Skip to main content

The Evolution of a Glycoconjugate Vaccine for Candida albicans

  • Chapter
  • First Online:
Carbohydrates as Drugs

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 12))

Abstract

The monoclonal antibody C3.1 has been found to afford protection against Candida albicans, an opportunistic fungal pathogen. The exceptional inhibition profile of C3.1 has propelled synthetic and immunochemical studies of antibody–oligosaccharide interactions, leading to the development of candidate vaccines. The β1,2-linked mannan of the fungal-cell-wall phosphomannan complex is a protective antigen that exhibits a well-defined conformation. A β1,2-linked trisaccharide conjugated to tetanus toxoid generates protective antibodies in rabbits, and STD-NMR studies show that these antibodies approximate the binding profile of the protective monoclonal antibody. This simple trisaccharide–tetanus toxoid conjugate was a strong immunogen in rabbits, but it was poorly immunogenic in mice. However, when a carbohydrate antigen targeted at dendritic cells was incorporated in this conjugate vaccine, it improved uptake and processing of the antigen and resulted in a five-fold higher mannan-specific antibody response together with a cytokine profile appropriate for an antifungal vaccine. When the same trisaccharide was conjugated to a T-cell peptide derived from Candida cell-wall protein, the resulting glycopeptide–tetanus toxoid conjugate engendered a peptide- and carbohydrate-specific response that afforded protection against live challenge by C. albicans without requiring an adjuvant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abe:

Abequose (3,6-dideoxy-d-xylo-hexose)

Ac:

Acetyl

All:

Allyl

′Bn:

Benzyl

Boc:

tert-Butoxycarbonyl

BSA:

Bovine serum albumin

Bu:

Butyl

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

Enol:

Enolase

Fab:

Fragment (of an antibody) that contains the antigen-binding region

Fba:

Fructose-bisphosphate aldolase

Gal:

Galactose

Gap1:

Glyceraldehyde-3-phosphate dehydrogenase

Glc:

Glucose

GlcNAc:

N-acetylglucosamine

Hwp1:

Hyphal wall protein-1

IC50 :

Half-maximal inhibitory concentration

LPS:

Lipopolysaccharide

mAb:

Monoclonal antibody

Man:

Mannose

Me:

Methyl

Met6:

Methyltetrahydropteroyltriglutamate

NOE:

Nuclear Overhauser effect (NMR)

Pgk1:

Phosphoglycerate kinase 1

Pr:

Propyl

Rha:

Rhamnose

STD-NMR:

Saturation transfer difference nuclear magnetic resonance

t-Bu:

tert-Butyl

Tf:

Trifluoromethanesulfonyl (triflyl)

THF:

Tetrahydrofuran

TMSOTf:

Trimethylsilyl trifluoromethanesulfonate

Tr:

Triphenylmethyl (trityl)

trNOE:

Transferred nuclear Overhauser effect (NMR)

T-ROESY:

Two-dimensional rotating-frame Overhauser effect spectroscopy

References

  1. Francis T Jr, Tillett WS (1930) Cutaneous reactions in pneumonia: the development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 52:573–585

    CAS  Google Scholar 

  2. MacLeod CM, Hodges RG, Heidelberger M, Bernhard WG (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82:445–465

    Google Scholar 

  3. Heidelberger M, MacLeod CM, Di Lapi MM (1948) The human antibody response to simultaneous injection of six specific polysaccharides of pneumococcus. J Exp Med 88:369–372

    CAS  Google Scholar 

  4. Parke JC Jr, Schneerson R, Robbins JB, Schlesselman JJ (1977) Interim report of a controlled field trial of immunization with capsular polysaccharides of Haemophilus influenzae type b and group C Neisseria meningitidis in Mecklenburg County, North Carolina (March 1974–March 1976). J Infect Dis 136(Suppl):S51–S56

    Google Scholar 

  5. Peltola H, Mäkelä H, Käyhty H, Jousimies H, Herva E, Hällström K, Sivonen A, Renkonen OV, Pettay O, Karanko V, Ahvonen P, Sarna S (1977) Clinical efficacy of meningococcus group A capsular polysaccharide vaccine in children three months to five years of age. N Engl J Med 297:686–691

    CAS  Google Scholar 

  6. Peltola H, Käyhty H, Sivonen A, Mäkelä PH (1977) Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccines 3 months to 5 Years of age in Finland. Pediatrics 60:730–737

    CAS  Google Scholar 

  7. Eskola J, Takala A, Käyhty H, Peltola H, Mäkelä PH (1991) Experience in Finland with Haemophilus influenzae type b vaccines. Vaccine S14–S16; discussion S25

    Google Scholar 

  8. Goebel WF, Avery OT (1931) Chemo-immunological studies on conjugated carbohydrate-proteins. IV. The synthesis of the p-aminobenzyl ether of the soluble specific substance of Type III Pneumococcus and its coupling with protein. J Exp Med 54:431–436

