Skip to main content

Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists

  • Chapter
  • First Online:
Chemokines

Abstract

CXCR3 is a CXC chemokine receptor that, together with its three major ligands, CXCL9 (MIG), CXCL10 (IP-10), and CXCL11 (I-TAC), is involved in inflammatory responses, mediated mainly by T cells. In several immune-related diseases, including chronic obstructive pulmonary disease (COPD), inflammatory bowel disease (IBD), rheumatoid arthritis, multiple sclerosis, and atherosclerosis, CXCR3 and/or its ligands are found to be overexpressed, potentially indicating a role for this receptor in these diseases. Animal models have confirmed the therapeutic potential of targeting CXCR3 in the treatment of such diseases. Several peptidic, peptidomimetic, and small non-peptidomimetic CXCR3 ligands have been disclosed in the past 10 years. These ligands have served as chemical tools for the investigation of CXCR3 activation, blocking, and signaling, and some of these ligand series have been developed as potential therapeutic agents against inflammation. Computational modeling studies, facilitated by the recent developments in GPCR structural biology, together with mutagenesis and pharmacological studies, have aided in understanding how these ligands interact with CXCR3.

This chapter will give an overview on how the combination of these chemical, computational, and pharmacological tools and techniques has increased our understanding of the molecular mechanisms by which small-molecule antagonists and agonists bind to CXCR3 compared to the relatively large chemokines. A detailed overview of CXCR3 ligand structure-activity relationships and structure-function relationships will be presented. This comparative analysis reveals that the full spectrum of antagonist and agonist effects on CXCR3 is now within reach by appropriate scaffolds and chemical modifications. Many of these ligands display behavior deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. Moreover, the computer-assisted molecular modeling of CXCR3 receptor-ligand interactions is discussed in view of GPCR crystal structures and mutagenesis studies of CXCR3 and other chemokine receptors. Improved insights in the interplay between CXCR3-ligand interactions and CXCR3-mediated signaling pathways potentially open up novel therapeutic opportunities in the area of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184(3):963–969. doi:10.1084/jem.184.3.963

    CAS  Google Scholar 

  2. Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101(4):746–754. doi:10.1172/JCI1422

    CAS  Google Scholar 

  3. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187(1):129–134. doi:10.1084/jem.187.1.129

    CAS  Google Scholar 

  4. Liu L, Callahan MK, Huang D, Ransohoff RM (2005) Chemokine receptor CXCR3: an unexpected enigma. Curr Top Dev Biol 68:149–181. doi:10.1016/S0070-2153(05)68006-4

    CAS  Google Scholar 

  5. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187(12):2009–2021. doi:10.1084/jem.187.12.2009

    CAS  Google Scholar 

  6. Weng Y, Siciliano SJ, Waldburger KE, Sirotina-Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS, DeMartino JA (1998) Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem 273(29):18288–18291. doi:10.1074/jbc.273.29.18288

    CAS  Google Scholar 

  7. Tensen CP, Flier J, Van Der Raaij-Helmer EM, Sampat-Sardjoepersad S, Van Der Schors RC, Leurs R, Scheper RJ, Boorsma DM, Willemze R (1999) Human IP-9: a keratinocyte-derived high affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). J Invest Dermatol 112(5):716–722. doi:10.1046/j.1523-1747.1999.00581.x

    CAS  Google Scholar 

  8. Loetscher M, Loetscher P, Brass N, Meese E, Moser B (1998) Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28(11):3696–3705. doi:10.1002/(SICI)1521-4141(199811)28:11<3696::AID-IMMU3696>3.0.CO;2-W

    CAS  Google Scholar 

  9. Jenh CH, Cox MA, Hipkin W, Lu T, Pugliese-Sivo C, Gonsiorek W, Chou CC, Narula SK, Zavodny PJ (2001) Human B cell-attracting chemokine 1 (BCA-1; CXCL13) is an agonist for the human CXCR3 receptor. Cytokine 15(3):113–121. doi:10.1006/cyto.2001.0923

    CAS  Google Scholar 

  10. Mueller A, Meiser A, McDonagh EM, Fox JM, Petit SJ, Xanthou G, Williams TJ, Pease JE (2008) CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. J Leukocyte Biol 83:875–882. doi: 10.1189/jlb.1006645

    CAS  Google Scholar 

  11. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197(11):1537–1549. doi: 10.1084/jem.20021897

    CAS  Google Scholar 

  12. Colvin RA, Campanella GSV, Sun JT, Luster AD (2004) Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 279(29):30219–30227

    CAS  Google Scholar 

  13. Smit MJ, Verdijk P, van der Raaij-Helmer EMH, Navis M, Hensbergen PJ, Leurs R, Tensen CP (2003) CXCR3-mediated chemotaxis of human T cells is regulated by a G(i)- and phospholipase C-dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood 102(6):1959–1965. doi: 10.1182/blood-2002-12-3945

    CAS  Google Scholar 

  14. Scholten DJ, Canals M, Wijtmans M, de Munnik S, Nguyen P, Verzijl D, de Esch IJ, Vischer HF, Smit MJ, Leurs R (2012) Pharmacological characterization of a small-molecule agonist for the chemokine receptor CXCR3. Br J Pharmacol 166(3):898–911. doi:10.1111/j.1476-5381.2011.01648.x

    CAS  Google Scholar 

  15. Canals M, Scholten DJ, de Munnik S, Han MK, Smit MJ, Leurs R (2012) Ubiquitination of CXCR7 controls receptor trafficking. PLoS One 7(3):e34192. doi:10.1371/journal.pone.0034192

    CAS  Google Scholar 

  16. Dagan-Berger M, Feniger-Barish R, Avniel S, Wald H, Galun E, Grabovsky V, Alon R, Nagler A, Ben-Baruch A, Peled A (2006) Role of CXCR3 carboxyl terminus and third intracellular loop in receptor-mediated migration, adhesion and internalization in response to CXCL11. Blood 107(10):3821–3831. doi:10.1182/blood-2004-01-0214

    CAS  Google Scholar 

  17. Meiser A, Mueller A, Wise EL, McDonagh EM, Petit SJ, Saran N, Clark PC, Williams TJ, Pease JE (2008) The chemokine receptor CXCR3 is degraded following internalization and is replenished at the cell surface by de novo synthesis of receptor. J Immunol 180(10):6713–6724

    CAS  Google Scholar 

  18. Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62(2):305–330. doi:10.1124/pr.109.002436

    CAS  Google Scholar 

  19. Ferre S, Casado V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66(2):413–434. doi:10.1124/pr.113.00805266/2/413

  20. Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R (2012) Pharmacological modulation of chemokine receptor function. Br J Pharmacol 165(6):1617–1643. doi:10.1111/j.1476-5381.2011.01551.x

