Skip to main content

Discovery and Application of FimH Antagonists

  • Chapter
  • First Online:

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 12))

Abstract

Just like bacteria need to be mobile to seek for nutrients, bacteria need to adhere to biotic and abiotic surfaces to enable their progression. Most bacteria regulate the expression of a multitude of fimbrial adhesins that display varying specificities and architectures. FimH at the tip of type 1 fimbriae is one of the first recognized lectins on Escherichia coli. FimH evokes through its binding symptomatic and chronic E. coli infections in the urinary tract, in the intestine, and beyond. The mannose specificity of type 1 fimbriae has been the lead to the discovery of the FimH adhesin more than 32 years ago and presents today a role model as the template for anti-adhesive drug design. Curiously, the specificity of the FimH lectin had been defined very early on toward a Manα1,3Manβ1,4GlcNAc trisaccharide isolated from the urine of mannosidase-deficient patients. Indeed, a much larger dependence of bacterial adhesion can be attributed to structural differences in the mannosidic receptors than based on amino acid variance in FimH. The crystal structure of FimH in complex with oligomannoside-3 presented a breakthrough that enhanced the rational design of mannose-based anti-adhesives against FimH. In this overview, we will provide insights gained from a plethora of FimH antagonists. Crystal structures of FimH in complex with anti-adhesives and applications in vivo in mouse models for metabolic diseases reveal unexpected features and alternative routes for improved molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIEC:

Adherent-invasive E. coli

ATP:

Adenosine triphosphate

bpMan:

Biphenyl α- d-mannose

BM:

Butyl α- d-mannose

cAMP:

Cyclic adenosine monophosphate

CDK2:

Cyclin dependent kinase 2

CEACAM6:

Carcinoembryonic antigen-related cell adhesion molecule 6

CRP:

cAMP receptor protein

DC-SIGN:

Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin

DFT:

Density functional theory

DP:

Degree of polymerization

E. coli :

Escherichia coli

ER:

Endoplasmic reticulum

ESI-MS:

Electrospray ionization mass spectrometry

GPI:

Glycosylphosphatidylinositol

HDAC6:

Histone deacetylase 6

HM:

Heptyl α- d-mannose

HSA:

Human serum albumin

IBC:

Intracellular bacterial community

ITC:

Isothermal titration calorimetry

LB:

Luria Bertani

M cells:

Microfold cells, these are cells found in the follicle-associated epithelium of the Peyer’s patch

MD:

Molecular dynamics

MM:

Methyl α- d-mannose

MO:

Molecular orbital

NMR:

Nuclear magnetic resonance

PDB:

Protein data bank

RR:

Recurrency rate

SAXS:

Small-angle X-ray solution scattering

SPR:

Surface plasmon resonance

SQM:

Semi-empirical quantum mechanical

TazMan:

Thiazolyl α- d-mannose

TNF-α:

Tumor necrosis factor alpha

UTI:

Urinary tract infection

References

  1. Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114(Pt 22):4095–4103

    CAS  Google Scholar 

  2. Eto DS, Jones TA, Sundsbak JL, Mulvey MA (2007) Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 3(7):e100

    Google Scholar 

  3. Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5(5):e1000415

    Google Scholar 

  4. Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ (2010) Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6(8):e1001042

    Google Scholar 

  5. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301(5629):105–107

    CAS  Google Scholar 

  6. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101(5):1333–1338

    CAS  Google Scholar 

  7. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ (2007) Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4(12):e329

    Google Scholar 

  8. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19(12):2803–2812

    CAS  Google Scholar 

  9. Hung CS, Bouckaert J, Hung DL, Pinkner J, Winberg C, Defusco A, Auguste CG, Strouse R, Langermann S, Waksman G, Hultgren SJ (2002) Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44:903–915

    CAS  Google Scholar 

  10. Mulvey MA (2002) Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 4(5):257–271

    CAS  Google Scholar 

  11. Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9(9):2230–2241

    CAS  Google Scholar 

  12. Chen SL, Hung CS, Pinkner JS, Walker JN, Cusumano CK, Li Z, Bouckaert J, Gordon JI, Hultgren SJ (2009) Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci U S A 106(52):22439–22444