    CAS  Google Scholar 

  9. Avery OT, Goebel WF (1931) Chemo-immunological studies on conjugated carbohydrate-proteins. V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of Type III Pneumococcus with foreign protein. J Exp Med 54:437–447

    CAS  Google Scholar 

  10. Madore DV, Johnson CL, Phipps DC, Popejoy LA, Eby R, Smith DH (1990) Safety and immunologic response to Haemophilus Influenzae type b oligosaccharide-CRM197 conjugate vaccine in 1- to 6-month-old infants. Pediatrics 85:331–337

    CAS  Google Scholar 

  11. Yogev R, Arditi M, Chadwick EG, Amer MD, Sroka PA (1990) Haemophilus influenzae type b conjugate vaccine (meningococcal protein conjugate): immunogenicity and safety at various doses. Pediatrics 85:690–693

    CAS  Google Scholar 

  12. Gambillara V (2012) The conception and production of conjugate vaccines using recombinant DNA technology. BioPharm Int 25:28–32

    CAS  Google Scholar 

  13. Avci FY, Li X, Tsuji M, Kasper DL (2011) A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med 17:1602–1609

    CAS  Google Scholar 

  14. Jennings HJ (1983) Capsular polysaccharides as human vaccines. Adv Carbohydr Chem Biochem 41:155–208

    CAS  Google Scholar 

  15. Finco O, Rappuoli R (2014) Designing vaccines for the twenty-first century society. Front Immunol 5:12

    Google Scholar 

  16. Robbins JB, Schneerson R, Szu SC, Fattom A, Yang Y, Lagergard T, Chu C, Sørensen US (1989) Prevention of invasive bacterial diseases by immunization with polysaccharide-protein conjugates. Curr Top Microbiol Immunol 146:169–180

    CAS  Google Scholar 

  17. Lesinski GB, Westerink MA (2001) Vaccines against polysaccharide antigens. Curr Drug Targets Infect Disord 1:325–334

    CAS  Google Scholar 

  18. Paoletti LC, Kasper DL (2003) Glycoconjugate vaccines to prevent group B streptococcal infections. Expert Opin Biol Ther 3:975–984

    CAS  Google Scholar 

  19. Pichichero M (2013) Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum Vaccin Immunother 9:2505–2523

    CAS  Google Scholar 

  20. Goldblatt DJ (1998) Recent developments in bacterial conjugate vaccines. Med Microbiol 47:563–567

    CAS  Google Scholar 

  21. Beurret M, Hamidi A, Kreeftenberg H (2012) Development and technology transfer of Haemophilus influenzae type b conjugate vaccines for developing countries. Vaccine 30:4897–4906

    Google Scholar 

  22. Terra VS, Mills DC, Yates LE, Abouelhadid S, Cuccui J, Wren BW (2012) Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J Med Microbiol 61:919–926

    CAS  Google Scholar 

  23. Pozsgay V (2000) Oligosaccharide-protein conjugates as vaccine candidates against bacteria. Adv Carbohydr Chem Biochem 56:153–199

    CAS  Google Scholar 

  24. Pozsgay V (2008) Recent developments in synthetic oligosaccharide-based bacterial vaccines. Curr Top Med Chem 8:126–140

    CAS  Google Scholar 

  25. Lepenies B, Seeberger PH (2010) The promise of glycomics, glycan arrays and carbohydrate-based vaccines. Immunopharmacol Immunotoxicol 32:196–207

    CAS  Google Scholar 

  26. Ouerfelli O, Warren JD, Wilson RM, Danishefsky SJ (2005) Synthetic carbohydrate-based antitumor vaccines: challenges and opportunities. Expert Rev Vaccines 4:677–685

    CAS  Google Scholar 

  27. Bundle DR, Costello C, Nycholat C, Lipinski T, Rennie R (2012) Designing a Candida albicans conjugate vaccine by reverse engineering protective monoclonal antibodies. In: Kosma P, Muller-Loennies S (eds) Anticarbohydrate antibodies: from molecular basis to clinical application. Springer, Vienna, pp 121–146

    Google Scholar 

  28. Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KR, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071

    CAS  Google Scholar 

  29. Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R, Wilson IA, Katinger H, Dwek RA, Rudd PM, Burton DR (2002) The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1 → 2 mannose residues on the outer face of gp120. J Virol 76:7306–7321

    CAS  Google Scholar 

  30. Astronomo RD, Lee H-K, Scanlan CN, Pantophlet R, Huang C-Y, Wilson IA, Blixt O, Dwek RA, Wong C-H, Burton DR (2008) A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. J Virol 82:6359–6368