    CAS  Google Scholar 

  21. Vischer HF, Nijmeijer S, Smit MJ, Leurs R (2008) Viral hijacking of human receptors through heterodimerization. Biochem Biophys Res Commun 377 (1):93–97. doi:10.1016/j.bbrc.2008.09.082

  22. Watts AO, van Lipzig MM, Jaeger WC, Seeber RM, van Zwam M, Vinet J, van der Lee MM, Siderius M, Zaman GJ, Boddeke HW, Smit MJ, Pfleger KD, Leurs R, Vischer HF (2013) Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes. Br J Pharmacol 168(7):1662–1674. doi:10.1111/bph.12064

    CAS  Google Scholar 

  23. Cox MA, Jenh CH, Gonsiorek W, Fine J, Narula SK, Zavodny PJ, Hipkin RW (2001) Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Mol Pharmacol 59(4):707–715. doi: 10.1124/mol.59.4.707

    CAS  Google Scholar 

  24. Xanthou G, Williams TJ, Pease JE (2003) Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. Eur J Immunol 33(10):2927–2936. doi:10.1002/eji.200324235

    CAS  Google Scholar 

  25. Watts AO, Scholten DJ, Heitman LH, Vischer HF, Leurs R (2012) Label-free impedance responses of endogenous and synthetic chemokine receptor CXCR3 agonists correlate with Gi-protein pathway activation. Biochem Biophys Res Commun 419(2):412–418. doi:10.1016/j.bbrc.2012.02.036

    CAS  Google Scholar 

  26. Kouroumalis A, Nibbs RJ, Aptel H, Wright KL, Kolios G, Ward SG (2005) The chemokines CXCL9, CXCL10, and CXCL11 differentially stimulate G alpha i-independent signaling and actin responses in human intestinal myofibroblasts. J Immunol 175(8):5403–5411. doi:10.4049/jimmunol.175.8.5403

    CAS  Google Scholar 

  27. Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunoly Today 20(6):254–257. doi:10.1016/S0167-5699(99)01469-3

    CAS  Google Scholar 

  28. Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820. doi:10.1146/annurev.immunol.24.021605.090529

    CAS  Google Scholar 

  29. Clark-Lewis I, Mattioli I, Gong JH, Loetscher P (2003) Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem 278(1):289–295. doi:10.1074/jbc.M209470200

    CAS  Google Scholar 

  30. Hasegawa H, Inoue A, Kohno M, Muraoka M, Miyazaki T, Terada M, Nakayama T, Yoshie O, Nose M, Yasukawa M (2006) Antagonist of interferon-inducible protein 10/CXCL10 ameliorates the progression of autoimmune sialadenitis in MRL/lpr mice. Arthrit Rheumat 54(4):1174–1183. doi: 10.1002/art.21745

    CAS  Google Scholar 

  31. Hensbergen PJ, van der Raaij-Helmer EMH, Dijkman R, van der Schors RC, Werner-Felmayer G, Boorsma DM, Scheper RJ, Willemze R, Tensen CP (2001) Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity. Eur J Biochem 268(18):4992–4999. doi:10.1046/j.0014-2956.2001.02433.x

    CAS  Google Scholar 

  32. Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G, Detheux M, Parmentier M, Durinx C, Lambeir A-M, Neyts J, Liekens S, Maudgal PC, Billiau A, Van Damme J (2001) Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood 98(13):3554–3561. doi:10.1182/blood.V98.13.3554

    CAS  Google Scholar 

  33. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, Fernandez S, Martin de Ana A, Jones DR, Toran JL, Martinez AC (2001) Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 20(10):2497–2507. doi:10.1093/emboj/20.10.2497

    CAS  Google Scholar 

  34. Schall TJ, Proudfoot AE (2011) Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 11(5):355–363. doi:10.1038/nri2972

    CAS  Google Scholar 

  35. Rosenblum JM, Zhang Q-W, Siu G, Collins TL, Sullivan T, Dairaghi DJ, Medina JC, Fairchild RL (2009) CXCR3 antagonism impairs the development of donor-reactive, IFN-γ-producing effectors and prolongs allograft survival. Transplantation 87(3):360–369. doi:10.1097/TP.0b013e31819574e9

    CAS  Google Scholar 

  36. Romagnani P, Crescioli C (2012) CXCL10: a candidate biomarker in transplantation. Clinica Chimica Acta 413(17–18):1364–1373. doi:10.1016/j.cca.2012.02.009

    CAS  Google Scholar 

  37. Hancock WW, Lu B, Gao W, Csizmadia V, Faia K, King JA, Smiley ST, Ling M, Gerard NP, Gerard C (2000) Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 192(10):1515–1520. doi:10.1084/jem.192.10.1515

    CAS  Google Scholar 

  38. Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P, Luster AD (1999) Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J Clin Invest 104(8):1041–1050. doi:10.1172/JCI6993

    CAS  Google Scholar 

  39. Mohan K, Issekutz TB (2007) Blockade of chemokine receptor CXCR3 inhibits T cell recruitment to inflamed joints and decreases the severity of adjuvant arthritis. J Immunol 179(12):8463–8469. doi:10.4049/jimmunol.179.12.8463

    CAS  Google Scholar 

  40. Saetta M, Mariani M, Panina-Bordignon P, Turato G, Buonsanti C, Baraldo S, Bellettato CM, Papi A, Corbetta L, Zuin R, Sinigaglia F, Fabbri LM (2002) Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 165(10):1404–1409. doi: 10.1164/rccm.2107139

    Google Scholar 

  41. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103(6):807–815. doi: 10.1172/JCI5150

    CAS  Google Scholar 

  42. Enghard P, Humrich JY, Rudolph B, Rosenberger S, Biesen R, Kuhn A, Manz R, Hiepe F, Radbruch A, Burmester GR, Riemekasten G (2009) CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients. Arthrit Rheumat 60(1):199–206. doi:10.1002/art.24136

    CAS  Google Scholar 

  43. Melter M, Exeni A, Reinders ME, Fang JC, McMahon G, Ganz P, Hancock WW, Briscoe DM (2001) Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection. Circulation 104(21):2558–2564. doi:10.1161/ hc4601.098010

    CAS  Google Scholar 

  44. Kao J, Kobashigawa J, Fishbein MC, MacLellan WR, Burdick MD, Belperio JA, Strieter RM (2003) Elevated serum levels of the CXCR3 chemokine ITAC are associated with the development of transplant coronary artery disease. Circulation 107(15):1958–1961. doi:10.1161/01.CIR.0000069270.16498.75

    CAS  Google Scholar 

  45. Bauer JW, Baechler EC, Petri M, Batliwalla FM, Crawford D, Ortmann WA, Espe KJ, Li W, Patel DD, Gregersen PK, Behrens TW (2006) Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 3(12):e491. doi:10.1371/journal.pmed.0030491