    CAS  Google Scholar 

  13. Mysorekar IU, Hultgren SJ (2006) Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci U S A 103(38):14170–14175

    CAS  Google Scholar 

  14. Mysorekar IU, Isaacson-Schmid M, Walker JN, Mills JC, Hultgren SJ (2009) Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5(5):463–475

    CAS  Google Scholar 

  15. Mysorekar IU, Mulvey MA, Hultgren SJ, Gordon JI (2002) Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J Biol Chem 277(9):7412–7419

    CAS  Google Scholar 

  16. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ (2012) Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36(3):616–648

    CAS  Google Scholar 

  17. Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ (2010) Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6(8)

    Google Scholar 

  18. Geerlings SE (2008) Urinary tract infections in patients with diabetes mellitus: epidemiology, pathogenesis and treatment. Int J Antimicrob Agents 31(Suppl 1):S54–S57

    CAS  Google Scholar 

  19. Geerlings SE, Meiland R, van Lith EC, Brouwer EC, Gaastra W, Hoepelman AIM (2002) Adherence of type 1-fimbriated Escherichia coli to uroepithelial cells – more in diabetic women than in control subjects. Diabetes Care 25(8):1405–1409

    Google Scholar 

  20. Geerlings SE, Beerepoot MA, Prins JM (2014) Prevention of recurrent urinary tract infections in women: antimicrobial and nonantimicrobial strategies. Infect Dis Clin North Am 28(1):135–147

    Google Scholar 

  21. Eshdat Y, Ofek I, Yashouv-Gan Y, Sharon N, Mirelman D (1978) Isolation of a mannose-specific lectin from Escherichia coli and its role in the adherence of the bacteria to epithelial cells. Biochem Biophys Res Commun 85(4):1551–1559

    CAS  Google Scholar 

  22. Firon N, Ofek I, Sharon N (1983) Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Carbohydr Res 120:235–249

    CAS  Google Scholar 

  23. Firon N, Ofek I, Sharon N (1984) Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect Immun 43(3):1088–1090

    CAS  Google Scholar 

  24. Sharon N (1987) Bacterial Lectins, cell-cell recognition and infectious disease. FEBS Lett 217:145–157

    CAS  Google Scholar 

  25. Egge H, Michalski JC, Strecker G (1982) Heterogeneity of urinary oligosaccharides from mannosidosis: mass spectrometric analysis of permethylated Man9, Man8, and Man7 derivatives. Arch Biochem Biophys 213(1):318–326

    CAS  Google Scholar 

  26. Firon N, Ofek I, Sharon N (1982) Interaction of mannose-containing oligosaccharides with the fimbrial lectin of Escherichia coli. Biochem Biophys Res Commun 105(4):1426–1432

    CAS  Google Scholar 

  27. Wellens A, Garofalo C, Nguyen H, Van Gerven N, Slattegard R, Hernalsteens JP, Wyns L, Oscarson S, De Greve H, Hultgren S, Bouckaert J (2008) Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3(4):e2040

    Google Scholar 

  28. Minion FC, Abraham SN, Beachey EH, Goguen JD (1986) The genetic determinant of adhesive function in type 1 fimbriae of Escherichia coli is distinct from the gene encoding the fimbrial subunit. J Bacteriol 165:1033–1036

    CAS  Google Scholar 

  29. Abraham SN, Sun D, Dale JB, Beachey EH (1988) Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family enterobactericeae. Nature 336:682–684

    CAS  Google Scholar 

  30. Bouckaert J, Mackenzie J, de Paz JL, Chipwaza B, Choudhury D, Zavialov A, Mannerstedt K, Anderson J, Pierard D, Wyns L, Seeberger PH, Oscarson S, De Greve H, Knight SD (2006) The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol Microbiol 61(6):1556–1568

    CAS  Google Scholar 

  31. Duncan MJ, Mann EL, Cohen MS, Ofek I, Sharon N, Abraham SN (2005) The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280(45):37707–37716

    CAS  Google Scholar 

  32. Rosenstein IJ, Stoll MS, Mizuochi T, Childs RA, Hounsell EF, Feizi T (1988) New type of adhesive specificity revealed by oligosaccharide probes in Escherichia coli from patients with urinary tract infection. Lancet 2(8624):1327–1330

