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 152(1):168–176

    Article  CAS  Google Scholar 

  37. Feng J, Zhuo R-X, Zhang X-Z (2012) Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci 37(2):211–236

    Article  CAS  Google Scholar 

  38. Cheng J, Deming T (2012) Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. In: Deming T (ed) Peptide-based materials, vol 310. Topics in Current Chemistry. Springer, Berlin Heidelberg, pp 1–26

    Google Scholar 

  39. Lee ALZ, Venkataraman S, Sirat SBM, Gao S, Hedrick JL, Yang YY (2012) The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Biomaterials 33(6):1921–1928

    Article  CAS  Google Scholar 

  40. Wiltshire JT, Qiao GG (2007) Recent advances in star polymer design: degradability and the potential for drug delivery. Aust J Chem 60(10):699–705

    Article  CAS  Google Scholar 

  41. Yang C, Ebrahim Attia AB, Tan JPK, Ke X, Gao S, Hedrick JL, Yang Y-Y (2012) The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials 33(10):2971–2979

    Article  CAS  Google Scholar 

  42. Ebrahim Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, Yang Y-Y (2011) Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 16(3):182–194

    Article  CAS  Google Scholar 

  43. Venkataraman S, Chowdhury ZA, Lee AL, Tong YW, Akiba I, Yang YY (2013) Access to different nanostructures via self-assembly of thiourea-containing PEGylated amphiphiles. Macromol Rapid Commun 34(8):652–658

    Article  CAS  Google Scholar 

  44. Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X (2014) Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun 50:11274–11290

    Google Scholar 

  45. Israelachivili J, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  46. Nagarajan R (2002) Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38

    Article  CAS  Google Scholar 

  47. Zupancich JA, Bates FS, Hillmyer MA (2006) Aqueous dispersions of poly(ethylene oxide)-b-poly(γ-methyl-μ-caprolactone) block copolymers. Macromolecules 39:4286–4288

    Article  CAS  Google Scholar 

  48. Venkataraman S, Hedrick JL, Yang YY (2014) Fluorene-functionalized aliphatic polycarbonates: design, synthesis and aqueous self-assembly of amphiphilic block copolymers. Polym Chem 5(6):2035–2040

    Article  CAS  Google Scholar 

  49. Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63(14–15):1228–1246

    Article  CAS  Google Scholar 

  50. Pochan DJ, Chen Z, Cui H, Hales K, Qi K, Wooley KL (2004) Toroidal triblock copolymer assemblies. Science 306:94–97

    Article  CAS  Google Scholar 

  51. Zhong S, Cui H, Chen Z, Wooley KL, Pochan DJ (2008) Helix self-assembly through the coiling of cylindrical micelles. Soft Matter 4:90–93

    Article  CAS  Google Scholar 

  52. Li Z, Hillmyer MA, Lodge TP (2006) Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers. Langmuir 22:9409–9417

    Article  CAS  Google Scholar 

  53. Venkataraman S, Lee AL, Maune HT, Hedrick JL, Prabhu VM, Yang YY (2013) Formation of Disk- and Stacked-Disk-like Self-Assembled Morphologies from Cholesterol-Functionalized Amphiphilic Polycarbonate Diblock Copolymers. Macromolecules 46(12):4839–4846

    Article  CAS  Google Scholar 

  54. Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen Hoven T, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Trans Med 4(128):128–139

    Google Scholar 

  55. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 30(4):1621–1627

    Article  CAS  Google Scholar 

  56. Kieler-Ferguson HM, Fréchet JMJ, Szoka FC Jr (2013) Clinical developments of chemotherapeutic nanomedicines: polymers and liposomes for delivery of camptothecins and platinum (II) drugs. Nanomed Nanobiotechnol 5(2):130–138

    Article  CAS  Google Scholar 

  57. Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, Kataoka K, Kato Y, Yoshizaki T (2013) Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci 104(3):369–374

    Google Scholar 

  58. Yamamoto Y, Hyodo I, Takigahira M, Koga Y, Yasunaga M, Harada M, Hayashi T, Kato Y, Matsumura Y (2014) Effect of combined treatment with the epirubicin-incorporating micelles (NC-6300) and 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016) on a human gastric cancer model. Int J Cancer 135(1):214–223

    Google Scholar 

  59. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934

    Article  CAS  Google Scholar 

  60. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  CAS  Google Scholar 

  61. Discher BM, Won Y-Y, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    Article  CAS  Google Scholar 

  62. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116(2):150–158

    Article  CAS  Google Scholar 

  63. Holder SJ, Sommerdijk NAJM (2011) New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles. Polym Chem 2(5):1018–1028

    Article  CAS  Google Scholar 

  64. Barenholz Y (2012) Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  Google Scholar 

  65. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  Google Scholar 

  66. Cooper ER (2010) Nanoparticles: a personal experience for formulating poorly water soluble drugs. J Control Release 141(3):300–302

    Article  CAS  Google Scholar 

  67. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  CAS  Google Scholar 

  68. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  Google Scholar 

  69. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910

    Article  CAS  Google Scholar 

  70. Wei A, Mehtala JG, Patri AK (2012) Challenges and opportunities in the advancement of nanomedicines. J Control Release 164(2):236–246

    Article  CAS  Google Scholar 

  71. Venditto VJ, Szoka FC Jr (2013) Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev 65(1):80–88

    Article  CAS  Google Scholar 

  72. Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 18(12):3229–3241

    Article  CAS  Google Scholar 

  73. Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726

    Article  Google Scholar 

  74. Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed Nanotechnol Biol Med 1(4):313–316

    Article  CAS  Google Scholar 

  75. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, Clogston JD, McNeil SE (2013) Common pitfalls in nanotechnology: lessons learned from NCI’s nanotechnology characterization laboratory. Integr Biol 5(1):66–73

    Article  CAS  Google Scholar 

  76. Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10(6):2093–2110

    Article  CAS  Google Scholar 

  77. Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. TrAC Trends Anal Chem 30(1):4–17

    Article  CAS  Google Scholar 

  78. Friedrich H, Frederik PM, de With G, Sommerdijk NAJM (2010) Imaging of self-assembled structures: interpretation of TEM and Cryo-TEM images. Angew Chem Int Ed 49(43):7850–7858

    Article  CAS  Google Scholar 

  79. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  CAS  Google Scholar 

  80. Li J, Chang X, Chen X, Gu Z, Zhao F, Chai Z, Zhao Y (2014) Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnol Adv 32:727–743

    Google Scholar 

  81. Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571

    Article  CAS  Google Scholar 

  82. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  CAS  Google Scholar 

  83. Burgess P, Hutt PB, Farokhzad OC, Langer R, Minick S, Zale S (2010) On firm ground: IP protection of therapeutic nanoparticles. Nat Biotechnol 28(12):1267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore). Dr. Yi Yan Yang’s support for this work is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrinivas Venkataraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Venkataraman, S. (2014). Rational Design of Multifunctional Nanoscale Self-Assembled Soft Materials for Biomedical Delivery Application. In: Pan, D. (eds) Personalized Medicine with a Nanochemistry Twist. Topics in Medicinal Chemistry, vol 20. Springer, Cham. https://doi.org/10.1007/7355_2014_76

Download citation

Publish with us

Policies and ethics