    Google Scholar 

  46. Lit LC, Wong CK, Tam LS, Li EK, Lam CW (2006) Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann Rheumat Dis 65(2):209–215. doi:10.1136/ard.2005.038315

    CAS  Google Scholar 

  47. Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe T, Inaba K, Minato N, Oshima M, Taketo MM (2004) Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 64(11):4010–4017. doi:10.1158/0008-5472.CAN-03-1757

    CAS  Google Scholar 

  48. Walser TC, Rifat S, Ma XR, Kundu N, Ward C, Goloubeva O, Johnson MG, Medina JC, Collins TL, Fulton AM (2006) Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res 66(15):7701–7707. doi:10.1158/0008-5472.CAN-06-0709

    CAS  Google Scholar 

  49. Kawada K, Hosogi H, Sonoshita M, Sakashita H, Manabe T, Shimahara Y, Sakai Y, Takabayashi A, Oshima M, Taketo MM (2007) Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene 26(32):4679–4688. doi:10.1038/sj.onc.1210267

    CAS  Google Scholar 

  50. Murakami T, Kawada K, Iwamoto M, Akagami M, Hida K, Nakanishi Y, Kanda K, Kawada M, Seno H, Taketo MM, Sakai Y (2013) The role of CXCR3 and CXCR4 in colorectal cancer metastasis. Int J Cancer 132(2):276–287. doi:10.1002/ijc.27670

    CAS  Google Scholar 

  51. Gao P, Zhou XY, Yashiro-Ohtani Y, Yang YF, Sugimoto N, Ono S, Nakanishi T, Obika S, Imanishi T, Egawa T, Nagasawa T, Fujiwara H, Hamaoka T (2003) The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. J Leukocyte Biol 73(2):273–280. doi:10.1189/jlb.0602269

    CAS  Google Scholar 

  52. van Wanrooij EJ, De Jager SC, van Es T, de Vos P, Birch HL, Owen DA, Watson RJ, Biessen EA, Chapman GA, van Berkel TJ, Kuiper J (2008) CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor–deficient mice. Arterioscler Thromb Vasc Biol 28:251–257. doi:10.1161/ ATVBAHA.107.147827

    Google Scholar 

  53. Liu C, Luo D, Reynolds BA, Meher G, Katritzky AR, Lu B, Gerard CJ, Bhadha CP, Harrison JK (2011) Chemokine receptor CXCR3 promotes growth of glioma. Carcinogenesis 32(2):129–137. doi:10.1093/carcin/bgq224

    Google Scholar 

  54. Jenh CH, Cox MA, Cui L, Reich EP, Sullivan L, Chen SC, Kinsley D, Qian S, Kim SH, Rosenblum S, Kozlowski J, Fine JS, Zavodny PJ, Lundell D (2012) A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection. BMC Immunol 13(1):2. doi: 10.1186/1471-2172-13-2

    CAS  Google Scholar 

  55. Kakuta Y, Okumi M, Miyagawa S, Tsutahara K, Abe T, Yazawa K, Matsunami K, Otsuka H, Takahara S, Nonomura N (2012) Blocking of CCR5 and CXCR3 suppresses the infiltration of macrophages in acute renal allograft rejection. Transplantation 93(1):24–31. doi:10.1097/TP.0b013e31823aa585

    CAS  Google Scholar 

  56. Baker MS, Chen X, Rotramel AR, Nelson JJ, Lu B, Gerard C, Kanwar Y, Kaufman DB (2003) Genetic deletion of chemokine receptor CXCR3 or antibody blockade of its ligand IP-10 modulates posttransplantation graft-site lymphocytic infiltrates and prolongs functional graft survival in pancreatic islet allograft recipients. Surgery 134(2):126–133. doi:10.1067/msy.2003.213

    Google Scholar 

  57. Zerwes HG, Li J, Kovarik J, Streiff M, Hofmann M, Roth L, Luyten M, Pally C, Loewe RP, Wieczorek G, Banteli R, Thoma G, Luckow B (2008) The chemokine receptor Cxcr3 is not essential for acute cardiac allograft rejection in mice and rats. Am J Transplant 8(8):1604–1613. doi: 10.1111/j.1600-6143.2008.02309.x

    CAS  Google Scholar 

  58. Kwun J, Hazinedaroglu SM, Schadde E, Kayaoglu HA, Fechner J, Hu HZ, Roenneburg D, Torrealba J, Shiao L, Hong X, Peng R, Szewczyk JW, Sullivan KA, DeMartino J, Knechtle SJ (2008) Unaltered graft survival and intragraft lymphocytes infiltration in the cardiac allograft of Cxcr3−/− mouse recipients. Am J Transplant 8(8):1593–1603. doi:10.1111/j.1600-6143.2008.02250.x

    CAS  Google Scholar 

  59. Pradelli E, Karimdjee-Soilihi B, Michiels JF, Ricci JE, Millet MA, Vandenbos F, Sullivan TJ, Collins TL, Johnson MG, Medina JC, Kleinerman ES, Schmid-Alliana A, Schmid-Antomarchi H (2009) Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. Int J Cancer 125(11):2586–2594. doi:10.1002/ijc.24665

    CAS  Google Scholar 

  60. Goldberg-Bittman L, Sagi-Assif O, Meshel T, Nevo I, Levy-Nissenbaum O, Yron I, Witz IP, Ben-Baruch A (2005) Cellular characteristics of neuroblastoma cells: regulation by the ELR–CXC chemokine CXCL10 and expression of a CXCR3-like receptor. Cytokine 29(3):105–117. doi:10.1016/j.cyto.2004.10.003

    CAS  Google Scholar 

  61. Cambien B, Karimdjee BF, Richard-Fiardo P, Bziouech H, Barthel R, Millet MA, Martini V, Birnbaum D, Scoazec JY, Abello J, Al Saati T, Johnson MG, Sullivan TJ, Medina JC, Collins TL, Schmid-Alliana A, Schmid-Antomarchi H (2009) Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. Br J Cancer 100(11):1755–1764. doi:10.1038/sj.bjc.6605078

    CAS  Google Scholar 

  62. Winkler AE, Brotman JJ, Pittman ME, Judd NP, Lewis JS Jr, Schreiber RD, Uppaluri R (2011) CXCR3 enhances a T-cell-dependent epidermal proliferative response and promotes skin tumorigenesis. Cancer Res 71(17):5707–5716. doi:10.1158/0008-5472.CAN-11-0907

    CAS  Google Scholar 

  63. Giuliani N, Bonomini S, Romagnani P, Lazzaretti M, Morandi F, Colla S, Tagliaferri S, Lasagni L, Annunziato F, Crugnola M, Rizzoli V (2006) CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica 91(11):1489–1497