    CAS  Google Scholar 

  33. Bouckaert J, Berglund J, Schembri M, De Genst E, Cools L, Wuhrer M, Hung CS, Pinkner J, Slattegard R, Zavialov A, Choudhury D, Langermann S, Hultgren SJ, Wyns L, Klemm P, Oscarson S, Knight SD, De Greve H (2005) Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55(2):441–455

    CAS  Google Scholar 

  34. Firon N, Ashkenazi S, Mirelman D, Ofek I, Sharon N (1987) Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal cells. Infect Immun 55:472–476

    CAS  Google Scholar 

  35. Wellens A, Lahmann M, Touaibia M, Vaucher J, Oscarson S, Roy R, Remaut H, Bouckaert J (2012) The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin FimH. Biochemistry 51(24):4790–4799

    CAS  Google Scholar 

  36. Durka M, Buffet K, Iehl J, Holler M, Nierengarten JF, Taganna J, Bouckaert J, Vincent SP (2011) The functional valency of dodecamannosylated fullerenes with Escherichia coli FimH-towards novel bacterial antiadhesives. Chem Commun 47(4):1321–1323

    CAS  Google Scholar 

  37. Jiang X, Abgottspon D, Kleeb S, Rabbani S, Scharenberg M, Wittwer M, Haug M, Schwardt O, Ernst B (2012) Antiadhesion therapy for urinary tract infections–a balanced PK/PD profile proved to be key for success. J Med Chem 55(10):4700–4713

    CAS  Google Scholar 

  38. Han Z, Pinkner JS, Ford B, Chorell E, Crowley JM, Cusumano CK, Campbell S, Henderson JP, Hultgren SJ, Janetka JW (2012) Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J Med Chem 55(8):3945–3959

    CAS  Google Scholar 

  39. Roos G, Wellens A, Touaibia M, Yamakawa N, Geerlings P, Roy R, Wyns L, Bouckaert J (2013) Validation of reactivity descriptors to assess the aromatic stacking within the tyrosine gate of FimH. ACS Med Chem Lett 4(11):1085–1090

    CAS  Google Scholar 

  40. Barnich N, Darfeuille-Michaud A (2010) Abnormal CEACAM6 expression in Crohn disease patients favors gut colonization and inflammation by adherent-invasive E. coli. Virulence 1(4):281–282

    Google Scholar 

  41. Serafini-Cessi F, Monti A, Cavallone D (2005) N-Glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj J 22(7–9):383–394

    CAS  Google Scholar 

  42. Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, Sun TT, Costello CE (2006) Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia4. J Biol Chem 281(21):14644–14653

    CAS  Google Scholar 

  43. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L, Colombel JF (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127(2):412–421

    Google Scholar 

  44. Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, Peeters H, Bommelaer G, Desreumaux P, Colombel JF, Darfeuille-Michaud A (2007) CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 117(6):1566–1574

    CAS  Google Scholar 

  45. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S, Yabashi A, Waguri S, Nakato G, Kimura S, Murakami T, Iimura M, Hamura K, Fukuoka S, Lowe AW, Itoh K, Kiyono H, Ohno H (2009) Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462(7270):226–230

    CAS  Google Scholar 

  46. Bernon C, Carre Y, Kuokkanen E, Slomianny MC, Mir AM, Krzewinski F, Cacan R, Heikinheimo P, Morelle W, Michalski JC, Foulquier F, Duvet S (2011) Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway. Glycobiology 21(3):363–375

    CAS  Google Scholar 

  47. Bilyy R, Stoika R (2007) Search for novel cell surface markers of apoptotic cells. Autoimmunity 40(4):249–253

    CAS  Google Scholar 

  48. Bilyy RO, Shkandina T, Tomin A, Munoz LE, Franz S, Antonyuk V, Kit YY, Zirngibl M, Furnrohr BG, Janko C, Lauber K, Schiller M, Schett G, Stoika RS, Herrmann M (2012) Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles. J Biol Chem 287(1):496–503

    CAS  Google Scholar 

  49. Bilyy R, Bouckaert J (2011) FimH from uropathogenic Escherichia coli binds to the blebs of apoptotic cells. Sepsis 4(1):96–97

    Google Scholar 

  50. Eto DS, Gordon HB, Dhakal BK, Jones TA, Mulvey MA (2008) Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 10(12):2553–2567