    CAS  Google Scholar 

  31. Wang LX (2006) Toward oligosaccharide- and glycopeptide-based HIV vaccines. Curr Opin Drug Discov Devel 9:194–206

    CAS  Google Scholar 

  32. Aussedat B, Vohra Y, Park PK, Fernández-Tejada A, Alam SM, Dennison SM, Jaeger FH, Anasti K, Stewart S, Blinn JH, Liao HX, Sodroski JG, Haynes BF, Danishefsky SJ (2013) Chemical synthesis of highly congested gp120 V1V2 N-glycopeptide antigens for potential HIV-1-directed vaccines. J Am Chem Soc 135:13113–13120

    CAS  Google Scholar 

  33. Michon F, Brisson JR, Jennings HJ (1987) Conformational differences between linear alpha (2 → 8)-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide. Biochemistry 26:8399–8405

    CAS  Google Scholar 

  34. Wessels MR, Kasper DL (1989) Antibody recognition of the type 14 pneumococcal capsule. Evidence for a conformational epitopein a neutral polysaccharide. J Exp Med 169:2121–2131

    CAS  Google Scholar 

  35. Paoletti LC, Kasper DL, Michon F, DiFabio J, Jennings HJ, Tosteson TD, Wessels MR (1992) Effects of chain length on the immunogenicity in rabbits of group B Streptococcus type III oligosaccharide-tetanus toxoid conjugates. J Clin Invest 89:203–209

    CAS  Google Scholar 

  36. Kasper DL, Paoletti LC, Wessels MR, Guttormsen HK, Carey VJ, Jennings HJ, Baker CJ (1996) Immune response to type III group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine. J Clin Invest 98:2308–2314

    CAS  Google Scholar 

  37. Laferriere CA, Sood RK, de Muys JM, Michon F, Jennings HJ (1998) Streptococcus pneumoniae type 14 polysaccharide-conjugate vaccines: length stabilization of opsonophagocytic conformational polysaccharide epitopes. Infect Immun 66:2441–2446

    CAS  Google Scholar 

  38. Zou W, Mackenzie R, Thérien L, Hirama T, Yang Q, Gidney MA, Jennings HJ (1999) Conformational epitope of the type III group B Streptococcus capsular polysaccharide. J Immunol 163:820–825

    CAS  Google Scholar 

  39. Jennings HJ (2012) The role of sialic acid in the formation of protective conformational bacterial polysaccharide epitopes. In: Kosma P, Muller-Loennies S (eds) Anticarbohydrate antibodies: from molecular basis to clinical application. Springer, Vienna, pp 55–74

    Google Scholar 

  40. Han Y, Riesselman MH, Cutler JE (2000) Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect Immun 68:1649–1654

    CAS  Google Scholar 

  41. Kabat EA (1956) Heterogeneity in extent of the combining regions of human antidextran. J Immunol 77:377–385

    CAS  Google Scholar 

  42. Kabat EA (1960) Upper limit for the size of the human antidextran combining site. J Immunol 84:82–85

    CAS  Google Scholar 

  43. Luderitz O, Westphal O, Staub AM, Le Minor L (1960) Preparation and immunological properties of an artificial antigen with colitose (3-deoxy-1-fucose) as the determinant group. Nature 188:556–558

    CAS  Google Scholar 

  44. Kleinhammer G, Himmelspach K, Westphal O (1973) Synthesis and immunological properties of an artificial antigen with the repeating oligosaccharide unit of Salmonella illinois as haptenic group. Eur J Immunol 3:834–838

    CAS  Google Scholar 

  45. Lindberg AA, Wollin R, Bruse G, Ekwall E, Svenson SB (1983) Immunology and immunochemistry of synthetic and semisynthetic Salmonella O-antigen-specific glycoconjugates. Am Chem Soc Symp Ser 231:83–118

    CAS  Google Scholar 

  46. Svenson SB, Lindberg AA (1981) Artificial Salmonella vaccines: Salmonella typhimurium O-antigen-specific oligosaccharide-protein conjugates elicit protective antibodies in rabbits and mice. Infect Immun 32:490–496

    CAS  Google Scholar 

  47. Svenson SB, Nurminen M, Lindberg AA (1979) Artificial Salmonella vaccines: O-antigenic oligosaccharide-protein conjugates induce protection against infection with Salmonella typhimurium. Infect Immun 25:863–872

    CAS  Google Scholar 

  48. Cygler M, Rose DR, Bundle DR (1991) Recognition of a cell surface oligosaccharide epitope of pathogenic Salmonella by an antibody Fab fragment. Science 253:442–446

    CAS  Google Scholar 

  49. Jeffrey PD, Bajorath J, Chang CY, Yelton D, Hellström I, Hellström KE, Sheriff S (1995) The X-ray structure of an anti-tumour antibody in complex with antigen. Nat Struct Biol 2:466–471

    CAS  Google Scholar 

  50. Rose DR, Przybylska M, To RJ, Kayden CS, Oomen RP, Vorberg E, Young NM, Bundle DR (1993) Crystal structure to 2.45 Å resolution of a monoclonal Fab specific for the Brucella A cell wall polysaccharide antigen. Protein Sci 2:1106–1113