    CAS  Google Scholar 

  64. Wu Q, Dhir R, Wells A (2012) Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Mol Cancer 11:3. doi:10.1186/1476-4598-11-3

    CAS  Google Scholar 

  65. Walser TC, Ma X, Kundu N, Dorsey R, Goloubeva O, Fulton AM (2007) Immune-mediated modulation of breast cancer growth and metastasis by the chemokine Mig (CXCL9) in a murine model. J Immunother 30(5):490–498. doi:10.1097/CJI.0b013e318031b551

    CAS  Google Scholar 

  66. Andersson A, Yang SC, Huang M, Zhu L, Kar UK, Batra RK, Elashoff D, Strieter RM, Dubinett SM, Sharma S (2009) IL-7 promotes CXCR3 ligand-dependent T cell antitumor reactivity in lung cancer. J Immunol 182(11):6951–6958. doi:10.4049/jimmunol.0803340

    CAS  Google Scholar 

  67. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68(20):8437–8445. doi:10.1158/0008-5472.CAN-08-1440

    CAS  Google Scholar 

  68. Ehlert JE, Addison CA, Burdick MD, Kunkel SL, Strieter RM (2004) Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunol 173(10):6234–6240. doi:10.4049/jimmunol.173.10.6234

    CAS  Google Scholar 

  69. Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, Turner T (2012) An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One 7(7):e40812. doi:10.1371/journal.pone.0040812

    CAS  Google Scholar 

  70. Datta D, Banerjee P, Gasser M, Waaga-Gasser AM, Pal S (2010) CXCR3-B can mediate growth-inhibitory signals in human renal cancer cells by down-regulating the expression of heme oxygenase-1. J Biol Chem 285(47):36842–36848. doi:10.1074/jbc.M110.170324

    CAS  Google Scholar 

  71. Lo BK, Yu M, Zloty D, Cowan B, Shapiro J, McElwee KJ (2010) CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas. Am J Pathol 176(5):2435–2446. doi:10.2353/ajpath.2010.081059

    CAS  Google Scholar 

  72. Yates CC, Krishna P, Whaley D, Bodnar R, Turner T, Wells A (2010) Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring. Am J Pathol 176(4):1743–1755. doi:10.2353/ajpath.2010.090564

    Google Scholar 

  73. Yates CC, Whaley D, Kulasekeran P, Hancock WW, Lu B, Bodnar R, Newsome J, Hebda PA, Wells A (2007) Delayed and deficient dermal maturation in mice lacking the CXCR3 ELR-negative CXC chemokine receptor. Am J Pathol 171(2):484–495. doi: 10.2353/ajpath.2007.061092

    CAS  Google Scholar 

  74. Yates CC, Whaley D, Wells A (2012) Transplanted fibroblasts prevents dysfunctional repair in a murine CXCR3-deficient scarring model. Cell Transplant 21(5):919–931. doi:10.3727/096368911X623817

    Google Scholar 

  75. Yates CC, Whaley D, Y-Chen A, Kulesekaran P, Hebda PA, Wells A (2008) ELR-negative CXC chemokine CXCL11 (IP-9/I-TAC) facilitates dermal and epidermal maturation during wound repair. Am J Pathol 173(3):643–652. doi:10.2353/ajpath.2008.070990

  76. Collins TL, Johnson MG, Medina JC (2007) In: Neote K, Letts GL, Moser B (eds) Chemokine biology-basic research and clinical application, vol 2. Birkhauser Verlag, Basel, Switzerland p 79

    Google Scholar 

  77. Wijtmans M, Verzijl D, Leurs R, de Esch IJ, Smit MJ (2008) Towards small-molecule CXCR3 ligands with clinical potential. ChemMedChem 3(6):861–872. doi:10.1002/cmdc.200700365

    CAS  Google Scholar 

  78. Wijtmans M, de Esch IJP, Leurs R (2011) In: Smit MJ, Lira SA, Leurs R (eds) Chemokine receptors as drug targets. Wiley-VCH, Weinheim, pp 301–315. doi:10.1002/9783527631995.ch13

  79. Roumen L, Scholten DJ, de Kruijf P, de Esch IJP, Leurs R, de Graaf C (2012) C(X)CR in silico: Computer-aided prediction of chemokine receptor–ligand interactions. Drug Discov Today Technol 9(4):e281–e291. doi:10.1016/j.ddtec.2012.05.002

    CAS  Google Scholar 

  80. Scholten DJ, Roumen L, Wijtmans M, Verkade-Vreeker MC, Custers H, Lai M, de Hooge D, Canals M, de Esch IJ, Smit MJ, de Graaf C, Leurs R (2014) Identification of overlapping but differential binding sites for the high-affinity CXCR3 antagonists NBI-74330 and VUF11211. Mol Pharmacol 85(1):116–126. doi:10.1124/mol.113.088633

    Google Scholar 

  81. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923

    CAS  Google Scholar 

  82. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194. doi:10.1038/nature11896

    CAS  Google Scholar 

  83. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071. doi:10.1126/science.1194396science.1194396

    CAS  Google Scholar 

  84. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu B (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341(6152):1387–1390. doi:10.1126/science.1241475

    CAS  Google Scholar 

  85. Ondeyka JG, Herath KB, Jayasuriya H, Polishook JD, Bills GF, Dombrowski AW, Mojena M, Koch G, DiSalvo J, DeMartino J, Guan Z, Nanakorn W, Morenberg CM, Balick MJ, Stevenson DW, Slattery M, Borris RP, Singh SB (2005) Discovery of structurally diverse natural product antagonists of chemokine receptor CXCR3. Mol Diversity 9:123–129. doi:10.1007/s11030-005-1296-8

    CAS  Google Scholar 

  86. Schall TJ, Dairaghi DJ, McMaster BE (2001) Compounds and methods for modulating CXCR3 function. WO0116114

    Google Scholar 

  87. Johnson M, Li A-R, Liu J, Fu Z, Zhu L, Miao S, Wang X, Xu Q, Huang A, Marcus A, Xu F, Ebsworth K, Sablan E, Danao J, Kumer J, Dairaghi D, Lawrence C, Sullivan T, Tonn G, Schall T, Collins T, Medina J (2007) Discovery and optimization of a series of quinazolinone-derived antagonists of CXCR3. Bioorg Med Chem Lett 17(12):3339–3343. doi:10.1016/j.bmcl.2007.03.106

    CAS  Google Scholar 

  88. Storelli S, Verdijk P, Verzijl D, Timmerman H, van de Stolpe AC, Tensen CP, Smit MJ, De Esch IJP, Leurs R (2005) Synthesis and structure-activity relationship of 3-phenyl-3H-quinazolin-4-one derivatives as CXCR3 chemokine receptor antagonists. Bioorg Med Chem Lett 15(11):2910–2913. doi: 10.1016/j.bmcl.2005.03.070