    CAS  Google Scholar 

  51. Dhakal BK, Mulvey MA (2009) Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem 284(1):446–454

    CAS  Google Scholar 

  52. Thankavel K, Shah AH, Cohen MS, Ikeda T, Lorenz RG, Curtiss R, Abraham SN (1999) Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J Biol Chem 274(9):5797–5809

    CAS  Google Scholar 

  53. Sokurenko EV, Chesnokova V, Doyle RJ, Hasty DL (1997) Diversity of the Escherichia coli type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J Biol Chem 272(28):17880–17886

    CAS  Google Scholar 

  54. Lonardi E, Moonens K, Buts L, de Boer AR, Olsson JD, Weiss MWS, Fabre E, Guerardel Y, Deelder AM, Oscarson S, Wuhrer M, Bouckaert J (2013) Structural sampling of glycan interaction profiles reveals mucosal receptors for fimbrial adhesins of enterotoxigenic Escherichia coli. Biology 2:894–917

    Google Scholar 

  55. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV (2002) Bacterial adhesion to target cells enhanced by shear force. Cell 109(7):913–923

    CAS  Google Scholar 

  56. Thomas W, Forero M, Yakovenko O, Nilsson L, Vicini P, Sokurenko E, Vogel V (2006) Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophys J 90(3):753–764

    CAS  Google Scholar 

  57. Pereverzev YV, Prezhdo OV, Forero M, Sokurenko EV, Thomas WE (2005) The two-pathway model for the catch-slip transition in biological adhesion. Biophys J 89(3):1446–1454

    CAS  Google Scholar 

  58. Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE (2010) Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141(4):645–655

    Google Scholar 

  59. Nilsson LM, Thomas WE, Trintchina E, Vogel V, Sokurenko EV (2006) Catch bond-mediated adhesion without a shear threshold – trimannose versus monomannose interactions with the FimH adhesin of Escherichia coli. J Biol Chem 281(24):16656–16663

    CAS  Google Scholar 

  60. Nilsson LM, Thornas WE, Sokurenko EV, Vogel V (2006) Elevated shear stress protects Escherichia coli cells adhering to surfaces via catch bonds from detachment by soluble inhibitors. Appl Environ Microbiol 72(4):3005–3010

    CAS  Google Scholar 

  61. Aprikian P, Tchesnokova V, Kidd B, Yakovenko O, Yarov-Yarovoy V, Trinchina E, Vogel V, Thomas W, Sokurenko E (2007) Interdomain interaction in the FimH adhesin of Escherichia coli regulates the affinity to mannose. J Biol Chem 282(32):23437–23446

    CAS  Google Scholar 

  62. Tchesnokova V, Aprikian P, Yakovenko O, Larock C, Kidd B, Vogel V, Thomas W, Sokurenko E (2008) Integrin-like allosteric properties of the catch-bond forming FimH adhesin of E. coli. J Biol Chem 283(12):7823–7833

    CAS  Google Scholar 

  63. Le Trong I, Aprikian P, Kidd BA, Thomas WE, Sokurenko EV, Stenkamp RE (2010) Donor strand exchange and conformational changes during E. coli fimbrial formation. J Struct Biol 172(3):380–388

    Google Scholar 

  64. Gong M, Makowski L (1992) Helical structure of P pili from Escherichia Coli. J Mol Biol 228:735–742

    CAS  Google Scholar 

  65. Miller E, Garcia T, Hultgren S, Oberhauser AF (2006) The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys J 91:3848–3856

    CAS  Google Scholar 

  66. Forero M, Yakovenko O, Sokurenko EV, Thomas WE, Vogel V (2006) Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biol 4(9):1509–1516

    CAS  Google Scholar 

  67. Bullitt E, Makowski L (1995) Structural polymorphism of bacterial adhesion pili. Nature 373:164–167

    CAS  Google Scholar 

  68. Snyder JA, Haugen BJ, Lockatell CV, Maroncle N, Hagan EC, Johnson DE, Welch RA, Mobley HLT (2005) Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73(11):7588–7596

    CAS  Google Scholar 

  69. Snyder JA, Lloyd AL, Lockatell CV, Johnson DE, Mobley HLT (2006) Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun 74(2):1387–1393

    CAS  Google Scholar 

  70. Lindberg S, Xia Y, Sonden B, Goransson M, Hacker J, Uhlin BE (2008) Regulatory interactions among adhesin gene systems of uropathogenic Escherichia coli. Infect Immun 76(2):771–780