    CAS  Google Scholar 

  51. Vyas NK, Vyas MN, Chervenak MC, Johnson MA, Pinto BM, Bundle DR, Quiocho FA (2002) Molecular recognition of oligosaccharide epitopes by a monoclonal Fab specific for Shigella flexneri Y lipopolysaccharide: X-ray structures and thermodynamics. Biochemistry 41:13575–13586

    CAS  Google Scholar 

  52. van Roon AMM, Pannu NS, de Vrind JPM, van der Marel GA, van Boom JH, Hokke CH, Deelder AM, Abrahams JP (2004) Structure of an anti-Lewis X Fab fragment in complex with its Lewis X antigen. Structure 12:1227–1236

    Google Scholar 

  53. Vulliez-Le Normand B, Saul FA, Phalipon A, Bélot F, Guerreiro C, Mulard LA, Bentley GA (2008) Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc Natl Acad Sci U S A 105:9976–9981

    CAS  Google Scholar 

  54. Murase T, Zheng RB, Joe M, Bai Y, Marcus SL, Lowary TL, Ng KK (2009) Structural insights into antibody recognition of mycobacterial polysaccharides. J Mol Biol 392:381–392

    CAS  Google Scholar 

  55. Evans DW, Müller-Loennies S, Brooks CL, Brade L, Kosma P, Brade H, Evans SV (2011) Structural insights into parallel strategies for germline antibody recognition of lipopolysaccharide from Chlamydia. Glycobiology 21:1049–1059

    CAS  Google Scholar 

  56. Blackler RJ, Müller-Loennies S, Brade L, Kosma P, Brade H, Evans SV (2012) Antibody recognition of Chlamydia LPS: Structural insights of inherited immune responses. In: Kosma P, Muller-Loennies S (eds) Anticarbohydrate antibodies: from molecular basis to clinical application. Springer, Vienna, pp 75–120

    Google Scholar 

  57. Johnson MA, Cartmell J, Weisser NE, Woods RJ, Bundle DR (2012) Molecular recognition of Candida albicans (1 → 2)-β-mannan oligosaccharides by a protective monoclonal antibody reveals the immunodominance of internal saccharide residue. J Biol Chem 287:18078–18090

    CAS  Google Scholar 

  58. Villeneuve S, Souchon H, Riottot M-M, Mazié J-C, Lei P-S, Glaudemans CPJ, Kováč P, Fournier J-M, Alzari PM (2000) Crystal structure of an anti-carbohydrate antibody directed against Vibrio cholerae O1 in complex with antigen: molecular basis for serotype specificity. Proc Natl Acad Sci U S A 97:8433–8438

    CAS  Google Scholar 

  59. Evans SV, Sigurskjold BW, Jennings HJ, Brisson J-R, To R, Altman E, Frosch M, Weisgerber C, Kratzin H, Klebert S, Vaesen M, Bitter-Suermann D, Rose DR, Young NM, Bundle DR (1995) Evidence for the extended helical nature of polysaccharide epitopes. The 2.8 Å resolution structure and thermodynamics of ligand binding of an antigen biding fragment specific for α-(2 → 8)-polysialic acid. Biochemistry 34:6737–6744

    CAS  Google Scholar 

  60. Milton MJ, Bundle DR (1998) Observation of the anti- conformation of a glycosidic linkage in an antibody-bound oligosaccharide. J Am Chem Soc 120:10547–10548

    CAS  Google Scholar 

  61. Bundle DR (1998) Recognition of carbohydrate antigens by antibody binding sites. In: Hecht S (ed) Carbohydrates. Oxford University Press, Oxford, pp 370–440

    Google Scholar 

  62. Baumann H, Altman E, Bundle DR (1993) Controlled acid hydrolysis of an O-antigen fragment yields univalent heptasaccharide haptens containing one 3,6-dideoxyhexose epitope. Carbohydr Res 247:347–354

    CAS  Google Scholar 

  63. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Google Scholar 

  64. Netea MG, Brown GD, Kullberg BJ, Gow NAR (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78

    CAS  Google Scholar 

  65. Netea MG, Gow NAR, Munro CA, Bates S, Collins C, Ferwerda G, Hobson RP, Bertram G, Hughes HB, Jansen T, Jacobs L, Buurman ET, Gijzen K, Williams DL, Torensma R, Van der Meer JWM, McKinnon A, Odds FC, Brown AJP, Kullberg B (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 6:1642–1650

    Google Scholar 

  66. Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo YL, Manzanero S, Cobbold C, Schroder K, Ma B, Orr S, Stewart L, Lebus D, Sobieszczuk P, Hume DA, Stow J, Blanchard H, Ashman RB (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180:7404–7413