    CAS  Google Scholar 

  89. Heise CE, Pahuja A, Hudson SC, Mistry MS, Putnam AL, Gross MM, Gottlieb PA, Wade WS, Kiankarimi M, Schwarz D, Crowe P, Zlotnik A, Alleva DG (2005) Pharmacological characterization of CXC chemokine receptor 3 ligands and a small molecule antagonist. J Pharmacol Exp Ther 313(3):1263–1271. doi: 10.1124/jpet.105.083683

    CAS  Google Scholar 

  90. Medina JC, Johnson MG, Li A, Liu J, Huang AX, Zhu L, Marcus AP (2002) CXCR3 antagonists. WO02083143

    Google Scholar 

  91. Johnson MG (2006) Presented at the XIXth international symposium on medicinal chemistry, Istanbul, Turkey, Aug 29–Sep 2

    Google Scholar 

  92. Storelli S, Verzijl D, Al-Badie J, Elders N, Bosch L, Timmerman H, Smit MJ, De Esch IJP, Leurs R (2007) Synthesis and structure-activity relationships of 3H-quinazolin-4-ones and 3H-pyrido[2,3-d]pyrimidin-4-ones as CXCR3 receptor antagonists. Arch Pharm 340(6):281–291. doi:10.1002/ardp.200700037

    CAS  Google Scholar 

  93. Floren LC (2003). Presented at inflammation 2003 – sixth world congress, Vancouver, Canada, Aug 2–6

    Google Scholar 

  94. Berry K, Friedrich M, Kersey K, Stempien M, Wagner F, van Lier J, Sabat R, Wolk K (2004) Evaluation of T0906487, a CXCR3 antagonist, in a phase 2a psoriasis trial. Inflammation Res Suppl 53:pS222

    Google Scholar 

  95. Tonn GR, Wong SG, Wong SC, Johnson MG, Ma J, Cho R, Floren LC, Kersey K, Berry K, Marcus AP, Wang X, Van Lengerich B, Medina JC, Pearson PG, Wong BK (2009) An inhibitory metabolite leads to dose- and time-dependent pharmacokinetics of AMG 487 in human subjects following multiple dosing. Drug Metab Disposit 37:502–513. doi: 10.1124/dmd.108.021931

    CAS  Google Scholar 

  96. Henne KR, Tran TB, VandenBrink BM, Rock DA, Aidasani DK, Subramanian R, Mason AK, Stresser DM, Teffera Y, Wong SG, Johnson MG, Chen X, Tonn GR, Wong BK (2012) Sequential metabolism of AMG 487, a novel CXCR3 antagonist, results in formation of quinone reactive metabolites that covalently modify CYP3A4 Cys239 and cause time-dependent inhibition of the enzyme. Drug Metab Disposit 40(7):1429–1440. doi: 10.1124/dmd.112.045708

    CAS  Google Scholar 

  97. Li A-R, Johnson MG, Liu J, Chen X, Du X, Mihalic JT, Deignan J, Gustin DJ, Duquette J, Fu Z, Zhu L, Marcus AP, Bergeron P, McGee LR, Danao J, Sullivan T, Ma J, Tang L, Tonn G, Collins T, Medina JC (2008) Optimisation of the heterocyclic core of the quinazolinone-derived CXCR3 antagonists. Bioorg Med Chem Lett 18:688–693. doi: 10.1016/j.bmcl.2007.11.060

    CAS  Google Scholar 

  98. Liu J, Fu Z, Li AR, Johnson M, Zhu L, Marcus A, Danao J, Sullivan T, Tonn G, Collins T, Medina J (2009) Optimization of a series of quinazolinone-derived antagonists of CXCR3. Bioorg Med Chem Lett 19(17):5114–5118. doi:10.1016/j.bmcl.2009.07.032

    CAS  Google Scholar 

  99. Bernat V, Heinrich MR, Baumeister P, Buschauer A, Tschammer N (2012) Synthesis and application of the first radioligand targeting the allosteric binding pocket of chemokine receptor CXCR3. ChemMedChem 7(8):1481–1489. doi:10.1002/cmdc.201200184

    CAS  Google Scholar 

  100. Chen X, Mihalic J, Deignan J, Gustin DJ, Duquette J, Du X, Chan J, Fu Z, Johnson M, Li AR, Henne K, Sullivan T, Lemon B, Ma J, Miao S, Tonn G, Collins T, Medina JC (2012) Discovery of potent and specific CXCR3 antagonists. Bioorg Med Chem Lett 22(1):357–362. doi:10.1016/j.bmcl.2011.10.120

    CAS  Google Scholar 

  101. Chan J, Burke BJ, Baucom K, Hansen K, Bio MM, DiVirgilio E, Faul M, Murry J (2011) Practical syntheses of a CXCR3 antagonist. J Org Chem 76(6):1767–1774. doi:10.1021/jo102399a

    CAS  Google Scholar 

  102. Du X, Chen X, Mihalic J, Deignan J, Duquette J, Li A-R, Lemon B, Ma J, Miao S, Ebsworth K, Sullivan TJ, Tonn G, Collins T, Medina J (2008) Design and optimisation of imidazole derivatives as potent CXCR3 antagonists. Bioorg Med Chem Lett 18:608–613. doi:10.1016/j.bmcl.2007.11.072

    CAS  Google Scholar 

  103. Du X, Gustin DJ, Chen X, Duquette J, McGee LR, Wang Z, Ebsworth K, Henne K, Lemon B, Ma J, Miao S, Sabalan E, Sullivan TJ, Tonn G, Collins TL, Medina JC (2009) Imidazo-pyrazine derivatives as potent CXCR3 antagonists. Bioorg Med Chem Lett 19(17):5200–5204. doi:10.1016/j.bmcl.2009.07.021

    CAS  Google Scholar 

  104. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Igglessi-Markopoulou O, Kollias G (2010) A combined LS-SVM & MLR QSAR workflow for predicting the inhibition of CXCR3 receptor by quinazolinone analogs. Mol Divers 14(2):225–235. doi:10.1007/s11030-009-9163-7

    CAS  Google Scholar 

  105. Allen DR, Bolt A, Chapman GA, Knight RL, Meissner JWG, Owen DA, Watson RJ (2007) Identification and structure-activity relationships of 1-aryl-3-piperidin-4-yl-urea derivatives as CXCR3 receptor antagonists. Bioorg Med Chem Lett 17(3):697–701. doi:10.1016/j.bmcl.2006.10.088

    CAS  Google Scholar 

  106. Watson RJ, Allen DR, Birch HL, Chapman GA, Hannah DR, Knight RL, Meissner JWG, Owen DA, Thomas EJ (2007) Development of CXCR3 antagonists. Part 2: Identification of 2-amino(4-piperidinyl)azoles as potent CXCR3 antagonists. Bioorg Med Chem Lett 17:6806–6810. doi:10.1016/j.bmcl.2007.10.029