    CAS  Google Scholar 

  71. Abraham JM, Freitag CS, Clements JR, Eisenstein BI (1985) An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A 82:5724–5727

    CAS  Google Scholar 

  72. Muller CM, Aberg A, Straseviciene J, Emody L, Uhlin BE, Balsalobre C (2009) Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog 5(2):e1000303

    Google Scholar 

  73. Schneeberger C, Kazemier BM, Geerlings SE (2014) Asymptomatic bacteriuria and urinary tract infections in special patient groups: women with diabetes mellitus and pregnant women. Curr Opin Infect Dis 27(1):108–114

    Google Scholar 

  74. Munera D, Hulgren SJ, Fernandez LA (2007) Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol Microbiol 64:333–346

    CAS  Google Scholar 

  75. Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, Waksman G (2011) Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474(7349):49–53

    CAS  Google Scholar 

  76. Munera D, Palomino C, Fernández LA (2008) Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly in Escherichia coli following the initial binding of the adhesin to FimD usher. Mol Microbiol 69(4):911–925

    CAS  Google Scholar 

  77. Abraham SN, Goguen JD, Beachey EH (1988) Hyperadhesive mutant of type 1 fimbriated Escherichia coli associated with the formation of FimH organelles (fimbriosomes). Infect Immun 56:1023–1029

    CAS  Google Scholar 

  78. Schwartz DJ, Kalas V, Pinkner JS, Chen SL, Spaulding CN, Dodson KW, Hultgren SJ (2013) Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc Natl Acad Sci U S A 110:15530–15537

    CAS  Google Scholar 

  79. Dennis JW, Brewer CF (2013) Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications. Mol Cell Proteomics 12(4):913–920

    CAS  Google Scholar 

  80. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134

    CAS  Google Scholar 

  81. Eto DS, Mulvey MA (2007) Flushing bacteria out of the bladder. Nat Med 13(5):531–532

    CAS  Google Scholar 

  82. Chabre YM, Roy R (2008) Recent trends in glycodendrimer syntheses and applications. Curr Top Med Chem 8(14):1237–1285

    CAS  Google Scholar 

  83. Almant M, Moreau V, Kovensky J, Bouckaert J, Gouin SG (2011) Clustering of Escherichia coli type-1 fimbrial adhesins by using multimeric heptyl alpha-D-mannoside probes with a carbohydrate core. Chem. Eur. J. 17(36):10029–10038

    CAS  Google Scholar 

  84. Bouckaert J, Li Z, Xavier C, Almant M, Caveliers V, Lahoutte T, Weeks SD, Kovensky J, Gouin SG (2013) Heptyl alpha-D-mannosides grafted on a beta-cyclodextrin core to interfere with Escherichia coli adhesion: an in vivo multivalent effect. Chem Eur J 19(24):7847–7855

    CAS  Google Scholar 

  85. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276(5312):607–611

    CAS  Google Scholar 

  86. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Mollby R, Winberg J, Normark S (1994) The Gal alpha(1–4) Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci U S A 91:11889–11893

    CAS  Google Scholar 

  87. Aronson M, Medalia O, Schori L, Mirelman D, Sharon N, Ofek I (1979) Prevention of colonization of the urinary-tract by blocking bacterial adherence with methyl-alpha-D-mannopyranoside. Israel J Med Sci 15(1):88

    Google Scholar 

  88. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, Henderson JP, Janetka JW, Hultgren SJ (2011) Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 3(109):109ra115

    Google Scholar 

  89. Knight SD, Bouckaert J (2009) Structure, function, and assembly of type 1 fimbriae. Top Curr Chem 288:67–107

    CAS  Google Scholar 

  90. Brument S, Sivignon A, Dumych TI, Moreau N, Roos G, Guerardel Y, Chalopin T, Deniaud D, Bilyy RO, Darfeuille-Michaud A, Bouckaert J, Gouin SG (2013) Thiazolylaminomannosides as potent anti-adhesives of type 1 piliated Escherichia coli isolated from Crohn’s disease patients. J Med Chem 56(13):5395–5406