    CAS  Google Scholar 

  67. Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62:130–180

    CAS  Google Scholar 

  68. Bishop CT, Blank F, Gardner PE (1960) The cell wall polysaccharides of Candida albicans: glucan, mannan, and chitin. Can J Chem 38:869–881

    Google Scholar 

  69. Cutler JE (2001) N-Glycosylation of yeast, with emphasis on Candida albicans. Med Mycol 39:75–86

    CAS  Google Scholar 

  70. Shibata N, Kobayashi H, Suzuki S (2012) Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci 88:250–265

    CAS  Google Scholar 

  71. Shibata N, Kobayashi H, Takahashi S, Okawa Y, Hisamichi K, Suzuki S, Suzuki S (1991) Structural study on a phosphorylated mannotetraose obtained from the phosphomannan of Candida albicans NIH B-792 strain by acetolysis. Arch Biochem Biophys 290:535–542

    CAS  Google Scholar 

  72. Shibata N, Arai M, Haga E, Kikuchi T, Najima M, Satoh T, Kobayashi H, Suzuki S (1992) Structural identification of an epitope of antigenic factor 5 in mannans of Candida albicans NIH B-792 (serotype B) and J-1012 (serotype A) as beta-1,2-linked oligomannosyl residues. Infect Immun 60:4100–4110

    CAS  Google Scholar 

  73. Shibata N, Hisamichi K, Kikuchi T, Kobayashi H, Okawa Y, Suzuki S (1992) Sequential nuclear magnetic resonance assignment of beta-1,2-linked mannooligosaccharides isolated from the phosphomannan of the pathogenic yeast Candida albicans NIH B-792 strain. Biochemistry 31:5680–5686

    CAS  Google Scholar 

  74. Kobayashi H, Shibata N, Nakada M, Chaki S, Mizugami K, Ohkubo Y, Suzuki S (1990) Structural study of cell wall phosphomannan of Candida albicans NIH B-792 (serotype B) strain, with special reference to 1H and 13C NMR analyses of acid-labile oligomannosyl residues. Arch Biochem Biophys 278:195–204

    CAS  Google Scholar 

  75. Shibata N, Ikuta K, Imai T, Satoh Y, Richi S, Suzuki A, Kojima C, Kobayashi H, Hisamichi K, Suzuki S (1995) Existence of branched side chains in the cell wall mannan of pathogenic yeast Candida albicans. Structure-antigenicity relationship between the cell wall mannans of Candida albicans and Candida parapsilosis. J Biol Chem 270:1113–1122

    CAS  Google Scholar 

  76. Cassone A (1989) Cell wall of Candida albicans: its functions and its impact on the host. Curr Top Med Mycol 3:248–314

    CAS  Google Scholar 

  77. Chaffin WL, Ringler L, Larsen HS (1988) Interactions of monospecific antisera with cell surface determinants of Candida albicans. Infect Immun 56:3294–3296

    CAS  Google Scholar 

  78. Kobayashi H, Shibata N, Suzuki S (1992) Evidence for oligomannosyl residues containing both beta-1,2 and alpha-1,2 linkages as a serotype A-specific epitope(s) in mannans of Candida albicans. Infect Immun 60:2106–2109

    CAS  Google Scholar 

  79. Kobayashi H, Takahashi S, Shibata N, Miyauchi M, Ishida M, Sato J, Maeda K, Suzuki S (1994) Structural modification of cell wall mannans of Candida albicans serotype A strains grown in yeast extract-Sabouraud liquid medium under acidic conditions. Infect Immun 62:968–973

    CAS  Google Scholar 

  80. Shibata N, Akagi R, Hosoya T, Kawahara K, Suzuki A, Ikuta K, Kobayashi H, Hisamichi K, Okawa Y, Suzuki S (1996) Existence of novel branched side chains containing beta-1,2 and alpha-1,6 linkages corresponding to antigenic factor 9 in the mannan of Candida guilliermondii. J Biol Chem 271:9259–9266

    CAS  Google Scholar 

  81. Shibata N, Onozawa M, Tadano N, Hinosawa Y, Suzuki A, Ikuta K, Kobayashi H, Suzuki S, Okawa Y (1996) Structure and antigenicity of the mannans of Candida famata and Candida saitoana: comparative study with the mannan of Candida guilliermondii. Arch Biochem Biophys 336:49–58

    Google Scholar 

  82. Shibata N, Kobayashi H, Tojo M, Suzuki S (1986) Characterization of phosphomannan-protein complexes isolated from viable cells of yeast and mycelial forms of Candida albicans NIH B-792 strain by the action of Zymolyase-100 T. Arch Biochem Biophys 251:697–708

    CAS  Google Scholar 

  83. Kobayashi H, Giummelly P, Takahashi S, Ishida M, Sato J, Takaku M, Nishidate Y, Shibata N, Okawa Y, Suzuki S (1991) Candida albicans serotype A strains grow in yeast extract-added Sabouraud liquid medium at pH 2.0, elaborating mannans without beta-1,2 linkage and phosphate group. Biochem Biophys Res Commun 175:1003–1009