    CAS  Google Scholar 

  107. Watson RJ, Allen DR, Birch HL, Chapman GA, Galvin FC, Jopling LA, Knight RL, Meier D, Oliver K, Meissner JW, Owen DA, Thomas EJ, Tremayne N, Williams SC (2008) Development of CXCR3 antagonists. Part 3: tropenyl and homotropenyl-piperidine urea derivatives. Bioorg Med Chem Lett 18:147–151. doi:10.1016/j.bmcl.2007.10.109

    CAS  Google Scholar 

  108. Knight RL, Allen DR, Birch HL, Chapman GA, Galvin FC, Jopling LA, Lock CJ, Meissner JWG, Owen DA, Raphy G, Watson RJ, Williams SC (2008) Development of CXCR3 antagonists, Part 4: discovery of 2-amino-(4-tropinyl) quinolines. Bioorg Med Chem Lett 18:629–633. doi:10.1016/j.bmcl.2007.11.075

    CAS  Google Scholar 

  109. McGuinness BF, Carroll CD, Zawacki LG, Dong G, Yang C, Hobbs DW, Jacob-Samuel B, Hall JW 3rd, Jenh CH, Kozlowski JA, Anilkumar GN, Rosenblum SB (2009) Novel CXCR3 antagonists with a piperazinyl-piperidine core. Bioorg Med Chem Lett 19(17):5205–5208. doi:10.1016/j.bmcl.2009.07.020

    CAS  Google Scholar 

  110. Bongartz JP, Buntinx M, Coesemans E, Hermans B, Lommen GV, Wauwe JV (2008) Synthesis and structure-activity relationship of benzetimide derivatives as human CXCR3 antagonists. Bioorg Med Chem Lett 18:5819–5823. doi:10.1016/j.bmcl.2008.07.115

    CAS  Google Scholar 

  111. Shao Y, Anilkumar GN, Carroll CD, Dong G, Hall JW 3rd, Hobbs DW, Jiang Y, Jenh CH, Kim SH, Kozlowski JA, McGuinness BF, Rosenblum SB, Schulman I, Shih NY, Shu Y, Wong MK, Yu W, Zawacki LG, Zeng Q (2011) II. SAR studies of pyridyl-piperazinyl-piperidine derivatives as CXCR3 chemokine antagonists. Bioorg Med Chem Lett 21(5):1527–1531. doi:10.1016/j.bmcl.2010.12.114

    CAS  Google Scholar 

  112. McGuinness BF, Rosenblum SF, Kozlowksi JA, Anilkumar GN, Kim SH, Shih N-Y, Jenh C-H, Zavodny PJ, Hobbs DW, Dong G, Shao Y, Zawacki LG, Yang C, Carroll CD (2006) Pyridyl and phenyl substituted piperazine-piperidines with CXCR3 antagonist activity. WO2006088919

    Google Scholar 

  113. Wijtmans M, Verzijl D, van Dam CM, Bosch L, Smit MJ, Leurs R, de Esch IJ (2009) Exploring a pocket for polycycloaliphatic groups in the CXCR3 receptor with the aid of a modular synthetic strategy. Bioorg Med Chem Lett 19(8):2252–2257. doi:10.1016/j.bmcl.2009.02.093

    CAS  Google Scholar 

  114. Kim SH, Anilkumar GN, Zawacki LG, Zeng Q, Yang DY, Shao Y, Dong G, Xu X, Yu W, Jiang Y, Jenh CH, Hall JW 3rd, Carroll CD, Hobbs DW, Baldwin JJ, McGuinness BF, Rosenblum SB, Kozlowski JA, Shankar BB, Shih NY (2011) III. Identification of novel CXCR3 chemokine receptor antagonists with a pyrazinyl-piperazinyl-piperidine scaffold. Bioorg Med Chem Lett 21(23):6982–6986. doi:10.1016/j.bmcl.2011.09.120

    CAS  Google Scholar 

  115. Nair AG, Wong MKC, Shu Y, Jiang Y, Jenh C-H, Kim SH, Yang D-Y, Zeng Q, Shao Y, Zawacki LG, Duo J, McGuinness BF, Carroll CD, Hobbs DW, Shih N-Y, Rosenblum SB, Kozlowski JA (2014) IV. Discovery of CXCR3 antagonists substituted with heterocycles as amide surrogates: Improved PK, hERG and metabolic profiles. Bioorg Med Chem Lett 24(4):1085–1088. doi:10.1016/j.bmcl.2014.01.009

    CAS  Google Scholar 

  116. Thoma G, Baenteli R, Lewis I, Wagner T, Oberer L, Blum W, Glickman F, Streiff MB, Zerwes HG (2009) Special ergolines are highly selective, potent antagonists of the chemokine receptor CXCR3: discovery, characterization and preliminary SAR of a promising lead. Bioorg Med Chem Lett 19(21):6185–6188. doi:10.1016/j.bmcl.2009.09.002

    CAS  Google Scholar 

  117. Thoma G, Baenteli R, Lewis I, Jones D, Kovarik J, Streiff MB, Zerwes HG (2011) Special ergolines efficiently inhibit the chemokine receptor CXCR3 in blood. Bioorg Med Chem Lett 21(16):4745–4749. doi:10.1016/j.bmcl.2011.06.070

    CAS  Google Scholar 

  118. Christen S, Holdener M, Beerli C, Thoma G, Bayer M, Pfeilschifter JM, Hintermann E, Zerwes HG, Christen U (2011) Small molecule CXCR3 antagonist NIBR2130 has only a limited impact on type 1 diabetes in a virus-induced mouse model. Clin Exp Immunol 165(3):318–328. doi:10.1111/j.1365-2249.2011.04426.x

    CAS  Google Scholar 

  119. Hayes ME, Wallace GA, Grongsaard P, Bischoff A, George DM, Miao W, McPherson MJ, Stoffel RH, Green DW, Roth GP (2008) Discovery of small molecule benzimidazole antagonists of the chemokine receptor CXCR3. Bioorg Med Chem Lett 18(5):1573–1576. doi:10.1016/j.bmcl.2008.01.074

    CAS  Google Scholar 

  120. Hayes ME, Breinlinger EC, Wallace GA, Grongsaard P, Miao W, McPherson MJ, Stoffel RH, Green DW, Roth GP (2008) Lead identification of 2-iminobenzimidazole antagonists of the chemokine receptor CXCR3. Bioorg Med Chem Lett 18(7):2414–2419. doi:10.1016/j.bmcl.2008.02.049