    CAS  Google Scholar 

  91. Schwardt O, Rabbani S, Hartmann M, Abgottspon D, Wittwer M, Kleeb S, Zalewski A, Smiesko M, Cutting B, Ernst B (2011) Design, synthesis and biological evaluation of mannosyl triazoles as FimH antagonists. Bioorg Med Chem 19(21):6454–6473

    CAS  Google Scholar 

  92. Touaibia M, Wellens A, Glinschert A, Shiao TC, Wang Q, Papadopoulos A, Bouckaert J, Roy R (2014) O - and C -linked mannopyranosides to chemically disarm uropathogenic Escherichia coli by targeting their type-1 fimbriae mediated adhesion. To be published

    Google Scholar 

  93. Pang L, Kleeb S, Lemme K, Rabbani S, Scharenberg M, Zalewski A, Schadler F, Schwardt O, Ernst B (2012) FimH antagonists: structure-activity and structure–property relationships for biphenyl alpha-D-mannopyranosides. ChemMedChem 7:1404–1422

    CAS  Google Scholar 

  94. Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, Hobbs D, Ellenberger T, Cusumano CK, Hultgren SJ, Janetka JW (2010) Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53(12):4779–4792

    CAS  Google Scholar 

  95. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl Chem 70(5):1129–1143

    CAS  Google Scholar 

  96. Jiang X, Abgottspon D, Kleeb S, Rabbani S, Scharenberg M, Wittwer M, Haug M, Schwardt O, Ernst B (2012) Antiadhesion therapy for urinary tract infections-a balanced PK/PD profile proved to be key for success. J Med Chem 55(10):4700–4713

    CAS  Google Scholar 

  97. Klein T, Abgottspon D, Wittwer M, Rabbani S, Herold J, Jiang X, Kleeb S, Luthi C, Scharenberg M, Bezencon J, Gubler E, Pang L, Smiesko M, Cutting B, Schwardt O, Ernst B (2010) FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J Med Chem 53(24):8627–8641

    CAS  Google Scholar 

  98. Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321–327

    CAS  Google Scholar 

  99. Hartmann M, Lindhorst TK (2011) The bacterial lectin FimH, a target for drug discovery - carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion. Eur J Org Chem 2011:3583–3609

    CAS  Google Scholar 

  100. Touaibia M, Roy R (2007) Glycodendrimers as anti-adhesion drugs against type 1 fimbriated E. coli uropathogenic infections. Mini Rev Med Chem 7(12):1270–1283

    CAS  Google Scholar 

  101. Sperling O, Fuchs A, Lindhorst TK (2006) Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands. Org Biomol Chem 4(21):3913–3922

    CAS  Google Scholar 

  102. Abgottspon D, Rölli G, Hosch L, Steinhuber A, Jiang X, Schwardt O, Cutting B, Smiesko M, Jenal U, Ernst B, Trampuz A (2010) Development of an aggregation assay to screen FimH antagonists. J Microbiol Methods 82:249–255

    CAS  Google Scholar 

  103. Boettner B (2013) Debugging Crohn’s disease. SciBX 6(26):1–2

    Google Scholar 

  104. Deniaud D, Julienne K, Gouin SG (2011) Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org Biomol Chem 9(4):966–979

    CAS  Google Scholar 

  105. Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102(2):555–578

    CAS  Google Scholar 

  106. Chabre YM, Roy R (2010) Design and creativity in synthesis of multivalent neoglycoconjugates. Adv Carbohydr Chem Biochem 63:165–393

    CAS  Google Scholar 

  107. Lindhorst TK, Kieburg C, Krallmann-Wenzel U (1998) Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary alpha-mannosyl clusters: the effect of multivalency. Glycoconj J 15(6):605–613

    CAS  Google Scholar 

  108. Nagahori N, Lee RT, Nishimura S, PagÇ D, Roy R, Lee YC (2002) Inhibition of adhesion of type 1 fimbriated Escherichia coli to highly mannosylated ligands. Chembiochem 3(9):836–844

    CAS  Google Scholar 

  109. Touaibia M, Wellens A, Shiao TC, Wang Q, Sirois S, Bouckaert J, Roy R (2007) Mannosylated G(0) dendrimers with nanomolar affinities to Escherichia coli FimH. ChemMedChem 2(8):1190–1201