    CAS  Google Scholar 

  84. Faille C, Wieruszeski JM, Lepage G, Michalski JC, Poulain D, Strecker G (1991) 1H-NMR spectroscopy of manno-oligosaccharides of the beta-1,2-linked series released from the phosphopeptidomannan of Candida albicans VW-32 (serotype A). Biochem Biophys Res Commun 181:1251–1258

    CAS  Google Scholar 

  85. Goins TL, Cutler JE (2000) Relative abundance of oligosaccharides in Candida species as determined by fluorophore-assisted carbohydrate electrophoresis. J Clin Microbiol 38:2862–2869

    CAS  Google Scholar 

  86. Han Y, Cutler JE (1995) Antibody response that protects against disseminated candidiasis. Infect Immun 63:2714–2719

    CAS  Google Scholar 

  87. Han Y, Cutler JE (1997) Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J Infect Dis 175:1169–1175

    CAS  Google Scholar 

  88. Han Y, Morrison RP, Cutler JE (1998) A vaccine and monoclonal antibodies that enhance mouse resistance to Candida albicans vaginal infection. Infect Immun 66:5771–5776

    CAS  Google Scholar 

  89. Han Y, Kozel TR, Zhang MX, MacGill RS, Carroll MC, Cutler JE (2001) Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J Immunol 167:1550–1557

    CAS  Google Scholar 

  90. Han Y, Kanbe T, Cherniak R, Cutler JE (1997) Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun 65:4100–4107

    CAS  Google Scholar 

  91. Nitz M, Ling CC, Otter A, Cutler JE, Bundle DR (2002) The unique solution structure and immunochemistry of the Candida albicans β-1,2-mannopyranan cell wall antigen. J Biol Chem 277:3440–3446

    CAS  Google Scholar 

  92. Nitz M, Bundle DR (2001) Synthesis of di- to hexasaccharide 1,2-linked beta-mannopyranan oligomers, a terminal S-linked tetrasaccharide congener and the corresponding BSA glycoconjugates. J Org Chem 66:8411–8423

    CAS  Google Scholar 

  93. Ogawa T, Yamamoto H (1982) Synthesis of linear d-mannotetraose and d-mannohexaose, partial structures of the cell-surface d-mannan of Candida albicans and Candida utilis. Carbohydr Res 104:271–283

    CAS  Google Scholar 

  94. Sugiyama H, Toyohiko N, Horii M, Motohashi K, Sakai J, Usui T, Hisamichi K, Ishiyama J (2000) The conformation of α-(1 → 4)-linked glucose oligomers from maltose to maltoheptaose and short-chain amylose in solution. Carbohydr Res 325:177–182

    CAS  Google Scholar 

  95. Ogawa T, Takanashi Y (1983) Synthesis of β- d-(1 → 2)-linked d-glucopentaose, a part of the structure of the exocellular β- d-glucan of Agrobacterium tumefaciens. Carbohydr Res 123:C16–C18

    CAS  Google Scholar 

  96. Pozsgay V, Robbins JB (1995) Synthesis of a pentasaccharide fragment of Polysaccharide II of Mycobacterium tuberculosis. Carbohydr Res 277:51–66

    CAS  Google Scholar 

  97. Rees DA, Scott WE (1971) Polysaccharide conformation. Part VI. Computer model-building for linear and branched pyranoglycans. Correlations with biological function. Preliminary assessment of inter-residue forces in aqueous solution. Further interpretation of optical rotation in terms of chain conformation. J Chem Soc B 469–479

    Google Scholar 

  98. Lemieux RU, Bock K, Delbaere LTJ, Koto S, Rao V (1980) The conformations of oligosaccharides related to the ABH and Lewis human blood group determinants. Can J Chem 58:631–653

    CAS  Google Scholar 

  99. Otter A, Lemieux RU, Ball RG, Venot AP, Hindsgaul O, Bundle DR (1999) Crystal state and solution conformation of the B blood group trisaccharide α- l-Fucp-(1 → 2)-[α- d-Galp]-(1 → 3)]-β- d-Galp-OCH3 Eur J Biochem 259:295–303

    Google Scholar 

  100. Zierke M, Smieško M, Rabbani S, Aeschbacher T, Cutting B, Allain FH-T, Schubert M, Ernst B (2013) Stabilization of branched oligosaccharides: Lewisx benefits from a non-conventional C–H · · · O hydrogen bond. J Am Chem Soc 135:13464–13472

    CAS  Google Scholar 

  101. Peters T, Brisson J-R, Bundle DR (1990) Conformational analysis of key disaccharide components of Brucella A and M antigens. Can J Chem 68:979–988