    CAS  Google Scholar 

  121. Wang Y, Busch-Petersen J, Wang F, Kiesow TJ, Graybill TL, Jin J, Yang Z, Foley JJ, Hunsberger GE, Schmidt DB, Sarau HM, Capper-Spudich EA, Wu Z, Fisher LS, McQueney MS, Rivero RA, Widdowson KL (2009) Camphor sulfonamide derivatives as novel, potent and selective CXCR3 antagonists. Bioorg Med Chem Lett 19:114–118. doi:10.1016/j.bmcl.2008.11.008

    CAS  Google Scholar 

  122. Wijtmans M, Verzijl D, Bergmans S, Lai M, Bosch L, Smit MJ, de Esch IJ, Leurs R (2011) CXCR3 antagonists: quaternary ammonium salts equipped with biphenyl- and polycycloaliphatic-anchors. Bioorg Med Chem 19(11):3384–3393. doi:10.1016/j.bmc.2011.04.035

    CAS  Google Scholar 

  123. Crosignani S, Missotten M, Cleva C, Dondi R, Ratinaud Y, Humbert Y, Mandal AB, Bombrun A, Power C, Chollet A, Proudfoot A (2010) Discovery of a novel series of CXCR3 antagonists. Bioorg Med Chem Lett 20(12):3614–3617. doi:10.1016/j.bmcl.2010.04.113

    CAS  Google Scholar 

  124. Cole AG, Stroke IL, Brescia MR, Simhadri S, Zhang JJ, Hussain Z, Snider M, Haskell C, Ribeiro S, Appell KC, Henderson I, Webb ML (2006) Identification and initial evaluation of 4-N-aryl-[1,4]diazepane ureas as potent CXCR3 antagonists. Bioorg Med Chem Lett 16(1):200–203. doi:10.1016/j.bmcl.2005.09.020

    CAS  Google Scholar 

  125. Stroke IL, Cole AG, Simhadri S, Brescia MR, Desai M, Zhang JJ, Merritt JR, Appell KC, Henderson I, Webb ML (2006) Identification of CXCR3 receptor agonists in combinatorial small-molecule libraries. Biochem Biophys Res Commun 349(1):221–228. doi:10.1016/j.bbrc.2006.08.019

    CAS  Google Scholar 

  126. Afantitis A, Melagraki G, Sarimveis H, Igglessi-Markopoulou O, Kollias G (2009) A novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. Eur J Med Chem 44(2):877–884. doi:10.1016/j.ejmech.2008.05.028

    CAS  Google Scholar 

  127. Vummidi BR, Noreen F, Alzeer J, Moelling K, Luedtke NW (2013) Photodynamic agents with anti-metastatic activities. ACS Chem Biol 8(8):1737–1746. doi:10.1021/cb400008t

    CAS  Google Scholar 

  128. Wise E, Pease JE (2007) Unravelling the mechanisms underpinning chemokine receptor activation and blockade by small molecules: a fine line between agonism and antagonism? Biochem Soc Trans 35:755–759. doi:10.1042/BST0350755

    CAS  Google Scholar 

  129. Nedjai B, Li H, Stroke IL, Wise EL, Webb ML, Merritt JR, Henderson I, Klon AE, Cole AG, Horuk R, Vaidehi N, Pease JE (2012) Small molecule chemokine mimetics suggest a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3. Br J Pharmacol 166(3):912–923. doi:10.1111/j.1476-5381.2011.01660.x

    CAS  Google Scholar 

  130. O'Boyle G, Fox CR, Walden HR, Willet JD, Mavin ER, Hine DW, Palmer JM, Barker CE, Lamb CA, Ali S, Kirby JA (2012) Chemokine receptor CXCR3 agonist prevents human T-cell migration in a humanized model of arthritic inflammation. Proc Natl Acad Sci U S A 109(12):4598–4603. doi:10.1073/pnas.1118104109

    Google Scholar 

  131. O'Boyle G, Mellor P, Kirby JA, Ali S (2009) Anti-inflammatory therapy by intravenous delivery of non-heparan sulfate-binding CXCL12. FASEB J 23(11):3906–3916. doi:10.1096/fj.09-134643

    Google Scholar 

  132. Wijtmans M, Scholten DJ, Roumen L, Canals M, Custers H, Glas M, Vreeker MC, de Kanter FJ, de Graaf C, Smit MJ, de Esch IJ, Leurs R (2012) Chemical subtleties in small-molecule modulation of peptide receptor function: the case of CXCR3 biaryl-type ligands. J Med Chem 55(23):10572–10583. doi:10.1021/jm301240t

    CAS  Google Scholar 

  133. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci 25:366–428. doi:10.1016/S1043-9471(05)80049-7

    CAS  Google Scholar 

  134. Hollenstein K, de Graaf C, Bortolato A, Wang MW, Marshall FH, Stevens RC (2014) Insights into the structure of class B GPCRs. Trends Pharmacol Sci 35(1):12–22. doi:10.1016/j.tips.2013.11.001

    CAS  Google Scholar 

  135. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344(6179):58–64. doi:10.1126/science.1249489

    CAS  Google Scholar 

  136. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343. doi:10.1038/nature12167

    CAS  Google Scholar 

  137. Kooistra AJ, Roumen L, Leurs R, de Esch IJ, de Graaf C (2013) From heptahelical bundle to hits from the Haystack: structure-based virtual screening for GPCR ligands. Methods Enzymol 522:279–336. doi:10.1016/B978-0-12-407865-9.00015-7

    CAS  Google Scholar 

  138. Michino M, Abola E, participants GD, Brooks CL 3rd, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8(6):455–463. doi:10.1038/nrd2877

  139. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R, participants GD (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19(8):1108–1126. doi:10.1016/j.str.2011.05.012

  140. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326. doi:10.1038/nature10954nature10954

    CAS  Google Scholar 

  141. Roumen L, Sanders MP, Vroling B, de Esch IJ, de Vlieg J, Leurs R, Klomp JP, Nabuurs SB, de Graaf C (2011) In Silico Veritas: the pitfalls and challenges of predicting GPCR-ligand interactions. Pharmaceuticals 4(9):1196–1215. doi:10.1021/ci200088d

    CAS  Google Scholar 

  142. Brelot A, Heveker N, Montes M, Alizon M (2000) Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 275(31):23736–23744. doi:10.1074/jbc.M000776200

    CAS  Google Scholar 

  143. Kofuku Y, Yoshiura C, Ueda T, Terasawa H, Hirai T, Tominaga S, Hirose M, Maeda Y, Takahashi H, Terashima Y, Matsushima K, Shimada I (2009) Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J Biol Chem 284(50):35240–35250. doi:10.1074/jbc.M109.024851

    CAS  Google Scholar 

  144. Colvin RA, Campanella GS, Manice LA, Luster AD (2006) CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol 26(15):5838–5849. doi:10.1128/MCB.00556-06