    CAS  Google Scholar 

  110. Gouin SG, Wellens A, Bouckaert J, Kovensky J (2009) Synthetic multimeric heptyl mannosides as potent antiadhesives of uropathogenic Escherichia coli. ChemMedChem 4(5):749–755

    CAS  Google Scholar 

  111. Vanwetswinkel S, Volkov AN, Sterckx YG, Garcia-Pino A, Buts L, Vranken WF, Bouckaert J, Roy R, Wyns L, van Nuland NA (2014) Study of the structural and dynamic effects in the FimH adhesin upon alpha-d-heptyl mannose binding. J Med Chem 57(4):1416–1427

    CAS  Google Scholar 

  112. Disney MD, Zheng J, Swager TM, Seeberger PH (2004) Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 126(41):13343–13346

    CAS  Google Scholar 

  113. Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11(13–14):580–594

    CAS  Google Scholar 

  114. Billiet L, Geerlings P, Messens J, Roos G (2012) The thermodynamics of thiol sulfenylation. Free Radic Biol Med 52(8):1473–1485

    CAS  Google Scholar 

  115. Roos G, Wellens A, Touaibia M, Yamakawa N, Geerlings P, Roy R, Wyns L, Bouckaert J (2013) Validation of reactivity descriptors to assess the aromatic stacking within the tyrosine gate of FimH. Med Chem Lett 4:1085–1090

    CAS  Google Scholar 

  116. Yilmazer ND, Korth M (2013) Comparison of molecular mechanics, semi-empirical quantum mechanical, and density functional theory methods for scoring protein-ligand interactions. J Phys Chem B 117(27):8075–8084

    CAS  Google Scholar 

  117. Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham density functional theory: predicting and understanding chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 15. Wiley-VCH, New York, pp 1–86

    Google Scholar 

  118. Krapp A, Bickelhaupt FM, Frenking G (2006) Orbital overlap and chemical bonding. Chem Eur J 12(36):9196–9216

    CAS  Google Scholar 

  119. Lepšík M, Řezáč J, Kolář M, Pecina A, Hobza P, Fanfrlík J (2013) The semiempirical quantum mechanical scoring function for in silico drug design. Chempluschem 78:921–931

    Google Scholar 

  120. Genheden S, Mikulskis P, Hu L, Kongsted J, Soderhjelm P, Ryde U (2011) Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. J Am Chem Soc 133(33):13081–13092

    CAS  Google Scholar 

  121. Chattaraj PK, Roy DR, Geerlings P, Torrent-Succarrat M (2007) Local hardness: a critical account. Theor Chem Acc 118:923–930

    CAS  Google Scholar 

  122. Bercowitz M, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814

    Google Scholar 

  123. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  124. Buckingham AD (1967) Permanent and induced molecular moments and long-range intermolecular forces. Adv Chem Phys 12:107

    CAS  Google Scholar 

  125. Mignon P, Loverix S, Steyaert J, Geerlings P (2005) Influence of the pi-pi interaction on the hydrogen bonding capacity of stacked DNA/RNA bases. Nucleic Acids Res 33(6):1779–1789

    CAS  Google Scholar 

  126. Mignon P, Loverix S, Geerlings P (2004) Influence of stacking on hydrogen bonding: quantum chemical study on pyridine-benzene model complexes. J Phys Chem A 108:6038–6044

    CAS  Google Scholar 

  127. Wheeler SE (2011) Local nature of substituent effects in stacking interactions. J Am Chem Soc 133(26):10262–10274

    CAS  Google Scholar 

  128. Raju RK, Bloom JWG, Wheeler SE (2013) Broad transferability os substituent effects in p-stacking interactions provide new insight into their origin. J Chem Theory Comput 9:3479–3490

    CAS  Google Scholar 

  129. Eid S, Zalewski A, Smiesko M, Ernst B, Vedani A (2013) A molecular-modeling toolbox aimed at bridging the gap between medicinal chemistry and computational sciences. Int J Mol Sci 14(1):684–700

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Bouckaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gouin, S.G., Roos, G., Bouckaert, J. (2014). Discovery and Application of FimH Antagonists. In: Seeberger, P., Rademacher, C. (eds) Carbohydrates as Drugs. Topics in Medicinal Chemistry, vol 12. Springer, Cham. https://doi.org/10.1007/7355_2014_52

Download citation

Publish with us

Policies and ethics