    CAS  Google Scholar 

  102. Crich D, Li H, Yao Q, Wink DJ, Sommer RD, Rheingold AL (2001) Direct synthesis of β-mannans. A hexameric [→3)-β- d-Man-(1 → 4)-β- d-Man-(1]3 subunit of the antigenic polysaccharides from Leptospira biflexa and the octameric (1 → 2)-linked β- d-mannan of the Candida albicans phospholipomannan. X-ray crystal structure of a protected tetramer. J Am Chem Soc 123:5826–5828

    CAS  Google Scholar 

  103. Nikrad PV, Beierbeck H, Lemieux RU (1992) Molecular recognition X. A novel procedure for the detection of the intermolecular hydrogen bonds present in a protein · oligosaccharide complex. Can J Chem 70:241–253

    CAS  Google Scholar 

  104. Nycholat CM, Bundle DR (2009) Synthesis of mono-deoxy and mono-O-methyl congeners of methyl β- d-mannopyranosyl-(1 → 2)-β- d-mannopyranoside for epitope mapping of anti-Candida albicans antibodies. Carbohydr Res 344:555–569

    CAS  Google Scholar 

  105. Bundle DR, Nycholat C, Costello C, Rennie R, Lipinski T (2012) Design of a Candida albicans disaccharide conjugate vaccine by reverse engineering a protective monoclonal antibody. ACS Chem Biol 7:1754–1763

    CAS  Google Scholar 

  106. Costello C, Bundle DR (2012) Synthesis of three trisaccharide congeners to investigate frame shifting of β1,2-mannan homo-oligomers in an antibody binding site. Carbohydr Res 357:7–15

    CAS  Google Scholar 

  107. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42:864–890

    CAS  Google Scholar 

  108. Nitz M, Bundle DR (2002) The unique solution structure and immunochemistry of the Candida albicans β1,2-mannopyranan cell wall antigen. In: Jiménez-Barbero J, Peters T (eds) NMR spectroscopy of glycoconjugates. Wiley-VCH Verlag, Weinheim, pp 145–187

    Google Scholar 

  109. Dang A-T, Johnson MA, Bundle DR (2012) Synthesis of a Candida albicans tetrasaccharide spanning the β1,2-mannan phosphodiester α-mannan junction. Org Biomol Chem 10:8348–8360

    CAS  Google Scholar 

  110. Lemieux RU, Du M-H, Spohr U (1994) Relative effects of ionic and neutral substituents on the binding of an oligosaccharide by a protein. J Am Chem Soc 116:9803–9804

    CAS  Google Scholar 

  111. Johnson MA, Bundle DR (2013) Designing a new antifungal glycoconjugate vaccine. Chem Soc Rev 42:4327–4344

    CAS  Google Scholar 

  112. Wu X, Bundle DR (2005) Synthesis of glycoconjugate vaccines for Candida albicans using novel linker methodology. J Org Chem 70:7381–7388

    CAS  Google Scholar 

  113. Lipinski T, Luu T, Kitov PI, Szpacenko A, Bundle DR (2011) A structurally diversified linker enhances the immune response to a small carbohydrate hapten. Glycoconj J 28:149–164

    CAS  Google Scholar 

  114. Lipinski T, Wu X, Sadowska J, Kreiter E, Yasui Y, Cheriaparambil S, Rennie R, Bundle DR (2012) A β-mannan trisaccharide conjugate vaccine aids clearance of Candida albicans in immunocompromised rabbits. Vaccine 30:6263–6269

    CAS  Google Scholar 

  115. Wu X, Lipinski T, Carrell F, Bailey JJ, Bundle DR (2007) Synthesis and immunochemical studies on a Candida albicans clustered glycoconjugate vaccine. Org Biomol Chem 5:3477–3485

    CAS  Google Scholar 

  116. Wu X, Lipinski T, Paszkiewicz E, Bundle DR (2008) Synthesis and immunochemical characterization of S-linked glycoconjugate vaccines against Candida albicans. Chem Eur J 14:6474–6482

    CAS  Google Scholar 

  117. Lipinski T, Kitov P, Szpacenko A, Paszkiewicz E, Bundle DR (2011) Synthesis and immunogenicity of a glycopolymer conjugate. Bioconjug Chem 22:274–281

    CAS  Google Scholar 

  118. Xin H, Dziadek S, Bundle DR, Cutler J (2008) Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci U S A 105:13526–13531

    CAS  Google Scholar 

  119. Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, Franzusoff A, Duke RC, Wilson CC (2001) Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med 7:625–629

    CAS  Google Scholar 

  120. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    CAS  Google Scholar 

  121. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    CAS  Google Scholar 

  122. Tacken PJ, Figdor CG (2011) Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Semin Immunol 23:12–20

    CAS  Google Scholar 

  123. Torosantucci A, Bromuro C, Chiani P, De Bernardis F, Berti F, Galli C, Norelli F, Bellucci C, Polonelli L, Costantino P, Rappuoli R, Cassone A (2005) A novel glycoconjugate vaccine against fungal pathogens. J Exp Med 202:597–606