    CAS  Google Scholar 

  145. Anghelescu AV, DeLisle RK, Lowrie JF, Klon AE, Xie X, Diller DJ (2008) Technique for generating three-dimensional alignments of multiple ligands from one-dimensional alignments. J Chem Inform Model 48(5):1041–1054. doi:10.1021/ci700395f

    CAS  Google Scholar 

  146. Rosenkilde MM, Andersen MB, Nygaard R, Frimurer TM, Schwartz TW (2007) Activation of the CXCR3 chemokine receptor through anchoring of a small molecule chelator ligand between TM-III, −IV, and −VI. Mol Pharmacol 71(3):930–941. doi: 10.1124/mol.106.030031

    CAS  Google Scholar 

  147. Scholten DJ (2012) Chemokine receptors CXCR3 and CXCR7: allosteric ligand binding, biased signaling, and receptor regulation. VU University Amsterdam, Amsterdam

    Google Scholar 

  148. Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X (2013) Real-space identification of intermolecular bonding with atomic force microscopy. Science 342(6158):611–614. doi:10.1126/science.1242603science.1242603

    CAS  Google Scholar 

  149. Pierce AC, Sandretto KL, Bemis GW (2002) Kinase inhibitors and the case for CH…O hydrogen bonds in protein-ligand binding. Proteins 49(4):567–576. doi:10.1002/prot.10259

    CAS  Google Scholar 

  150. van Linden OP, Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2014) KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J Med Chem 57(2):249–277. doi:10.1021/jm400378w

    Google Scholar 

  151. Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S (2004) G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad SciUSA 101(31):11304–11309. doi:10.1073/pnas.0401862101

    CAS  Google Scholar 

  152. Bayry J, Tchilian EZ, Davies MN, Forbes EK, Draper SJ, Kaveri SV, Hill AV, Kazatchkine MD, Beverley PC, Flower DR, Tough DF (2008) In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci USA 105(29):10221–10226. doi:10.1073/pnas.0803453105

    CAS  Google Scholar 

  153. Kellenberger E, Springael JY, Parmentier M, Hachet-Haas M, Galzi JL, Rognan D (2007) Identification of nonpeptide CCR5 receptor agonists by structure-based virtual screening. J Med Chem 50(6):1294–1303. doi:10.1021/jm061389p

    CAS  Google Scholar 

  154. Kim J, Yip ML, Shen X, Li H, Hsin LY, Labarge S, Heinrich EL, Lee W, Lu J, Vaidehi N (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One 7(2):e31004. doi:10.1371/journal.pone.0031004

    CAS  Google Scholar 

  155. Huang D, Gu Q, Ge H, Ye J, Salam NK, Hagler A, Chen H, Xu J (2012) On the value of homology models for virtual screening: discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches. J Chem Inform Model 52(5):1356–1366. doi:10.1021/ci300067q

    CAS  Google Scholar 

  156. Mysinger MM, Weiss DR, Ziarek JJ, Gravel S, Doak AK, Karpiak J, Heveker N, Shoichet BK, Volkman BF (2012) Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci USA 109(14):5517–5522. doi:10.1073/pnas.1120431109

    CAS  Google Scholar 

  157. Vitale RM, Gatti M, Carbone M, Barbieri F, Felicita V, Gavagnin M, Florio T, Amodeo P (2013) Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity. ACS Chem Biol 8(12):2762–2770. doi:10.1021/cb400521b

    CAS  Google Scholar 

  158. Yoshikawa Y, Oishi S, Kubo T, Tanahara N, Fujii N, Furuya T (2013) Optimized method of G-protein-coupled receptor homology modeling: its application to the discovery of novel CXCR7 ligands. J Med Chem 56(11):4236–4251. doi:10.1021/jm400307y

    CAS  Google Scholar 

  159. Evers A, Klabunde T (2005) Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J Med Chem 48(4):1088–1097. doi:10.1021/jm0491804

    CAS  Google Scholar 

  160. Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of beta2-adrenergic receptor ligands. Proc Natl Acad Sci USA 106(16):6843–6848. doi:10.1073/pnas.0812657106

    CAS  Google Scholar 

  161. Varady J, Wu X, Fang X, Min J, Hu Z, Levant B, Wang S (2003) Molecular modeling of the three-dimensional structure of dopamine 3 (D3) subtype receptor: discovery of novel and potent D3 ligands through a hybrid pharmacophore- and structure-based database searching approach. J Med Chem 46(21):4377–4392. doi:10.1021/jm030085p

    CAS  Google Scholar 

  162. Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, Schlessinger A, Sali A, Roth BL, Shoichet BK (2011) Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 7(11):769–778. doi:10.1038/nchembio.662

    CAS  Google Scholar 

  163. de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, de Esch IJ, Leurs R (2011) Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J Med Chem 54(23):8195–8206. doi:10.1021/jm2011589

    Google Scholar 

  164. Kooistra AJ, Kuhne S, de Esch IJ, Leurs R, de Graaf C (2013) A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Br J Pharmacol 170(1):101–126. doi:10.1111/bph.12248

    CAS  Google Scholar 

  165. Mason JS, Bortolato A, Congreve M, Marshall FH (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33(5):249–260. doi:10.1016/j.tips.2012.02.005

    CAS  Google Scholar 

  166. Nicholls DJ, Tomkinson NP, Wiley KE, Brammall A, Bowers L, Grahames C, Gaw A, Meghani P, Shelton P, Wright TJ, Mallinder PR (2008) Identification of a putative intracellular allosteric antagonist binding-site in the CXC chemokine receptors 1 and 2. Mol Pharmacol 74(5):1193–1202. doi:10.1124/mol.107.044610

    CAS  Google Scholar 

  167. Salchow K, Bond ME, Evans SC, Press NJ, Charlton SJ, Hunt PA, Bradley ME (2010) A common intracellular allosteric binding site for antagonists of the CXCR2 receptor. Br J Pharmacol 159(7):1429–1439. doi:10.1111/j.1476-5381.2009.00623.x

    CAS  Google Scholar 

  168. de Kruijf P, Lim HD, Roumen L, Renjaan VA, Zhao J, Webb ML, Auld DS, Wijkmans JC, Zaman GJ, Smit MJ, de Graaf C, Leurs R (2011) Identification of a novel allosteric binding site in the CXCR2 chemokine receptor. Mol Pharmacol 80(6):1108–1118. doi:10.1124/mol.111.073825

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maikel Wijtmans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wijtmans, M. et al. (2014). Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. In: Tschammer, N. (eds) Chemokines. Topics in Medicinal Chemistry, vol 14. Springer, Cham. https://doi.org/10.1007/7355_2014_75

Download citation

Publish with us

Policies and ethics