    CAS  Google Scholar 

  124. Bromuro C, Romano M, Chiani P, Berti F, Tontini M, Proietti D, Mori E, Torosantucci A, Costantino P, Rappuoli R, Cassone A (2010) Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine 28:2615–2623

    CAS  Google Scholar 

  125. Brown GD, Herre J, Williams DL, Willment JA, Marshall A, Gordon S (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197:1119–1124

    CAS  Google Scholar 

  126. Curtis MM, Way SS (2009) Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 126:177–185

    CAS  Google Scholar 

  127. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638

    Google Scholar 

  128. Osorio F, LeibundGut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reise e Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38:3274–3281

    Google Scholar 

  129. Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE Jr, Spellberg B (2009) Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 5:e1000703

    Google Scholar 

  130. Gaffen SL, Hernandez-Santos N, Peterson AC (2011) IL-17 signaling in host defense against Candida albicans. Immunol Res 50:181–187

    CAS  Google Scholar 

  131. Lipinski T, Fitieh A, St. Pierre J, Ostergaard HL, Bundle DR, Touret N (2013) Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to dendritic cells via Dectin-1 by incorporating β-glucan. J Immunol 190:4116–4128

    Google Scholar 

  132. Goddard-Borger ED, Stick RV (2011) An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org Lett 13:2514–2514

    CAS  Google Scholar 

  133. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596–2599

    CAS  Google Scholar 

  134. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Google Scholar 

  135. Fidel PL Jr, Sobel JD (1994) The role of cell-mediated immunity in candidiasis. Trends Microbiol 2(6):202–206

    Google Scholar 

  136. Casadevall A, Cassone A, Bistono F, Cutler JE, Magliani W, Murphy JW, Polonelli L, Romani L (1998) Antibody and/or cell-mediated immunity, protective mechanisms in fungal disease: an ongoing dilemma or an unnecessary dispute? Med Mycol 36(Suppl 1):95–105

    CAS  Google Scholar 

  137. Casadevall A (1995) Antibody immunity and invasive fungal infections. Infect Immun 63:4211–4218

    CAS  Google Scholar 

  138. Cutler JE, Deepe GS Jr, Klein BS (2007) Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 5:13–28

    CAS  Google Scholar 

  139. Dziadek S, Jacques S, Bundle DR (2008) A novel linker methodology for the synthesis of tailored conjugate vaccines composed of complex carbohydrate antigens and specific TH-cell peptide epitopes. Chem Eur J 14:5908–5917

    CAS  Google Scholar 

  140. Pitarch A, Abian J, Carrascal M, Sánchez M, Nombela C, Gil C (2004) Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics 4:3084–3106

    CAS  Google Scholar 

  141. Clancy CJ, Nguyen ML, Cheng S, Huang H, Fan G, Jaber RA, Wingard JR, Cline C, Nguyen MH (2007) Immunoglobulin G responses against a panel of Candida albicans antigens as accurate and early markers for the presence of systemic candidiasis. J Clin Microbiol 46:1647–1654

    Google Scholar 

  142. Singh H, Raghava GPS (2001) Propred: Predication of HLA-DR binding sites. Bioinformatics 17:1236–1237

    CAS  Google Scholar 

  143. Sing H, Raghava GPS (2003) Propred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics 19:1009–1014

    Google Scholar 

  144. Xin H, Cartmell J, Bailey JJ, Dziadek S, Bundle DR, Cutler JE (2012) Self-adjuvanting glycopeptide conjugate vaccine against disseminated candidiasis. PLoS One 7:e35106

    CAS  Google Scholar 

  145. Cartmell J, Paszkiewicz E, Tam P-H, Luu T, Sarkar S, Lipinski T, Bundle DR (2014) Synthesis of antifungal vaccines by conjugation of β-1,2 trimannosides with T-cell peptides and covalent anchoring of neoglycopeptide to tetanus toxoid. Carbohydr Res. doi:10.1016/j.carres.2014.06.24

    Google Scholar 

  146. Bundle DR, Tam P-H, Tran H-A, Paszkiewicz E, Cartmell J, Sadowska JM, Sarkar S, Joe M, Kitov PI (2014) Oligosaccharides and peptide displayed on an amphiphilic polymer enable solid phase assay of hapten specific antibodies. Bioconjug Chem 25:685–697

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Bundle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bundle, D.R. (2014). The Evolution of a Glycoconjugate Vaccine for Candida albicans . In: Seeberger, P., Rademacher, C. (eds) Carbohydrates as Drugs. Topics in Medicinal Chemistry, vol 12. Springer, Cham. https://doi.org/10.1007/7355_2014_60

Download citation

Publish with us

Policies and ethics